
 26TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES

1

Abstract

One of the major challenges facing the
simulation community is the extensive reliance
upon monolithic simulations that are neither
agile nor composable and are inappropriate for
capability-based conceptual design.
Furthermore, many simulations require
extensive use of humans to observe simulated
battlefield outcomes and recommend courses of
action. This paper summarizes a technique that
uses artificial neural networks to provide
automated course-of-action selection in a
constructive simulation, enabling “exploratory
analysis” of a large possibility space without
reliance on a human-in-the-loop during analysis
runs. The proposed technique is used to
understand sensitivities and examine new
technologies and tactics in a rapid and
traceable manner.

1 Introduction

In the past five years, the US Department of
Defense (DoD) has shifted from a tradition
threat-based acquisition policy that tended to
produce stovepiped individual systems toward a
capability-based approach design to foster
interoperability and the acquisition of “born
joint” capabilities. The official acquisition
policy, the Joint Capabilities Integration and
Development System (JCIDS) introduces
several new analysis steps but provides little
guidance for their execution [1]. In 2006, the
Joint Chiefs of Staff published recommended
guidance on the performance of Capability-
Based Assessments (CBAs) which recommends

the use of simulation tools where appropriate for
Functional Solution Analysis [2]. The use of
simulation to address hard military problems is
not new; however, simulation has found
increasing popularity for the conceptual design
of complex systems and is recommended by
both the US National Science Foundation (NSF)
and the US National Research Council (NRC)
for use in the systems engineering process [3],
[4].

The impetus to elevate systems analysis to
the “systems-of-systems” level to assess the
effectiveness of military capabilities introduces
a number of challenges into the conceptual
design of complex systems. First, in addition to
modeling the complex phenomenologies of
current and future systems and their
technologies, analysts and designers must now
place the system in an appropriate operational
context, define scenario parameters, and
understand the interoperation of a candidate
system with other elements of a system-of-
systems. This often greatly increases the burden
on simulation systems and often requires
collaboration across multiple partners for model
development, integration, and code execution.
Second, many simulation systems were
designed not for large exploratory analysis of
many combinations, but rather, were written to
perform validated analysis of a few point
scenarios [5]. Many such tools use a human as
part of the analysis process to assess the
simulated battlefield at predefined checkpoints
and recommend courses of action. Third,
designers now operate in unfamiliar design
spaces that exceed their sense of intuition. At
the system-of-systems level, factors that most

PARAMETRIC SYSTEM EFFECTIVENESS ANALYSIS
USING ARTIFICIAL NEURAL NETWORKS FOR

BATTLE MANAGEMENT

Patrick T. Biltgen, Dimitri N. Mavris
Georgia Institute of Technology, Atlanta, GA, USA

Keywords: Systems-of-Systems, Neural Networks, Battle Management

Patrick T. Biltgen, Dimitri N. Mavris

2

often appear to be drivers may be dominated by
the design variables of other systems,
technologies, the environment, or even the
methods of employing those systems.

This paper addresses a methodology for
automating the selection of military tactics
within a constructive simulation to remove the
human from the execution loop, incorporating
physics-based models of systems and
technologies, and using simulation-based
methods to explore unfamiliar regions of the
design space to provide insight to engineers and
decision makers. A more detailed treatment of
this methodology is outlined in References 6
and 7.

2 Using Simulation for Capability-Based
Design

The first major challenge outlined above, the
need to represent phenomenologies and put the
system in a relevant operational context, is
addressed through the use of simulation.

Simulation, the imitation of physical
phenomena with mathematical formulas,
“provides a powerful alternative to the tech-
niques of experimental science and observation
when phenomena are not observable or when
measurements are impractical or too expensive”
[8], [3]. Simulation has long been an invaluable
tool in military planning. Advances in
computing power and proliferation of affordable
simulation software have widened the user base
for simulations as a tool for exploratory analysis
of potential concepts early in the design process.

