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Abstr act 
This paper deals with the optimisation of the 

trajectories for UAVs (Unmanned Aerial 

Vehicles). The aircraft considered for the 

present study is a miniUAV (Micro Aerial 

Vehicles, MAVS) developed at Politecnico di 

Torino: the MicroHawk600. The research 

activity consists of: analysis of operating 

scenarios, definition of the mathematical model, 

analysis of optimisation criteria and simulation 

of different test cases. The aerial vehicle is 

expected to reach the desired locations in the 

operational environment expressed in terms of 

planned waypoints. Assuming the vehicle as a 

point mass model, the best solution has been 

investigated through a genetic algorithm search 

procedure. The optimization problem has been 

solved by modifying a micro-genetic algorithm 

software.  

Several waypoint distributions were 

successfully tested. Results obtained with this 

optimization procedure are presented. 

1. Introduc tion 

For aircraft handling qualities requirements the 

performance of controlled systems may be 

defined in terms of regions of interest instead of 

desired states. Stability, robustness, good 

command following, noise rejection and low 

sensitivity to model uncertainties are also 

significant concerns for the designer and their 

inclusion in the design process may be required 

to ensure adequate control performances. 

 Within this area of investigation, the 

search of optimal solutions, that should meet the 

above mentioned prerequisites, becomes a 

primary interest in the design of controllers. [1] 

In this paper, the design of optimal flight 

trajectories for an autonomous UAV is 

discussed. The Aerospace Engineering 

Department (DIASP) of Politecnico di Torino is 

working on the development of the MicroHawk 

family of MAVs since some years. The 

MicroHawk concept [2] is designed within an 

European Union funded project (MARVEL, 

Micro Aerial Vehicles for Multi Purpose 

Remote Monitoring and Sensing Project) at 

Politecnico di Torino. The MicroHawk 

configuration is characterized by a conventional 

layout: it is a fixed wing, tailless integrated 

wing-body configuration and tractor propeller 

driven. 

Different versions of the MicroHawk 

configuration exist, covering a range of 

dimensions and operating performances. The 

availability of different MicroHawk versions 

allows covering an extended range of flight 

speed (estimated between 7 m/s and 20 m/s) and 

flight endurance (ranging between 15 and 60 

min, according to size and energy source 

storage).  

In this paper the attention is focused on 

the MicroHawk 600. Its design is mainly 
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addressed to the need for payload weight 

fraction of about 150 gr and larger internal 

volumes. The MH600 version can achieve 

autonomous flight, as it is possible to locate on-

board a commercial small size autopilot 

(Micropilot MP2028) without exceeding wing 

loading limitations for hand launch. The 

navigation system, based on inertial and GPS 

data, is programmable according to tasks and 

waypoints (Fig. 1). 

The capability and the UAVs roles require 

new concepts for their control. A significant 

aspect of this control problem is optimizing the 

trajectory from the starting point to its final 

destination. Online trajectory generation for 

flight control application is important in 

engineering applications with unmanned aerial 

vehicles to provide feasible flight control. [6,7] 

 

 
Fig. 1  The MicroHawk platform 

 

 The main types of search methods are 

calculus-based, enumerative and random [3]. 

Calculus-based methods search the optimal 

conditions in a neighborhood of the current 

point. A severe limitation of these methods, in 

terms of robustness, is the reliance on the 

existence of derivatives and on the continuity of 

the function to be maximized. Enumerative 

methods seek the optimal solution by computing 

the objective function in every point of the 

search space. So, this algorithm is substantially 

inefficient and time consuming when applied to 

large domains of solutions. Random search is an 

alternative strategy which can bypass the 

limitations of the previous methods. The genetic 

algorithm belong to this last solvers family, as 

the random choice of the possible solution is 

combined with criteria for the direction of 

search derived from natural evolution of species 

[4,5]. This technique is considered global and 

robust in terms of search over a space of 

solutions. 

2. The genetic and the micro–genetic 

algor ithm 

The genetic solver adopted for the design of the 

control system is a Fortran version of the driver 

described by D. Carroll [8,9]. The code 

initializes a random sample of individuals with 

different parameters to be optimized using the 

genetic algorithm (GA) approach. The genetic 

algorithm operates on the principle of the 

survival of the fittest. A constant-size 

population of individuals, represented by a fixed 

number of parameters which are coded in binary 

form (chromosomes), encode possible solutions 

of a given problem. An initial population of 

individuals (possible solutions) is generated at 

random. In every generation (evolutionary step), 

the individuals of the current population are 

decoded and evaluated. Each possible solution 

is analyzed by a fitness function which decides 

whether it will contribute to the next generation 

of solutions. Once the new population has been 

selected, chromosomes are ready for crossover 

and mutation. 

