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Abstract  

Numerical simulation of aircraft’s flutter is 
rather expensive and time-consuming. In order 
to save expense and calculating time, we apply 
first-order approximate conditions to solve the 
unsteady transonic Euler equations coupled 
with aeroelastic equations. Assuming that the 
airfoil is thin and undergoes small deformation, 
we implement wall boundary conditions on non-
moving mean wall positions. Then the first-
order approximate equation of momentum is 
obtained by using Taylor expansion. Unsteady 
transonic Euler equations are solved on 
stationary Cartesian grids. 

Calculation of the aerodynamic behavior is 
performed for NACA 64A010 airfoil in 
transonic flow, while the flutter boundaries of 
AGARD wing model and NACA 0012 
benchmark model are calculated for aeroelastic 
simulation. The results are in good agreement 
with other numerical and experimental results, 
preliminarily indicating that the first-order 
approximate conditions are effective for 
aeroelastic simulation. 

1  Introduction 
Aeroelastic simulation, such as flutter prediction, 
is an important issue for modern aircraft design. 
If flutter occurs during flight, it will be lead to 
disastrous structural failure. So flutter is a 
catastrophic aeroelastic phenomenon that all 
flight vehicles must be clear of in their flight 
envelope. 

Over the last decade, significant progress 
has been made on developing numerical 
methods for the  solution  of Euler and N-S 
equations.  Bendiksen and Kousen[1,2] used an 

explicit time accurate two-dimensional Euler 
code to study the nonlinear effects in  transonic 
flutter. With their model, they demonstrated the 
possibility of LCO in a transonic flow. Lee-
Rausch and Batina[3,4] developed three-
dimensional methods for the Euler and Navier-
Stokes equations, respectively, for predicting 
the flutter boundaries of wings. Alonso and 
Jameson[5] developed a model which is close to 
the fully coupled method by solving unsteady 
Euler equations coupled structural equations. 
Liu[6] developed a fully coupled method using 
Jameson’s explicit scheme with multigrid 
method and a finite element structural model. 
The grids for CFD solver have to be regenerated 
in total computational field at every real time 
step, however the grid generating is a time 
consuming work. So we have to use some new 
numerical method for aeroelastic simulation to 
decreasing the calculating time and increasing 
the calculating efficiency, meanwhile keeping 
the required precision. 

In this paper, we solve the unsteady Euler 
equations coupled with structural equations by 
using the first-order approximate boundary 
conditions[7,8,9] to simulate the airfoil’s 
aeroelasticity. Cell-center finite volume method 
spatial derivatives, implicit dual-time temporal 
derivatives and 5-step Runge-Kutta scheme are 
adopted in the solution of unsteady flow. The 
techniques of local time stepping and implicit 
residual smoothing are used to accelerate the 
convergence rate. Wall boundary conditions are 
implemented on non-moving mean wall 
positions, meanwhile the first-order 
approximate boundary conditions are used in 
Euler equations on stationary Cartesian grids. 
This method needn’t generate the deforming 
grids during calculation, thus it needs less 
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demand on CPU time and can be easily 
deployed in any fluid-structure interaction 
problem. 

2  Governing Equations 
The two-dimensional unsteady Euler equations 
in conservative integral form in the Cartesian 
coordinate system (x,y) are 

0dd =⋅+
∂
∂

∫∫ SV
SV

t
nFW  (1)

where 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

E
v
u

ρ
ρ
ρ
ρ

W  (2)

( )
( )
( )

( ) ( )⎥⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

++−
+−
+−

−

=

yxb

yb

xb

b

vupE
pv
pu

eeqq
eqq
eqq

qq

F

ρ
ρ
ρ

ρ

 (3)

yx vu eeq +=  (4) 

ybxbb vu eeq +=  (5) 

( )22

2
1

1
1 vupE ++
−

=
ργ

 (6)

where ρ , p , q , E , H represent density, pressure, 
velocity vector, total specific energy and total 
specific enthalpy respectively. u and v denote 
the x and y components of flow velocity.  