Simulation of systems-of-systems is best
enabled through the use of a hierarchical object-
oriented simulation environment [9]. In contrast
to monolithic hardcoded simulation systems that
were purpose-built to examine the interplay of
certain systems or scenarios, extensible
simulation frameworks allow multi-fidelity,
multi-resolution modeling of a number of
systems and their integrated effects [10]. A
popular framework (used herein for a proof of
concept) is the FLAMES framework by
Ternion, Inc [11]. Based on object-oriented C,
FLAMES allows the creation of flexible
simulations using a number of user defined

objects and instantiations of those objects.
Recent versions have included the capacity to
define common interfaces, facilitating model
sharing and interoperability. FLAMES also
supports execution of design-of-experiments or
optimization through external interfaces. The
key benefit of environment such as FLAMES is
the ability to assemble a simulation environment
that encompasses many different classes of
military equipment and their associated
“behaviors,” and explore the interaction
between the system design variables and a
common set of Measures of Effectiveness
(MoEs) that quantify outcomes in capability
terms.

Flexible simulation environments should
allow system design variables, scenario
parameters, friendly and enemy locations, and
specific courses of action (behaviors or tactics)
to be altered to observe the impact on one or
more MoEs. The ability to incorporate variable
fidelity models allows the simulation
environment’s run-time to be scaled based on
the fidelity needs of the simulationist. Varying
only those system properties determined to be
most significant to the overall variation of the
MoEs is also an efficient way to perform large
scale studies.

3 Battle Management in Simulation

Battle Management is defined by DoD as
“The management of activities within the
operational environment based on the
commands, direction, and guidance given by
appropriate authority” [12]. The battle manager
is therefore, the individual who provides
commands, direction, and guidance based on an
observed situation. In the most basic sense, the
battle manager is a resource allocator. He or she
must select which resource to assign to which
task, and when… knowing that a higher priority
task requiring the allocated asset may emerge at
any time. Resource allocation decisions are
therefore dependent on the specific situation
within a given scenario including geography,
time, asset locations, weapon loadouts, and the
dispersion of hostile threats across the
battlespace. In military operations, battle

3

PARAMETRIC SYSTEM EFFECTIVENESS ANALYSIS USING ARTIFICIAL NEURAL NETWORKS
FOR BATTLE MANAGEMENT

management is handled by local or combatant
commanders who assign courses of action to
forces under their command. In many
simulation systems, this role is simulated by one
or more trained experts who interface with a
simulation system. Most simulation activities
use visualization facilities to depict the state of
the battlespace at predefined checkpoints (or
after certain events are reached) and present the
battle manager with several courses of action
from which to choose. The orders and intent are
sent to the simulated entities and the computer
simulation resumes until the next checkpoint.
Though they excel in terms of fidelity and
realism, these simulation activities may require
hours or days for a single run. For this reason,
traditional human-based battle management
approaches are inappropriate for conceptual
capability-based design.

The second challenge outlined above is how
to reduce the dependence on human operators to
enable large-scale probabilistic studies of many
possible alternatives. One popular method for
battle management in constructive simulation is
the use of decision trees. Decision trees consist
of predetermined courses of action that are
executed either with a specified probability or
upon the attainment of certain operational
conditions. Decision trees (or pre-scripted battle
management logic) are an appropriate technique
when the courses of action are known and can
be related to the set of resources available.
Unfortunately, the third challenge outlined in
the introduction comes into play here: when
studying future systems, it may not be possible
to define the set of rules for their use. Just as the
physics of new technologies are often unknown
early in the conceptual design process, the ideal
concepts for employment for these systems may
also be difficult to determine. This is because
the experts from which an experience base of
tactics and doctrine are drawn have been
exposed to a set of known situations and
formulate courses of action based on this
experience. A technique for computer assisted
battle management that develops appropriate
courses of action is needed.

4 Agent-Based Modeling and Machine
Learning

Complex systems are categorized by
emergent, dynamic, non-linear behavior derived
from interactions between lower level
components. The field of agent-based modeling
and simulation (ABM/S) uses a bottom up
approach to the design of complex systems that
relies on creating relatively simple “agents” and
defining the interactions between agents in such
a way to generate realistic system-level
behavior with relatively unsophisticated
subsystem elements. According to Ilachinski,
“agent-based simulations of complex adaptive
systems are predicated on the idea that the
global behavior of a complex system derives
entirely from the low-level interactions among
its constituent agents” [13].

Machine Learning, a subdiscipline of
artificial intelligence, is a process by which a
predictive computer improves its performance
over time. The use of machine learning
techniques such as genetic algorithms or
recursive neural networks to develop adaptive
intelligent agents has received much attention
over the past fifteen years and has been applied
to a number of disciplines from speech
recognition to video games.

