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Abstract  

One of the major challenges facing the 
simulation community is the extensive reliance 
upon monolithic simulations that are neither 
agile nor composable and are inappropriate for 
capability-based conceptual design. 
Furthermore, many simulations require 
extensive use of humans to observe simulated 
battlefield outcomes and recommend courses of 
action. This paper summarizes a technique that 
uses artificial neural networks to provide 
automated course-of-action selection in a 
constructive simulation, enabling “exploratory 
analysis” of a large possibility space without 
reliance on a human-in-the-loop during analysis 
runs. The proposed technique is used to 
understand sensitivities and examine new 
technologies and tactics in a rapid and 
traceable manner. 

1  Introduction  

In the past five years, the US Department of 
Defense (DoD) has shifted from a tradition 
threat-based acquisition policy that tended to 
produce stovepiped individual systems toward a 
capability-based approach design to foster 
interoperability and the acquisition of “born 
joint” capabilities. The official acquisition 
policy, the Joint Capabilities Integration and 
Development System (JCIDS) introduces 
several new analysis steps but provides little 
guidance for their execution [1]. In 2006, the 
Joint Chiefs of Staff published recommended 
guidance on the performance of Capability-
Based Assessments (CBAs) which recommends 

the use of simulation tools where appropriate for 
Functional Solution Analysis [2]. The use of 
simulation to address hard military problems is 
not new; however, simulation has found 
increasing popularity for the conceptual design 
of complex systems and is recommended by 
both the US National Science Foundation (NSF) 
and the US National Research Council (NRC) 
for use in the systems engineering process [3], 
[4].  

The impetus to elevate systems analysis to 
the “systems-of-systems” level to assess the 
effectiveness of military capabilities introduces 
a number of challenges into the conceptual 
design of complex systems. First, in addition to 
modeling the complex phenomenologies of 
current and future systems and their 
technologies, analysts and designers must now 
place the system in an appropriate operational 
context, define scenario parameters, and 
understand the interoperation of a candidate 
system with other elements of a system-of-
systems. This often greatly increases the burden 
on simulation systems and often requires 
collaboration across multiple partners for model 
development, integration, and code execution. 
Second, many simulation systems were 
designed not for large exploratory analysis of 
many combinations, but rather, were written to 
perform validated analysis of a few point 
scenarios [5]. Many such tools use a human as 
part of the analysis process to assess the 
simulated battlefield at predefined checkpoints 
and recommend courses of action. Third, 
designers now operate in unfamiliar design 
spaces that exceed their sense of intuition. At 
the system-of-systems level, factors that most 
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often appear to be drivers may be dominated by 
the design variables of other systems, 
technologies, the environment, or even the 
methods of employing those systems. 

This paper addresses a methodology for 
automating the selection of military tactics 
within a constructive simulation to remove the 
human from the execution loop, incorporating 
physics-based models of systems and 
technologies, and using simulation-based 
methods to explore unfamiliar regions of the 
design space to provide insight to engineers and 
decision makers. A more detailed treatment of 
this methodology is outlined in References 6 
and 7.  

2 Using Simulation for Capability-Based 
Design   

The first major challenge outlined above, the 
need to represent phenomenologies and put the 
system in a relevant operational context, is 
addressed through the use of simulation. 

Simulation, the imitation of physical 
phenomena with mathematical formulas, 
“provides a powerful alternative to the tech-
niques of experimental science and observation 
when phenomena are not observable or when 
measurements are impractical or too expensive” 
[8], [3]. Simulation has long been an invaluable 
tool in military planning. Advances in 
computing power and proliferation of affordable 
simulation software have widened the user base 
for simulations as a tool for exploratory analysis 
of potential concepts early in the design process. 