Applying (1) to each cell in the mesh we 
obtain a set of ordinary differential equations of 
the form. 
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where jiV , is the volume of the i , j cell and the 
residual ( )ji ,WR  is obtained by evaluating the 
flux integral in (1). Following Jameson[10], we 
approximate the d/dt operator by an implicit 
backward difference formula of second-order 
accuracy in the following form (dropping the 
subscripts). 
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Equation (8) can be solved for 1+nW  at each time 
step by solving the following steady-state 
problem in a pseudo time *t . 
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Equation (9) is solved by an explicit time-
marching scheme in *t  for which the local time 
stepping, residual smoothing can be used to 
accelerate convergence to a steady state solution. 

,3  Approximate Boundary Conditions 
A thin airfoil slightly moving around its mean 
position is considered. In this paper, the airfoil 
is assumed to be rigid and undergoes pitching or 
plunging motion around a fixed point on its 
chord line. The mean position of the airfoil 
chord lies on the horizontal axis x of the 
coordinate system. The shape of the airfoil is 
described by y=f(x). The instantaneous position 
of the airfoil is described by y=G(t,x). Under the 
assumption, |F|<<1, the first-order approximate 
of the boundary conditions on the surface of the 
airfoil at an instant t is 

( ) ( ) ( )FOFFxtuxtv tx ++= 0,,0,,  (11)

where the subscripts, x and t denote the partial 
derivatives with respect to x and t, respectively.  

There are altogether four independent 
variables in the Euler equations (1), e.g. ρ , u ,v  
and p. In addition to the boundary condition for 
the velocity component v given above, more 
conditions are needed on the airfoil surface. The 
momentum differential equation in the outward 
normal direction n is also used, which gives 
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The first-order approximation of equation (13) 
is 
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For the airfoil pitching, the instantaneous 
angle from the mean position is ( )t1α , positive in 
clockwise direction. Given f(x), the 
instantaneous ordinate of the surface, ( )xtF , , is 
expressed implicitly as follows. 
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Under the airfoil being thin and undergoing 
small deformation, the five derivatives of ( )xtF ,  
used in equation (11) and (14) can be obtained 
from equation (15) 
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where the ′denotes differentiation of ( )xf and 
( )tα with respect to x and t ,respectively. 

3 Structural Solver 
The second-order linear structural dynamic 
governing equation of motion can be written as 

FKCM =++ zzz &&&  (17)

where M , C and K are mass, damping and 
stiffness matrices, respectively. z is 
displacement vector, and F is the aerodynamic 
load. 

In this study, the data of natural mode 
shapes and frequencies are calculated by finite-
element analysis. In order to solve equation (17), 
the generalized displacement, η , is introduced. 

[ ]ηφ=z  (18)

Since the natural modes are orthogonal with 
respect to both the mass and stiffness matrices, 
premultiplying equation (17) by [ ]Tφ yields 
structural equations in generalized coordinates 

iiiiiii Q=++ ηωηωζη 22 &&&  (19)

where { } FQ T
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T
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T
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and iζ is the modal damping of the thi mode. 
At a time tt Δ+ , equation (16)  can be 

written as 

ttittiittiiitti Q Δ+Δ+Δ+Δ+ =++ ηωηωζη 22 &&&  (20)

In the above expression, iω , iζ and ttiQ Δ+ are 
already known. So we can obtain the 
displacement, velocity and acceleration at 

tt Δ+ by using the Newmark integration method. 
The following expressions for velocity and 
displacement are formulated at the time 

tt Δ+ first as a function of acceleration at 
tt Δ+ and displacement, velocity and 

acceleration from previous time level t . 
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where, α and δ are parameters that are chosen 
based on desired stability and accuracy. For the 
Newmark scheme to be unconditionally stable, 
values of 0.25 and 0.5 are chosen forα andδ , 
respectively. 

4 Results and Discussion 

4.1 Unsteady Flow Calculation  
The flow over NACA 64A010 airfoil is 
calculated using the first-order approximate 
conditions. The airfoil foil is pitching around its 
quarter-chord point. Experimental results were 
provided by Davis[11]. The harmonic pitching 
motion of the airfoil can be described by the 
following equation 

( ) ( )tt m ωααα sin0+=  (23)

where ω , mα and 0α  are constants. The angular 
frequency ω is related to the reduced frequency 
defined as  