Several techniques are used to develop
intelligent agents. Analytic Learning systems
rely on a large knowledge base of problem
classes and compare presented problems to the
most similar solution. In Inductive Learning, an
external “teacher” is used to provide problem
examples and grade the program’s performance
at addressing them to provide increased
understanding over time. Connectionist
Learning uses a set of exemplars and a
mathematical algorithm to develop patterns that
closely match the provided data. This approach
most often uses artificial neural networks to
formulate the patterns. Finally, Selectionist
Learning “evolves” toward the correct answer
using a trial-and-error approach where
exemplars are tested over time. In practice, a
genetic algorithm is traditionally used for this
approach [14].

Patrick T. Biltgen, Dimitri N. Mavris

4

While a continuously learning algorithm is
most appropriate to simulate the generic battle
management problem, if the intent is to compare
conceptual system solutions to one another, an
algorithm with a consistent level of training is
required. When continuously learning
algorithms are used for conceptual design, the
learning rate of the algorithm confounds
concept comparison: a “dumb” algorithm with
“good” technologies may underperform a
“smart” algorithm with “poor” technologies.

The Connectionist Learning technique can be
used to develop an algorithmic battle manager
that is capable of developing detailed courses of
action when only general ones exist. This
method is appropriate for automated battle
management of constructive simulations used
for concept comparison and technology
evaluation [6].

5 Neural Network Algorithms for Battle
Management

The concept of artificial neural networks
(ANNs) was first introduced by neuro-
physiologist Warren McCulloch and
mathematician Walter Pitts in 1943 and was
developed extensively in the 1990s [15]. In
contrast to metamodeling techniques that
assume a functional form of the response
(response surface equations or Kriging models),
artificial neural networks use a generic
functional form and rely on a series of unknown
coefficients which are “tuned” through an
iterative process called training the neural
network. The power of the technique comes
from the use of a sigmoid equation as an
activation function from the set of inputs, X, to
the set of outputs, Y through a user-defined
number of “hidden nodes,” H. A commonly
used construct for ANNs, the multi-layer
perceptron is shown in Fig. 1 [16]. This
construct is trained using a process called
backpropagation, where an estimated output
pattern is compared with a known output pattern
and the unknown coefficients are tuned through
an optimization algorithm until the prediction
error between the actual and predicted values is
minimized.

There are many different architectures for
neural networks including radial basis functions,
recurrent neural networks, self-organizing maps,
Hopfield networks, associative neural networks,
and others [17], [18]. The architecture used in
this work is the feedforward neural network
shown in Fig. 1.

Input Layer Hidden Layer Output Layer

of Hidden Nodes
Defined by Optimization

Pattern of Connections
Found by Training

Single Response

X1

X2

X3

Xn

H1

H2

H3

H4

H5

Hm

Y1

…

…

Input Layer Hidden Layer Output Layer

of Hidden Nodes
Defined by Optimization

Pattern of Connections
Found by Training

Single Response

X1

X2

X3

Xn

H1

H2

H3

H4

H5

Hm

Y1

…

…
X1

X2

X3

Xn

H1

H2

H3

H4

H5

Hm

Y1

…

…

Fig. 1. Structure of a Feedforward Neural Network.

Since the objective of training a neural
network for battle management is to create a
surrogate of a human decision maker, the neural
network can be thought of as a “Meta-General”
that is capable of understanding battlefield
situations and allocating resources based on an
observed situation. This paradigm is illustrated
in Fig. 2.

Fighter Concentration

SAM Concentration

Objective
Blue Force Path

Training Mode: Single Mission, Several Engagements, Executed Many Times

Analysis Mode: Single Scenario with Multiple Targets, Multiple Missions, and
Many Engagements, Executed Once (Deterministic) or Many Times (Probabilistic)

Experience

Action

Meta-General

Fighter Concentration

SAM Concentration

Objective
Blue Force Path

Fighter Concentration

SAM Concentration

Objective
Blue Force Path

Training Mode: Single Mission, Several Engagements, Executed Many Times

Analysis Mode: Single Scenario with Multiple Targets, Multiple Missions, and
Many Engagements, Executed Once (Deterministic) or Many Times (Probabilistic)

Experience

Action

Meta-GeneralMeta-General

Fig. 2. Process for Creating a "Meta-General” [6].