The crossover operator combines the 

features of two parents to create new solutions. 

Crossover allows an improvement in the species 

in terms of random evolution of new solutions 

on each parent and then, complementary 

fractions from the two parents are linked 

together to form a new chromosome. 

The mutation operator alters a copy of a 

chromosome reintroducing values that might 

have been lost or creating totally new features. 

Each iteration produces a new population of 

solutions (generation). The genetic algorithm 
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continues to apply the operators and evolve 

generations of solutions until a near-optimum 

solution is found or the maximum number of 

possible generations is produced. 

 The solution using a micro genetic 

algorithm is also possible. The micro GA 

utilization reduces the number of function 

evaluations and demonstrates faster 

convergence average to near-optimal region 

[10,11]. A micro GA starts with a random and 

very small population. This population evolves 

and converges in a few generations. Then, a 

new random population is chosen while keeping 

the best individual from the previously 

converged generation and the evolution process 

restarts. Average population fitness values are 

not meaningful with a micro GA because of the 

start-restart nature of the evolution process. 

After many numerical experiments [8,9] in 

order to tune the search algorithm adopted, the 

code is set for maximum population size of five 

individuals, 48 bits per individuals and three 

parameters (i.e. 16 binary bits per parameter and 

2
16

 possible solutions per parameter). Niching 

and creep mutation are enabled and one child 

per pair of parents is considered. 

 

3. The mathe matical model 

The mathematical model used to describe the 

vehicle dynamics is a three-dimensional point-

mass model written in wind axes frame [7].  

The equation are: 
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In (1) x, y and h are the coordinates of the 

Centre of Gravity (CG) of the aircraft in NED 

(North East Down) reference frame. Angles are 

defined as: ϕ  is the bank angle, χ is the heading 

angle and γ  is the flight-path angle. Te is the 

engine thrust, D is the aerodynamic drag, m the 

aircraft mass, g the acceleration of gravity. The 

ground-speed velocity is assumed to be equal to 

the airspeed (so wind is neglected). The bank 

angle ϕ , the engine thrust Te and the load factor 

mg

L
n =  are the control variables for the 

aircraft. Hence, the input vector u is: 

 

[ ] )2(n,T,u eϕ=  

 

The system, complemented with 

constraints on applicable inputs, form the basis 

for aircraft trajectory optimization. Constraints 

are usually written in terms of state variables 

and controls. 

Some constraints are set on aircraft state and 

control variables like [ ]n,T, eϕ . During the 

navigation, limitations are applied on the flight-

path angle in both climbing and descending 

trajectories and on upper and lower bounds for 

airspeed V and climb angle γ . A preliminary 

study of the aircraft response to inputs has been 

conducted to investigate the platform general 

behaviour. The platform (MH600) reacts to 

changes in terms of n and ϕ  with sensible 

trajectory variations. This means that - in the 

trajectory design – little variations of input 

variables must be taken into account for 

accurate tracking (number of bits/chromosome). 

Initial and final conditions for the aircraft state 

variables are also specified as a prerequisites for 

the design process. 
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4. Opti mal tr ajector ies 

The purpose of the analysis is the definition of 

optimal trajectories; two optimisation methods 

can be analyzed. First, the optimized trajectory 

is obtained using the genetic algorithm and it is 

defined in terms of energy spent by the aircraft 

during the navigation and in terms of minimum 

distance from the waypoint. In the second 

method, the operator can use the Dubin’s curves 

and the objective is to generate paths with 

continuous curvature which respect the 

constraints. Dubin’s curves are used to generate 

the shortest path (time optimal) between two 

waypoints, given initial and final constraints and 

constraints on motion. 

 The genetic algorithm method is 

typically used for a mini-UAV tracking and 

short range missions, due to the possibility to fit 

altitude variations considering the energy spent. 

Instead, the Dubin’s curve approach is applied 

for mapping and on-field missions, due to the 

possibility to choose the shortest and time-

optimal path. 
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Fig. 2  The behaviour of Dubin’s curves 

4.1. Trajectories with genetic algorithm 

Starting from a list of waypoints through which 

the vehicle should go across, we will determine 

which amongst the candidate trajectories will be 

the optimal in terms of energy. The trajectories 

that cross through a prefixed list of waypoints 

are infinite but only some of these can be 

carried out by the platform and those with 

discontinuity of derivates are discarded 

(segmented trajectories). 