Simulation of systems-of-systems is best 
enabled through the use of a hierarchical object-
oriented simulation environment [9]. In contrast 
to monolithic hardcoded simulation systems that 
were purpose-built to examine the interplay of 
certain systems or scenarios, extensible 
simulation frameworks allow multi-fidelity, 
multi-resolution modeling of a number of 
systems and their integrated effects [10]. A 
popular framework (used herein for a proof of 
concept) is the FLAMES framework by 
Ternion, Inc [11]. Based on object-oriented C, 
FLAMES allows the creation of flexible 
simulations using a number of user defined 

objects and instantiations of those objects. 
Recent versions have included the capacity to 
define common interfaces, facilitating model 
sharing and interoperability. FLAMES also 
supports execution of design-of-experiments or 
optimization through external interfaces. The 
key benefit of environment such as FLAMES is 
the ability to assemble a simulation environment 
that encompasses many different classes of 
military equipment and their associated 
“behaviors,” and explore the interaction 
between the system design variables and a 
common set of Measures of Effectiveness 
(MoEs) that quantify outcomes in capability 
terms.  

Flexible simulation environments should 
allow system design variables, scenario 
parameters, friendly and enemy locations, and 
specific courses of action (behaviors or tactics) 
to be altered to observe the impact on one or 
more MoEs. The ability to incorporate variable 
fidelity models allows the simulation 
environment’s run-time to be scaled based on 
the fidelity needs of the simulationist. Varying 
only those system properties determined to be 
most significant to the overall variation of the 
MoEs is also an efficient way to perform large 
scale studies. 

3   Battle Management in Simulation 

Battle Management is defined by DoD as 
“The management of activities within the 
operational environment based on the 
commands, direction, and guidance given by 
appropriate authority” [12]. The battle manager 
is therefore, the individual who provides 
commands, direction, and guidance based on an 
observed situation. In the most basic sense, the 
battle manager is a resource allocator. He or she 
must select which resource to assign to which 
task, and when… knowing that a higher priority 
task requiring the allocated asset may emerge at 
any time. Resource allocation decisions are 
therefore dependent on the specific situation 
within a given scenario including geography, 
time, asset locations, weapon loadouts, and the 
dispersion of hostile threats across the 
battlespace.  In military operations, battle 
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management is handled by local or combatant 
commanders who assign courses of action to 
forces under their command. In many 
simulation systems, this role is simulated by one 
or more trained experts who interface with a 
simulation system. Most simulation activities 
use visualization facilities to depict the state of 
the battlespace at predefined checkpoints (or 
after certain events are reached) and present the 
battle manager with several courses of action 
from which to choose. The orders and intent are 
sent to the simulated entities and the computer 
simulation resumes until the next checkpoint. 
Though they excel in terms of fidelity and 
realism, these simulation activities may require 
hours or days for a single run. For this reason, 
traditional human-based battle management 
approaches are inappropriate for conceptual 
capability-based design. 

The second challenge outlined above is how 
to reduce the dependence on human operators to 
enable large-scale probabilistic studies of many 
possible alternatives. One popular method for 
battle management in constructive simulation is 
the use of decision trees. Decision trees consist 
of predetermined courses of action that are 
executed either with a specified probability or 
upon the attainment of certain operational 
conditions. Decision trees (or pre-scripted battle 
management logic) are an appropriate technique 
when the courses of action are known and can 
be related to the set of resources available. 
Unfortunately, the third challenge outlined in 
the introduction comes into play here: when 
studying future systems, it may not be possible 
to define the set of rules for their use. Just as the 
physics of new technologies are often unknown 
early in the conceptual design process, the ideal 
concepts for employment for these systems may 
also be difficult to determine. This is because 
the experts from which an experience base of 
tactics and doctrine are drawn have been 
exposed to a set of known situations and 
formulate courses of action based on this 
experience. A technique for computer assisted 
battle management that develops appropriate 
courses of action is needed. 