In this construct, a number of training
situations (the aforementioned exemplars) are
provided by generating a friendly and enemy

5

PARAMETRIC SYSTEM EFFECTIVENESS ANALYSIS USING ARTIFICIAL NEURAL NETWORKS
FOR BATTLE MANAGEMENT

order-of-battle and assigning properties to the
blue assets that may be allocated. A number of
iterations are performed to build an experience
base of exemplars. The neural network is then
trained using the input/output data from these
simulation executions as the patterns for
learning. The resultant neural network (a
mathematical equation with defined
coefficients) is inserted into the simulation code.
The input variables describe the battlefield
situation and the status of available resources.
The responses are related to the courses of
action that may be undertaken by the battle
manager. The specific variables used and the
reasoning rationale are explained in a
subsequent section.

When faced with a new situation, the trained
battle manager operating in Analysis Mode as
shown in Fig. 2, identifies the situation in terms
of geography and threat laydown and iterates
through available resources to develop the
optimal asset-to-target pairings based on the
“knowledge” encapsulated in the neural
network.

6 Procedure for Training the Meta-General

To use this concept for battle management, a
number of enablers are required. First, a
simulation must be constructed that contains
physics models of the equipment to be tested or
compared. Second, a scenario must be defined
that describes the battlespace on which the
equipment is expected to operate. Third, general
instructions related to missions and outcomes
must be defined in computational terms. In this
example problem, physics models describing
aircraft and weapon flight were developed. The
scenario defined a geographic area, a set of
targets, a threat laydown, and a priority of
generic target classes. The mission of the
aircraft in the simulation was to attack the
targets in prioritized order (if possible). The
purpose of the battle manager is to decide which
assets are best suited to attack each target at a
given time. This decision is constrained by
which aircraft are currently available and the
state of enemy air defenses. A generic,
unclassified scenario was constructed using the

FLAMES framework and was based on public
domain data related to the 1991 Persian Gulf
War, Operation Desert Storm [18-22]. The
scenario used is depicted in Fig. 3.

Target

Bomber

Battle Manager

Dead SAMsDead SAMs

Target

Bomber

Battle Manager

Dead SAMsDead SAMs

Fig. 3. Scenario Used for Battle Manager
Training [6].

Next, the ranges of the parameters used for
the battle manager’s inputs are defined based on
the environment and parameters describing the
friendly systems. The variables used are shown
in Tab. I.

Tab. I. Input Parameters for Meta-General Training.

Variable Low High
Max Platform Speed (Mach) 0.72 4
Cruise Altitude (ft) 10,000 50,000
GTOW (lbs) 35,000 1,200,000
Empty Weight Ratio 0.4 0.55
Payload Weight (lbs) 2,000 80,000
Thrust/Weight 0.35 1.5
Wing Loading (lb/ft2) 20 150
Drag Coefficient 0.01 0.09
Maximum Lift Coefficient 1.5 3
TSFC (lbm/lbf-hr) 0.3 0.8
Susceptibility Factor 0.01 1
Weapon Range (nm) 10 1,200
Weapon Speed (Mach) 0.72 6
Bomber Location (Lat) 14° 37°
Bomber Location (Lon) 34° 60°
Target Location (Lat) 29° 37°
Target Location (Lon) 38° 48°
SAM Density (%) 0 100

Patrick T. Biltgen, Dimitri N. Mavris

6

These parameters were determined from a
larger list of aircraft and weapon parameters by
screening for those parameters with the greatest
impact on the overall outcome of the simulated
conflict. The first ten input variables are design
variables for a fixed wing aircraft that are
generally under a designer’s control.
Susceptibility Factor is a surrogate for the
aircraft’s “stealth” and essentially acts as a
probability of detection by hostile forces. Larger
values increase the likelihood that the friendly
aircraft is detected by the adversary’s air
defense system. The next two variables define
the properties of air-to-ground weapons and
allow a range of weapons from glide bombs to
cruise missiles to be simulated.

The next five parameters define the
geometric and threat situation of the battlespace.
The Bomber Location defines the current
location of the friendly bomber and the Target
Location defines the geographic location of the
target under consideration. The final parameter,
SAM Density describes the current intensity of
surface-to-air missile (SAM) defenses in terms
of the percentage of sites still alive. These
parameters are used to determine whether a
friendly bomber will fly over SAM defenses
while enroute to the target under consideration
and whether the sites are alive. If the SAM
Density is 100%, it is highly likely the friendly
platform will be attacked if the Susceptibility
Factor is non-zero. On the other hand, when the
SAM Density is low, this implies that most of
the defenses have been destroyed by other assets
and most aircraft will be able to prosecute the
war with impunity.