Different types of curves are able to 

connect a map of points: for example it is 

possible to use approximation and/or 

interpolation curves such as Bézier curves and 

spline curves. Bézier curves are less prone to 

cross exactly the waypoints if they are not 

aligned and, moreover, the genetic algorithm 

parametrization would be slightly more 

difficult. For this reason the curve adopted is a 

polynomial spline and a cubic function two 

times differentiable in the whole range. The 

relative second-derivate is equal to zero in the 

final points. This is useful for the imposition of 

different auxiliary conditions in the trajectory 

such as initial attitudes and directions. 

The selection of the trajectories is also 

defined by the design constraints. The first 

restriction is that the trajectory must pass 

through all the scheduled waypoints. Since the 

autopilot programs are not so restrictive in terms 

of waypoint reaching, it is widely accepted that 

the waypoint is reached when the distance of the 

aircraft is less than a given tolerance (e.g. 10 

m). In any case, one of the objectives is to 

minimize the value of this distance. Another 

constraint is the initial value of the bank angle. 

Higher order splines are able to connect 

all the prefixed waypoints with good precision 

but would require some additional computing 

time. In order to avoid this disadvantage, the list 

of scheduled waypoints has been divided in 

groups of three and the trajectory has been 

sequenced: after the optimization of the first 

group of three waypoints, the process restarts 

considering, as a first waypoint, the second one 

in the previous group of three, and so on. The 

continuity is guaranteed during the following 

optimizations, as the value of the bank angle is 

kept across junctions. 

The optimal trajectory is a balance between:  

- energy cost 
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- precision on waypoint reaching 

- feasibility of the trajectory (platform 

dependent limitations). 

 

The fitness function (or cost function) is a 

balance between the energy required to perform 

the trajectory and the precision of waypoint 

tracking. The energy cost is given in terms of 

flight commands. In other words, a trajectory 

that requires large command changes implies a 

huge energetic cost. The fitness function is 

given in the following form: 
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where w1, w2, w3, w4, w5, are weight factors and 

r1, r2 are the distances from the second and the 

third waypoint respectively. 

4. 2. Path planning with Dubin’s curve s 

The possibility to determine the best path is 

presented in Ref. [12]. Straight lines are formed 

as tangents to circles and can have different 

lengths; the arcs are the segments of the circle 

which connect two tangents together. The radius 

of the circle is the minimum path curvature 

which the vehicle can take. 

 In order to obtain autonomous path, it is 

necessary to create a simple code to study the 

possibility to generate a path to connect the 

waypoints using different parameters, such as 

the speed, the Probability Density Function 

(PDF) around the plane and the distance 

between waypoints. This distance is fixed 

because for every single step ( t∆ ) the code 

calculates the position of the next waypoint. 

The Figure 3 show how the Dubin’s 

curves work to create the path and plot a path 

for the return to the starting point. As shown in 

Fig. 3 the path can have an evolution during the 

time and it is possible to watch the direction of 

the aircraft in every single waypoint.  

 

 
 

Fig. 3  The trajectory with Dubin’s curves 

 

For random scenario considering the 

mission for surface scanner it doesn’t matter the 

location of the targets because the probability 

area is only a research area. The target location 

is unknown for the aircraft, for this reason at 

every single time ∆t the aircraft needs to verify 

if the target is there or not. At first, it is 

necessary to create the targets inside the PDF, 

so the code automatically gives some random 

coordinates to these points. Then, the algorithm 

produces an answer for every single points, 

which can be 1, if the target is found, or 0 if it is 

not found and decide if it is necessary to stop 

the creation of the path and go home, or to 

continue with the search.  

 

5. The trajec tory ge ometry 

The outputs of the mathematical model and the 

geometry of the trajectory are combined in order 

to evaluate the cost of a single trajectory 

generated by the genetic algorithm. In this way, 

after the definition of a population of 
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trajectories, it is possible to calculate the inputs 

in every single phase of the flight, that can be 

successfully performed. Integrating the input 

required along the trajectory, it is possible to 

obtain the energetic cost. If the inputs required 

are over the operative capability of the aircraft , 

the cost function for the trajectory will be 

evaluated with an energetic cost proportional to 

its impossibility, forcing the genetic algorithm 

to move away from this trajectory (deficiency 

function). The process is described in the 

following flow chart: 

 

 
Fig. 4  The trajectory geometry and the mathematical 

model 

 

When the trajectory has been chosen, all the 

required geometric parameters are fixed, so that 

all the spatial derivatives are given. 