4   Agent-Based Modeling  and Machine 
Learning 

Complex systems are categorized by 
emergent, dynamic, non-linear behavior derived 
from interactions between lower level 
components. The field of agent-based modeling 
and simulation (ABM/S) uses a bottom up 
approach to the design of complex systems that 
relies on creating relatively simple “agents” and 
defining the interactions between agents in such 
a way to generate realistic system-level 
behavior with relatively unsophisticated 
subsystem elements. According to Ilachinski, 
“agent-based simulations of complex adaptive 
systems are predicated on the idea that the 
global behavior of a complex system derives 
entirely from the low-level interactions among 
its constituent agents” [13].  

Machine Learning, a subdiscipline of 
artificial intelligence, is a process by which a 
predictive computer improves its performance 
over time. The use of machine learning 
techniques such as genetic algorithms or 
recursive neural networks to develop adaptive 
intelligent agents has received much attention 
over the past fifteen years and has been applied 
to a number of disciplines from speech 
recognition to video games.  

Several techniques are used to develop 
intelligent agents. Analytic Learning systems 
rely on a large knowledge base of problem 
classes and compare presented problems to the 
most similar solution. In Inductive Learning, an 
external “teacher” is used to provide problem 
examples and grade the program’s performance 
at addressing them to provide increased 
understanding over time. Connectionist 
Learning uses a set of exemplars and a 
mathematical algorithm to develop patterns that 
closely match the provided data. This approach 
most often uses artificial neural networks to 
formulate the patterns. Finally, Selectionist 
Learning “evolves” toward the correct answer 
using a trial-and-error approach where 
exemplars are tested over time. In practice, a 
genetic algorithm is traditionally used for this 
approach [14]. 
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While a continuously learning algorithm is 
most appropriate to simulate the generic battle 
management problem, if the intent is to compare 
conceptual system solutions to one another, an 
algorithm with a consistent level of training is 
required. When continuously learning 
algorithms are used for conceptual design, the 
learning rate of the algorithm confounds 
concept comparison: a “dumb” algorithm with 
“good” technologies may underperform a 
“smart” algorithm with “poor” technologies.  

The Connectionist Learning technique can be 
used to develop an algorithmic battle manager 
that is capable of developing detailed courses of 
action when only general ones exist. This 
method is appropriate for automated battle 
management of constructive simulations used 
for concept comparison and technology 
evaluation [6]. 

5   Neural Network Algorithms for Battle 
Management 

The concept of artificial neural networks 
(ANNs) was first introduced by neuro-
physiologist Warren McCulloch and 
mathematician Walter Pitts in 1943 and was 
developed extensively in the 1990s [15]. In 
contrast to metamodeling techniques that 
assume a functional form of the response 
(response surface equations or Kriging models), 
artificial neural networks use a generic 
functional form and rely on a series of unknown 
coefficients which are “tuned” through an 
iterative process called training the neural 
network. The power of the technique comes 
from the use of a sigmoid equation as an 
activation function from the set of inputs, X, to 
the set of outputs, Y through a user-defined 
number of “hidden nodes,” H. A commonly 
used construct for ANNs, the multi-layer 
perceptron is shown in Fig. 1 [16]. This 
construct is trained using a process called 
backpropagation, where an estimated output 
pattern is compared with a known output pattern 
and the unknown coefficients are tuned through 
an optimization algorithm until the prediction 
error between the actual and predicted values is 
minimized.  

There are many different architectures for 
neural networks including radial basis functions, 
recurrent neural networks, self-organizing maps, 
Hopfield networks, associative neural networks, 
and others [17], [18]. The architecture used in 
this work is the feedforward neural network 
shown in Fig. 1.  
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Fig.  1. Structure of a Feedforward Neural Network. 

Since the objective of training a neural 
network for battle management is to create a 
surrogate of a human decision maker, the neural 
network can be thought of as a “Meta-General” 
that is capable of understanding battlefield 
situations and allocating resources based on an 
observed situation. This paradigm is illustrated 
in Fig. 2. 
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Fig.  2. Process for Creating a "Meta-General” [6]. 