To generate data for neural network training,
the Design-of-Experiments (DOE) technique is
used. DOE is “a systematic, rigorous approach
to engineering problem solving that applies
principles and techniques at the data collection
stage so as to ensure the generation of valid,
defensible, and supportable engineering
conclusions” [24]. Since the 1920s, a number of
techniques have been developed for analysis of
critical factors and the generation of response
surfaces. Since ANNs require dense population
of the interior of the design space to develop
accurate estimates of nonlinear behaviors,

traditional DOE methods such as fraction
factorial or central composite designs are not
appropriate. Space-filling experimental designs
are the most effective class of designs for
generating ANNs. Of these, there are two
general properties:
• Maximize the separation of sampled points.
• Maximize the dispersion across the sample

space.
While random points can be used to fill a

space, an alternative scheme called “sphere-
packing” is used to minimize the maximum
distance between any two points in n-
dimensional space, akin to placing billiard balls
into an n-dimensional box. This tends to ensure
maximum separation of the points in the
experimental design and, in general, improves
the fit of resultant surrogate models.
Mathematical techniques to assess this distance
have been developed extensively in the
literature [25].

In addition to the maximum spacing criteria,
another useful criterion for space-filling designs
is the property of uniform spacing across the
region of interest. According to Cioppa, “A
good space-filling design is one in which the
design points are scattered throughout the
experimental region with minimal unsampled
regions; that is, the voided regions are relatively
small” [26]. A uniform design seeks to spread
the points evenly by minimizing a parameter
called the “discrepancy,” which is the difference
from the empirically sampled set of design
points and a theoretical uniform distribution.
This type of design directly addresses the
second property above.

The final type of space-filling design
discussed in this work is the Latin Hypercube
(LHC) designs, developed by Ronald L. Iman, J.
C. Helton, and J. E. Campbell in the early
1980s. A LHC attempts to distribute points
evenly through the design space using a
combination of uniform designs with a sphere-
packing scheme.

Upon experimental comparison of all three
DOE types and a set of random points, DOEs
created with the sphere-packing scheme tended
to produce the most accurate ANNs for this
application [6].

7

PARAMETRIC SYSTEM EFFECTIVENESS ANALYSIS USING ARTIFICIAL NEURAL NETWORKS
FOR BATTLE MANAGEMENT

An eighteen variable 10,000 case space-
filling design was developed using the JMP® 7.0
software package and executed through the
FLAMES-based simulation depicted in Fig. 3.
Of the 10,000 cases, 8,922 were “usable” due to
the fact that the square boundaries of the DOE
input ranges occasionally placed the target
outside the allowable bounds of the simulation
(in a country other than Iraq), resulting in a
failed case.

Two predictive neural network equations
were developed to answer two questions facing
the battle manager:

“If aircraft/weapon combination (i) is tasked to
attack target (j)”

• Will platform i be lost? (Platform Lost)
• Will target j be killed? (Target Killed)

Note that in this formulation, the
probabilities of each event are not considered,
only the deterministic outcome of the
engagement. Therefore, the neural network
predicts the response in the range [0,1].

Many computerized tools exist to automate
the neural network training process, which is in
practice a time consuming iterative effort to
tune the unknown coefficients of the equation to
minimize the error between the actual and
predicted values resulting from the 8,922 DOE
runs. A computational routine written by
Johnson and Schutte around the MATLAB
Neural Network Toolbox was used to perform
the neural network training [27]. The resultant
eight hidden-node ANN for Platform Lost has
an overall accuracy of 96.54%. A nine-node
ANN for Target Killed has an overall accuracy
of 97.44%. Here, the accuracy statistics
represent the probability that the battle manager
makes the correct decision given the
information provided about the state of the
simulation is within the original ranges of the
DOE table (Tab. I).

7 Using the Meta-General in a Simulation

The aforementioned section described how to
set up the neural network architecture, define
the DOE parameters, and train the neural
network using the MATLAB neural network

toolbox. The result of the previous steps are two
equations that each have eighteen input
variables and produce a single Boolean
response. The intent of this equation is to give a
computational routine predictive power on the
expected outcome of a potential engagement
pairing.