6. Analysis of the re sults 

Paying the attention on genetic algorithm, some 

simulations performed for different types of 

waypoint distribution are shown in Figures 5-

16. The number of generations is fixed at 200. 

For each track two different weight distributions 

are considered. The first line (solid blue line) 

refers to energy saving while the second one 

(dashed black line) enhances the tracking 

precision. 

6. 1. Random traje ctory 

This waypoint distribution is expected to 

perform a sequence of coordinates with altitude 

change. In Fig. 5  the 3D view trajectory is 

represented and in Fig. 6 and Fig. 7 the 

trajectories in the horizontal and vertical plane 

are represented. 
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Fig. 5  3D view trajectory 
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Fig. 6 View in horizontal plane 
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Fig. 7  View in vertical plane 

 

 By comparing the two different 

optimized trajectories, the energy saving 

optimized trajectory is exact enough and 

adequate compromise between precision and 

energy saving. The thrust (Fig. 8) has a slightly 

different time history in the two cases as the 

impact of this variable in the cost function is 

less effective as a consequence of the weights 

selection. Moreover, it is possible to highlight 

how the ϕ  and n time histories are similar in 

both cases, as their weights in the cost functions 

are the same order (Fig. 9 and Fig. 10). 

In the following table the E.S.C. and 

T.P.C. refer respectively to Energy Saving Case 

and to Tracking Precision Case. 

 
Table 1  Input file parameters value 

 

 E.S.C. T.P.C. 

V 10 m/s 10 m/s 

inχ  0 deg 0 deg 

inγ  0 deg 0 deg 

w1 10
7
 10

6 

w2 10
3 

10
4 

w3 1 10 

w4 1 10
4
 

w5 1 10
4
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Fig. 8  Thrust trend 
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Fig. 9  Roll angle for random trajectory 
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Fig. 10  Load factor trend 
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6. 2. ‘Butte rfly’ trajec tory 

Butterfly trajectory represents a difficult case of 

waypoint distribution for UAV trajectories: in 

fact heading from crosstrack corrections are 

continuously updated. The task must also be 

sequentially repeated. 

In Fig. 11  the 3D view trajectory is 

represented and in Fig. 13 and Fig. 14 the 

trajectories in the horizontal and vertical plane 

are represented. 
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Fig. 11  3D view trajectory 
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Fig. 12  View in horizontal plane 
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Fig. 13  View in vertical plane 

 

 Slight difference between the two 

separate optimization procedures is highlighted. 

The total time necessary to complete the whole 

task is the same. 

 

 
Table 2  Input file parameters value 

 

 E.S.C. T.P.C. 

V 10 m/s 10 m/s 

inχ  -45 deg -45 deg 

inγ  0 deg 0 deg 

w1 10
7
 10

6 

w2 10
5 

10
4 

w3 1 10 

w4 1 10
4
 

w5 1 10
4
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Fig. 14  Thrust trend 
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Fig. 15  Roll angle for butterfly trajectory 
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Fig. 16  Load factor trend 

 

6. 3. Random tr ajector y with Dubin’s 

c ur ves 

This waypoint distribution is expected to 

perform a sequence of coordinates without 

altitude variation. The start waypoint is 

positioned on runway centre and the other 

waypoints are random and chosen in the 

neighborhood of the runway. The resultant 

trajectory is represented in Fig. 17. The points t2 

and t3 are the tangent points. 

 The trajectory represented is the same as 

in Fig. 6, but the altitude variations are not 

considered and only the geometric constraints 

are respected in this case. 

 

 
Fig. 17  Random trajectory with Dubin’s curves 

 

7. Conclusions 

Several waypoint distributions were 

successfully tested and even random layouts 

were optimized with limited computational 

workload. 

 The genetic algorithm is fast enough to 

be applied to pre-flight trajectory definition. An 

extension to real time is potentially possible 

with an integration between the Dubin’s curves 

and the GA, in order to obtain a time-optimal 

and a minimum energy spent path. In this way 

the operator can pick out the waypoints and the 
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search algorithm gives the optimized trajectory. 

However, with the Dubin approach, actually, the 

implementation of short range mission with 

altitude variations is not possible. This is an 

important limitation, considering the application 

of this method to trajectory optimization for 

mini-UAV missions.  

 If the number of waypoints is too low 

the optimization shall be weak. Some numerical 

exercises are required to tune the minimum 

number of waypoints, in order to obtain a 

feasible trajectory. 

 Optimal trajectories are affected by the 

type of strategy: either energy saving or 

precision tracking. The user is expected to 

decide which fits the application, taking into 

account that, as a conclusion, the best method 

for a mini-UAV application is the genetic and 

micro- genetic algorithm. 
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