In this construct, a number of training 
situations (the aforementioned exemplars) are 
provided by generating a friendly and enemy 
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order-of-battle and assigning properties to the 
blue assets that may be allocated. A number of 
iterations are performed to build an experience 
base of exemplars. The neural network is then 
trained using the input/output data from these 
simulation executions as the patterns for 
learning. The resultant neural network (a 
mathematical equation with defined 
coefficients) is inserted into the simulation code. 
The input variables describe the battlefield 
situation and the status of available resources. 
The responses are related to the courses of 
action that may be undertaken by the battle 
manager. The specific variables used and the 
reasoning rationale are explained in a 
subsequent section. 

When faced with a new situation, the trained 
battle manager operating in Analysis Mode as 
shown in Fig. 2, identifies the situation in terms 
of geography and threat laydown and iterates 
through available resources to develop the 
optimal asset-to-target pairings based on the 
“knowledge” encapsulated in the neural 
network. 

6   Procedure for Training the Meta-General 

To use this concept for battle management, a 
number of enablers are required. First, a 
simulation must be constructed that contains 
physics models of the equipment to be tested or 
compared. Second, a scenario must be defined 
that describes the battlespace on which the 
equipment is expected to operate. Third, general 
instructions related to missions and outcomes 
must be defined in computational terms. In this 
example problem, physics models describing 
aircraft and weapon flight were developed. The 
scenario defined a geographic area, a set of 
targets, a threat laydown, and a priority of 
generic target classes. The mission of the 
aircraft in the simulation was to attack the 
targets in prioritized order (if possible). The 
purpose of the battle manager is to decide which 
assets are best suited to attack each target at a 
given time. This decision is constrained by 
which aircraft are currently available and the 
state of enemy air defenses. A generic, 
unclassified scenario was constructed using the 

FLAMES framework and was based on public 
domain data related to the 1991 Persian Gulf 
War, Operation Desert Storm [18-22]. The 
scenario used is depicted in Fig. 3. 
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Fig.  3. Scenario Used for Battle Manager 
Training [6]. 

Next, the ranges of the parameters used for 
the battle manager’s inputs are defined based on 
the environment and parameters describing the 
friendly systems. The variables used are shown 
in Tab. I. 

 
Tab. I. Input Parameters for Meta-General Training. 

Variable Low High 
Max Platform Speed (Mach) 0.72 4 
Cruise Altitude (ft) 10,000 50,000 
GTOW (lbs) 35,000 1,200,000 
Empty Weight Ratio 0.4 0.55 
Payload Weight (lbs) 2,000 80,000 
Thrust/Weight 0.35 1.5 
Wing Loading (lb/ft2) 20 150 
Drag Coefficient 0.01 0.09 
Maximum Lift Coefficient 1.5 3 
TSFC (lbm/lbf-hr) 0.3 0.8 
Susceptibility Factor 0.01 1 
Weapon Range (nm) 10 1,200 
Weapon Speed (Mach) 0.72 6 
Bomber Location (Lat) 14°  37° 
Bomber Location (Lon) 34° 60° 
Target Location (Lat) 29° 37° 
Target Location (Lon) 38° 48° 
SAM Density (%) 0 100 
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These parameters were determined from a 
larger list of aircraft and weapon parameters by 
screening for those parameters with the greatest 
impact on the overall outcome of the simulated 
conflict. The first ten input variables are design 
variables for a fixed wing aircraft that are 
generally under a designer’s control. 
Susceptibility Factor is a surrogate for the 
aircraft’s “stealth” and essentially acts as a 
probability of detection by hostile forces. Larger 
values increase the likelihood that the friendly 
aircraft is detected by the adversary’s air 
defense system. The next two variables define 
the properties of air-to-ground weapons and 
allow a range of weapons from glide bombs to 
cruise missiles to be simulated.  