This neural network equation is inserted into
simulation code which receives a prioritized
target list and iterates through all unassigned
resources (platforms). Each platform carries one
or more weapons. At run-time, the battle
manager code queries the current platform and
each weapon for their properties (13 of the 18
required inputs), queries the simulation kernel
for the location of the platform and target (4 of
the 18 required inputs), and counts the
percentage of SAM sites currently alive1.

The battle manager uses the outputs of the
neural network equation to evaluate a “cost” for
each potential engagement using the formula:

() ()

() stMunitionCoTimeCost
BomberCostTargetCostCostEngagement

−−
−=

Time
PT LK (1)

Where TK and PL are the Boolean outputs of the
neural networks for Target Killed and Platform
Lost respectively. TargetCost is a dollar amount
assigned to represent the value of a target.
BomberCost is weight-based regression of
aircraft cost based on empty weight.
MunitionCost is a similar regression to represent
the relative cost of different munitions. Time
and TimeCost take into account, all other factors
being equal, that the battle manager would
prefer to use a closer asset to an identical asset
with a slower response time. Using this
equation, the battle manager code iterates
through all possible resources and identifies the
pairing with the highest positive cost. In this
manner, the battle manager will not allocate a
bomber to a “suicide mission” when the cost of
the platform exceeds the value of the target.

1 Note that in reality, the calculation of SAM Density is
impractical. One of the primary difficulties in combat is
determining the location and status of enemy defenses.
For this proof of concept exercise, the confounding
factors of surveillance and intelligence are abstracted out
using this simplification.

Patrick T. Biltgen, Dimitri N. Mavris

8

Similarly, the battle manager will not
allocate a munition whose cost is more than the
user-specified value of the target.

The code iterates until either all targets have
been eliminated or until there are no targets that
can be prosecuted with the platform/ weapon
combinations available to the battle manager.
More information on this procedure is available
in References 6 and 7.

8 Observing the Meta-General in Action

When using the cost prioritization method
shown in Equation 1, intuitive patterns may be
observed in the simulation. Early in the
simulated conflict when SAM Density is high,
only the stealthiest platforms are likely to
survive. The Meta-General tends to allocate
either stealthy platforms with short range
weapons or unstealthy platforms with long
range weapons. Recall that the logic in Equation
1 prevents the battle manager from making
decisions that intentionally sacrifice platforms.
Additionally, the Meta-General tends to prefer
less expensive weapons provided that the
platform will not be lost.

In another test, the battle manager was asked
to route the assets along a preselected set of

twenty different airspace corridors with varying
length and threat levels. The threat level, or
amount of danger associated with each corridor
is calculated by how many SAM sites’ range
circles intersect each corridor. A plot of corridor
usage over time is shown in Fig. 4. Early in the
conflict, the battle manager tends to prioritize
usage of the “Long, Very Safe” corridor for all
assets regardless of their level of technology. As
time passes and some SAM sites are destroyed,
the SAM Density parameter is reduced which
provides other avenues for attack for the
friendly aircraft. Shorter, more dangerous routes
are preferentially selected later in the conflict.
Even though they are classified as dangerous,
these routes are often selected because the SAM
sites formerly protecting them have been
destroyed by actions earlier in the conflict. This
test demonstrates how the battle manager’s
decisions change over time to reflect the state of
the simulation.

Late in the conflict, the Meta-General’s route
choices are nearly evenly distributed across the
spectrum of possible choices because many of
the defenses have been destroyed and even
unstealthy platforms with short range munitions
can survive in the permissive threat environ-
ment.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2 4 6 8 10 12 14 16 18 20 22 24

Pe
rc
en
ta
ge
 o
f T
im
es
 e
ac
h
C
or
ri
do
r
is
C
ho
se
n

Hours into Conflict

Short, Very Dangerous
Medium, Dangerous
Short, Dangerous
Long, Normal
Medium, Normal
Short, Normal
Long, Safe
Long, Very Safe

Fig. 4. Corridors Selected by the Meta-General Over Time.

9

PARAMETRIC SYSTEM EFFECTIVENESS ANALYSIS USING ARTIFICIAL NEURAL NETWORKS
FOR BATTLE MANAGEMENT

9 Summary and Conclusions

Systems engineers have long been familiar
with designing systems to meet requirements;
however, with the recent shift to capability-
based acquisition, crisp and detailed
requirements statements are quickly becoming a
thing of the past. Engineers are increasingly
asked to examine “multiple combinations of
ways and means to achieve an effect” [1].