∞
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U
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In this case, the free stream Mach number 
is 796.0=Ma , and the mean angle of attack  

o0.0=mα , the pitching amplitude o01.10 =α and  
the reduced frequency 202.0=k . The unsteady 
calculations start from the uniform flow of 
velocity ∞U as an initial solution. An essentially 
periodic solution is obtained after certain 
periods of the airfoil motion. Fig.1. compares 
the lift and moment coefficients versus angle of 
attack with the experimental results. It is shown 
that the solution by the approximate boundary 
conditions is sufficiently close to the 
experimental results. We can conclude that the 
first-order approximate boundary conditions are 
suitable for solution of the transonic unsteady 
Euler equations. 
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(b)  Moment Coefficient 

Fig.1. Time Histories of Lift and Moment Coefficient of 
NACA64A010 

4.2 Flutter Calculation 

In this section, we use the present method to 
predict flutter boundaries of Isogai wing model 
and NACA 0012 benchmark model. The elastic 
model is established as shown in Fig.2, which 
consists of two degrees of freedom, plunging 
and pitching. 
 

 
Fig.2. Isogai Wing Model 

 
In order to obtain the flutter boundary, 

different speed index *V are computed. *V is 
defined as 

μωαb
U

V ∞∗ =  
(25)

b is the airfoil half chord. 
 

4.2.1 Isogai Wing Model 
In this section, we use approximate method 

coupled equation of structural motion for the 
two-dimensional Isogai wing model[12,13], 
case A. this model is well established 2-analog 
of a 3-D wing. The cross-section profile of this 
model is NACA 64A010 airfoil. The structural 
parameters are: 0.2−=a , 8.1=αx , 48.32 =αr , 

0.1=αωωh  and 60=μ . In this test case, the 
model simulates the bending and torsional 
motion of a wing cross-section in the outboard 
portion of a swept wing. 

Fig.3. shows the time history of plunging 
and pitching motion of Isogai wing model at the 
Mach number of Ma=0.875. In Fig.3, the 
amplitude of plunging and pitching motion 
keeps constant at the speed index V*=0.590. So 
the speed index of this neutral point is the flutter 
velocity at Ma=0.875. We can obtain the critical 
velocity for a number of freestream Mach 
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numbers for the Isogai wing model in the same 
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Fig.3. Time History of Plunging and Pitching motion of 
Isogai Model at Ma=0.875 

 
way. The flutter boundary is predicted by the 
unsteady Euler Equations on stationary 
Cartesian grid with the first-order approximate 
conditions is shown in Fig.4, and compared with 

the results of Alonso[5] and Liu[6]. The 
agreement is good and the transonic “dip” is 
predicted accurately. The results show that the 
first-order approximate conditions on the 
stationary Cartesian grids can predict the flutter 
boundary as those accurate boundary conditions. 
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Fig.4. Computed Flutter Boundary of the Isogai Wing 
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Fig.5. Conventional Flutter Boundary of NACA 0012  

Benchmark Model 

4.2.1 NACA0012 Benchmark Model 
The model is a semispan rigid wing mounted on 
a flexible mount system referred to as the Pitch 
and Plunge Apparatus (PAPA). The model has a 
NACA 0012 airfoil section and a rectangular 
planform with a span of 32 inches and a chord 
of 16 inches. Rivera et al.[14] performed flutter 
experiments for this benchmark model. 

According to Ref.14, the system center of 
gravity was adjusted to be right on the PAPA 
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elastic axis which was located at the mid-chord 
line. Therefore, the structural parameters are: 

0=a , 0=αx , 0236.12 =αr , 6462.0=αωω h . 
The comparison of calculated and 

experimental conventional flutter boundaries is 
shown in Fig.5. Overall, the computed results 
are in good agreement with the experimental 
data.  The “transonic dip” is captured by the 
computation using first-order approximate 
boundary conditions. However, the difference 
between computed and experimental results 
becomes more seriously beyond the “transonic 
dip” region. 

5 Conclusion 
In this paper, we use the first-order approximate 
boundary conditions to solve the unsteady Euler 
equations coupled with equations of structural 
motion on stationary Cartesian grids. Using this 
approximate method, we solve the two 
dimensional unsteady flow around NACA 
64A010, and two aeroelastic cases for Isogai 
wing model and NACA 0012 benchmark model. 
Both the results of unsteady transonic 
calculation and aeroelastic calculation are in 
good agreement with related references, 
preliminarily indicating that the first-order 
approximate conditions are effective for 
aeroelastic simulation. 
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