The next five parameters define the 
geometric and threat situation of the battlespace. 
The Bomber Location defines the current 
location of the friendly bomber and the Target 
Location defines the geographic location of the 
target under consideration. The final parameter, 
SAM Density describes the current intensity of 
surface-to-air missile (SAM) defenses in terms 
of the percentage of sites still alive. These 
parameters are used to determine whether a 
friendly bomber will fly over SAM defenses 
while enroute to the target under consideration 
and whether the sites are alive. If the SAM 
Density is 100%, it is highly likely the friendly 
platform will be attacked if the Susceptibility 
Factor is non-zero. On the other hand, when the 
SAM Density is low, this implies that most of 
the defenses have been destroyed by other assets 
and most aircraft will be able to prosecute the 
war with impunity. 

To generate data for neural network training, 
the Design-of-Experiments (DOE) technique is 
used. DOE is “a systematic, rigorous approach 
to engineering problem solving that applies 
principles and techniques at the data collection 
stage so as to ensure the generation of valid, 
defensible, and supportable engineering 
conclusions” [24]. Since the 1920s, a number of 
techniques have been developed for analysis of 
critical factors and the generation of response 
surfaces. Since ANNs require dense population 
of the interior of the design space to develop 
accurate estimates of nonlinear behaviors, 

traditional DOE methods such as fraction 
factorial or central composite designs are not 
appropriate. Space-filling experimental designs 
are the most effective class of designs for 
generating ANNs. Of these, there are two 
general properties: 
• Maximize the separation of sampled points. 
• Maximize the dispersion across the sample 

space. 
While random points can be used to fill a 

space, an alternative scheme called “sphere-
packing” is used to minimize the maximum 
distance between any two points in n-
dimensional space, akin to placing billiard balls 
into an n-dimensional box. This tends to ensure 
maximum separation of the points in the 
experimental design and, in general, improves 
the fit of resultant surrogate models.  
Mathematical techniques to assess this distance 
have been developed extensively in the 
literature [25].  

In addition to the maximum spacing criteria, 
another useful criterion for space-filling designs 
is the property of uniform spacing across the 
region of interest. According to Cioppa, “A 
good space-filling design is one in which the 
design points are scattered throughout the 
experimental region with minimal unsampled 
regions; that is, the voided regions are relatively 
small” [26]. A uniform design seeks to spread 
the points evenly by minimizing a parameter 
called the “discrepancy,” which is the difference 
from the empirically sampled set of design 
points and a theoretical uniform distribution. 
This type of design directly addresses the 
second property above. 

The final type of space-filling design 
discussed in this work is the Latin Hypercube 
(LHC) designs, developed by Ronald L. Iman, J. 
C. Helton, and J. E. Campbell in the early 
1980s. A LHC attempts to distribute points 
evenly through the design space using a 
combination of uniform designs with a sphere-
packing scheme.  

Upon experimental comparison of all three 
DOE types and a set of random points, DOEs 
created with the sphere-packing scheme tended 
to produce the most accurate ANNs for this 
application [6]. 
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An eighteen variable 10,000 case space-
filling design was developed using the JMP® 7.0 
software package and executed through the 
FLAMES-based simulation depicted in Fig. 3. 
Of the 10,000 cases, 8,922 were “usable” due to 
the fact that the square boundaries of the DOE 
input ranges occasionally placed the target 
outside the allowable bounds of the simulation 
(in a country other than Iraq), resulting in a 
failed case.  

Two predictive neural network equations 
were developed to answer two questions facing 
the battle manager: 

 

“If aircraft/weapon combination (i) is tasked to 
attack target (j)” 

• Will platform i be lost? (Platform Lost) 
• Will target j be killed? (Target Killed) 
 

Note that in this formulation, the 
probabilities of each event are not considered, 
only the deterministic outcome of the 
engagement. Therefore, the neural network 
predicts the response in the range [0,1].  