Computer simulations are a valuable tool for
understanding complex relationships endemic to
systems-of-systems problems; however, many
military simulations rely heavily on hardcoded
assumptions or humans with tacit information
that may not extrapolate to the systems,
technologies, and tactics of the future.

By constructing a synthetic combat
environment that allows many potential
combinations of systems and courses of action
to be quickly prototyped, an experience base
can be efficiently generated using DOE methods
for regression into an artificial neural network.
As demonstrated in this work, an accurate
neural network (validated to match the training
data) can be used inside of a computer
simulation to estimate the “best” potential
courses of action for a given suite of aircraft
platforms and weapons in a time-variant threat
environment.

The combination of agent-based models with
a hierarchical object-oriented constructive
simulation environment enables parametric
system effectiveness analysis for large-scale
systems-of-systems by providing a mechanism
to evaluate new systems and technologies with
respect to capability-based measures of
effectiveness.

One of the major drawbacks of the proposed
technique is the need to re-train the neural
network when either the assumptions behind the
scenario or the ranges of the input variables are
changed. Scenario assumptions are often
changed frequently during the definition phases
of simulation activities, and the utility of the
proposed Meta-General concept relies on the
simulation team composing assumptions and the
simulation environment in a structured manner
that reduces unnecessary iteration.

By using this technique, technologists can
provide a common rationale behind the
“behaviors” of assets in the simulation: often the
most difficult thing for engineers and
technology experts to explain. Since technology
and tactics must often be co-developed, the
proposed approach shows one way to ensure
that the best set of tactics and courses of action
are matched to the systems employed.

Agent-based models hold promise for the
simulation of human behaviors and the
understanding of the complex dynamics
endemic to systems-of-systems problems;
however, as Lazaroff and Snowden note, they
are extremely difficult to validate and are more
useful for providing insight into complex
phenomena than precise quantification of effects
[28]. Nevertheless, the set of modeling tools
outlined in this work is becoming increasingly
popular in the conceptual design of complex
systems.

Future research efforts will apply this set of
methodologies to other problems in an effort to
develop more precise guidelines for their use
and to develop recommendations used to
standardize the application of neural networks,
constructive simulation, and agent-based models
in the systems engineering and exploratory
analysis process.

Acknowledgements

The authors would like to thank Mr. David
Brown and the U.S. Air Force Research
Laboratory for their sponsorship of this research
program under Cooperative Agreement
FA8650-04-3-9015. Graduate researchers Shuo-
Ju Chou, William Engler and Steven Tangen
also contributed significantly to this work.

References
[1] United States Joint Chiefs of Staff, “Joint

Capabilities Integration and Development System
(JCIDS),” CJCSI 3170.01F, May 2007.

[2] United States Joint Chiefs of Staff, Capabilities-
Based Assessment (CBA) User’s Guide, Version 2,
Force Structure, Resources, and Assessments
Directorate (JCS J-8), December 2006.

Patrick T. Biltgen, Dimitri N. Mavris

10

[3] “Simulation-Based Engineering Science:
Revolutionizing Engineering Science through
Simulation,” Document Number SBES0506,
National Science Foundation, May 26, 2006.

[4] “Pre-Milestone A and Early-Phase Systems
Engineering: A Retrospective Review and Benefits
for Future Air Force Acquisition,” National Research
Council, URL: http://www.nap.edu/catalog/12065.
html, 2008, [cited May 21, 2008].

[5] Davis, Paul K., Bigelow, James H., and McEver,
Jimmie, “Exploratory Analysis and a Case History of
Multiresolution, Multiperspective Modeling,” RAND
Corporation, RP-925, Reprinted from Proceedings of
the 2000 Winter Simulation Conference, Jeffrey A.
Joines, Russell R. Barton, K. Kang, and Paul A.
Fishwick (editors), December, 2000 and Proceedings
of the SPIE, Vol. 4026, 2000.

[6] Biltgen, P. T., A Methodology for Capability-Based
Technology Evaluation for Systems-of-Systems, PhD
Thesis, School of Aerospace Engineering, Georgia
Institute of Technology, May 2007.

[7] Mavris, D. N., and Biltgen, P. T., “Theory and
Implementation of an Agent-Based Intelligent Battle
Manager for Quantitative Technology Assessment for
Long Range Strike,” Cooperative Agreement
FA8650-04-3-9015, Final Report to the Wright
Brothers Institute and the United States Air Force
Research Laboratory, January 22, 2007.

[8] “Definition: Simulation.” URL: http://www.
webopedia.com/TERM/S/simulation.html, [cited
June 1, 2008].

[9] Biltgen P. T., and Mavris, D. N., “A Methodology for
Capability-Focused Technology Evaluation of
Systems-of-Systems,” AIAA-2007-1331, Presented
at the 45th AIAA Aerospace Sciences Meeting and
Exhibit, Reno, Nevada, Jan. 8-11, 2007.

[10] Davis, Paul K., Bigelow, James, H., “Experiments in
Multiresolution Modeling (MRM),” RAND
Corporation, MR-1004-DARPA, 1998.

[11] Ternion Corporation, “FLAMES Construction
Simulation Framework, Version 6.1,” Computer
Program, Ternion Corporation, Huntsville, AL, 1991-
2006.

[12] U.S. Department of Defense, “DoD Dictionary,”
Defense Technical Information Center, Joint
Publication 1-02, Updated March 4, 2008, URL:
http://www.dtic.mil/doctrine/jel/doddict, [cited May
27, 2008].

[13] Ilachinski, A., “Irreducible Semi-Autonomous
Adaptive Combat (ISAAC): An Artificial-Life
Approach to Land Warfare (U),” in CRM 97-61.1,
Center for Naval Analyses, August 1997.

[14] Ilachinski, A., Artificial War: Multiagent-Based
Simulation of Combat, World Scientific, 2004.

[15] McCulloch, W. S. and Pitts, W. H., “A Logical
Calculus of the Ideas Immanent in Nervous

Activity,” Bulletin of Mathematical Biophysics, vol.
5, pp. 115–133, 1943.

[16] Minsky, M. A. and Papert, S. A. Perceptrons: an
Introduction to Computational Geometry, MIT Press,
1969.

[17] Bar-Yam, Y., Dynamics of Complex Systems (Studies
in Nonlinearity), Westview Press, 2003.

[18] Hassoun, M. H., Fundamentals of Artificial Neural
Networks, MIT Press, 1995.

[19] Davis, R. G., Decisive Force: Strategic Bombing in
the Gulf War, Air Force Historical Studies Office,
GPO Stock No.008-070-00710-0, 1996.

[20] United States Department of Defense, “Final Report
to Congress: Conduct of the Persian Gulf War,” tech.
rep., April 1992.

[21] Cohen, E. A., “Gulf War Air Power Survey, Volume
I: Planning and Command and Control,” tech. rep.,
Washington, D. C., 1993.

[22] Putney, D. T., Airpower Advantage: Planning the
Gulf War Air Campaign 1989-1991, Air Force
History and Museums Program, United States Air
Force, 1994.

[23] Glosson, B., War With Iraq: Critical Lessons,
Carolina Gardener, March 2003.

[24] NIST/SEMATECH, “e-Handbook of Statistical
Methods.” URL: http://www.itl.nist.gov/div898/
handbook/, [cited April 1, 2008].

[25] Johnson, M., Moore, L., and Ylvisaker, D.,
“Minimax and Maximin Distance Designs,” Journal
of Statistical Planning and Inference, vol. 26, pp.
131–148, 1990.

[26] Cioppa, T. M., Efficient Nearly Orthogonal and
Space-Filling Experimental Designs for High-
Dimensional Complex Models, PhD thesis, Naval
Postgraduate School, Monterey, California, 2002.

[27] Johnson, C., and Schutte, J., Basic Regression
Analysis for Integrated Neural Networks (BRAINN)
Documentation, Version 1.2. Georgia Institute of
Technology, 225 North Avenue, Atlanta, GA 30332,
June 14, 2005.

[28] Lazaroff, M. & Snowden, D. “Anticipatory models
for Counter Terrorism” in Popp, R & Yen, J,
Emergent Information Technologies and Enabling
Policies for Counter-Terrorism, Wiley-IEEE Press
2006.

Copyright Statement
The authors confirm that they, and/or their company or
institution, hold copyright on all of the original material
included in their paper. They also confirm they have obtained
permission, from the copyright holder of any third party material
included in their paper, to publish it as part of their paper. The
authors grant full permission for the publication and distribution
of their paper as part of the ICAS2008 proceedings or as
individual off-prints from the proceedings.