Many computerized tools exist to automate 
the neural network training process, which is in 
practice a time consuming iterative effort to 
tune the unknown coefficients of the equation to 
minimize the error between the actual and 
predicted values resulting from the 8,922 DOE 
runs. A computational routine written by 
Johnson and Schutte around the MATLAB 
Neural Network Toolbox was used to perform 
the neural network training [27]. The resultant 
eight hidden-node ANN for Platform Lost has 
an overall accuracy of 96.54%. A nine-node 
ANN for Target Killed has an overall accuracy 
of 97.44%. Here, the accuracy statistics 
represent the probability that the battle manager 
makes the correct decision given the 
information provided about the state of the 
simulation is within the original ranges of the 
DOE table (Tab. I). 

7 Using the Meta-General in a Simulation 

The aforementioned section described how to 
set up the neural network architecture, define 
the DOE parameters, and train the neural 
network using the MATLAB neural network 

toolbox. The result of the previous steps are two 
equations that each have eighteen input 
variables and produce a single Boolean 
response. The intent of this equation is to give a 
computational routine predictive power on the 
expected outcome of a potential engagement 
pairing. 

This neural network equation is inserted into 
simulation code which receives a prioritized 
target list and iterates through all unassigned 
resources (platforms). Each platform carries one 
or more weapons. At run-time, the battle 
manager code queries the current platform and 
each weapon for their properties (13 of the 18 
required inputs), queries the simulation kernel 
for the location of the platform and target (4 of 
the 18 required inputs), and counts the 
percentage of SAM sites currently alive1.  

The battle manager uses the outputs of the 
neural network equation to evaluate a “cost” for 
each potential engagement using the formula: 

 
( ) ( )

( ) stMunitionCoTimeCost
BomberCostTargetCostCostEngagement

−−
−=

Time
PT LK  (1) 

 
Where TK and PL are the Boolean outputs of the 
neural networks for Target Killed and Platform 
Lost respectively. TargetCost is a dollar amount 
assigned to represent the value of a target. 
BomberCost is weight-based regression of 
aircraft cost based on empty weight. 
MunitionCost is a similar regression to represent 
the relative cost of different munitions. Time 
and TimeCost take into account, all other factors 
being equal, that the battle manager would 
prefer to use a closer asset to an identical asset 
with a slower response time. Using this 
equation, the battle manager code iterates 
through all possible resources and identifies the 
pairing with the highest positive cost. In this 
manner, the battle manager will not allocate a 
bomber to a “suicide mission” when the cost of 
the platform exceeds the value of the target.  

                                                 
1 Note that in reality, the calculation of SAM Density is 
impractical. One of the primary difficulties in combat is 
determining the location and status of enemy defenses. 
For this proof of concept exercise, the confounding 
factors of surveillance and intelligence are abstracted out 
using this simplification. 
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Similarly, the battle manager will not 
allocate a munition whose cost is more than the 
user-specified value of the target. 

The code iterates until either all targets have 
been eliminated or until there are no targets that 
can be prosecuted with the platform/ weapon 
combinations available to the battle manager. 
More information on this procedure is available 
in References 6 and 7. 

8 Observing the Meta-General in Action 

When using the cost prioritization method 
shown in Equation 1, intuitive patterns may be 
observed in the simulation. Early in the 
simulated conflict when SAM Density is high, 
only the stealthiest platforms are likely to 
survive. The Meta-General tends to allocate 
either stealthy platforms with short range 
weapons or unstealthy platforms with long 
range weapons. Recall that the logic in Equation 
1 prevents the battle manager from making 
decisions that intentionally sacrifice platforms. 
Additionally, the Meta-General tends to prefer 
less expensive weapons provided that the 
platform will not be lost.  

In another test, the battle manager was asked 
to route the assets along a preselected set of 

twenty different airspace corridors with varying 
length and threat levels. The threat level, or 
amount of danger associated with each corridor 
is calculated by how many SAM sites’ range 
circles intersect each corridor. A plot of corridor 
usage over time is shown in Fig. 4. Early in the 
conflict, the battle manager tends to prioritize 
usage of the “Long, Very Safe” corridor for all 
assets regardless of their level of technology. As 
time passes and some SAM sites are destroyed, 
the SAM Density parameter is reduced which 
provides other avenues for attack for the 
friendly aircraft. Shorter, more dangerous routes 
are preferentially selected later in the conflict. 
Even though they are classified as dangerous, 
these routes are often selected because the SAM 
sites formerly protecting them have been 
destroyed by actions earlier in the conflict. This 
test demonstrates how the battle manager’s 
decisions change over time to reflect the state of 
the simulation.  

Late in the conflict, the Meta-General’s route 
choices are nearly evenly distributed across the 
spectrum of possible choices because many of 
the defenses have been destroyed and even 
unstealthy platforms with short range munitions 
can survive in the permissive threat environ-
ment. 
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Fig.  4. Corridors Selected by the Meta-General Over Time. 
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9 Summary and Conclusions 

Systems engineers have long been familiar 
with designing systems to meet requirements; 
however, with the recent shift to capability-
based acquisition, crisp and detailed 
requirements statements are quickly becoming a 
thing of the past. Engineers are increasingly 
asked to examine “multiple combinations of 
ways and means to achieve an effect” [1].  

Computer simulations are a valuable tool for 
understanding complex relationships endemic to 
systems-of-systems problems; however, many 
military simulations rely heavily on hardcoded 
assumptions or humans with tacit information 
that may not extrapolate to the systems, 
technologies, and tactics of the future. 

By constructing a synthetic combat 
environment that allows many potential 
combinations of systems and courses of action 
to be quickly prototyped, an experience base 
can be efficiently generated using DOE methods 
for regression into an artificial neural network. 
As demonstrated in this work, an accurate 
neural network (validated to match the training 
data) can be used inside of a computer 
simulation to estimate the “best” potential 
courses of action for a given suite of aircraft 
platforms and weapons in a time-variant threat 
environment.  

The combination of agent-based models with 
a hierarchical object-oriented constructive 
simulation environment enables parametric 
system effectiveness analysis for large-scale 
systems-of-systems by providing a mechanism 
to evaluate new systems and technologies with 
respect to capability-based measures of 
effectiveness. 

One of the major drawbacks of the proposed 
technique is the need to re-train the neural 
network when either the assumptions behind the 
scenario or the ranges of the input variables are 
changed. Scenario assumptions are often 
changed frequently during the definition phases 
of simulation activities, and the utility of the 
proposed Meta-General concept relies on the 
simulation team composing assumptions and the 
simulation environment in a structured manner 
that reduces unnecessary iteration. 

By using this technique, technologists can 
provide a common rationale behind the 
“behaviors” of assets in the simulation: often the 
most difficult thing for engineers and 
technology experts to explain. Since technology 
and tactics must often be co-developed, the 
proposed approach shows one way to ensure 
that the best set of tactics and courses of action 
are matched to the systems employed. 

Agent-based models hold promise for the 
simulation of human behaviors and the 
understanding of the complex dynamics 
endemic to systems-of-systems problems; 
however, as Lazaroff and Snowden note, they 
are extremely difficult to validate and are more 
useful for providing insight into complex 
phenomena than precise quantification of effects 
[28]. Nevertheless, the set of modeling tools 
outlined in this work is becoming increasingly 
popular in the conceptual design of complex 
systems. 

Future research efforts will apply this set of 
methodologies to other problems in an effort to 
develop more precise guidelines for their use 
and to develop recommendations used to 
standardize the application of neural networks, 
constructive simulation, and agent-based models 
in the systems engineering and exploratory 
analysis process. 
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