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Abstract  
Updating the finite element model using 
measured data is a challenging problem in the 
area of structural dynamics. The model 
updating process requires not only satisfactory 
correlations between analytical and 
experimental results, but also the retention of 
dynamic properties of structures. Accurate rigid 
body dynamics are important for flight control 
system design and aeroelastic trim analysis. 
Minimizing the difference between analytical 
and experimental results is a type of 
optimization problem. In this research, a 
multidisciplinary design, analysis, and 
optimization [MDAO] tool is introduced to 
optimize the objective function and constraints 
such that the mass properties, the natural 
frequencies, and the mode shapes are matched 
to the target data as well as the mass matrix 
being orthogonalized. 
 
Nomenclature 
CG center of gravity 
F original objective function 
FE finite element 
GVT ground vibration test 
gi inequality constraints 
hj equality constraints 
IXX computed x moment of inertia about the 

center of gravity 
IXXG target x moment of inertia about the 

center of gravity 
IYY computed y moment of inertia about the 

center of gravity 
IYYG target y moment of inertia about the 

center of gravity 

IZZ computed z moment of inertia about the 
center of gravity 

IZZG target z moment of inertia about the 
center of gravity 

Ji objective functions (optimization 
problem statement number  
i = 1, 2, … , 13) 

K stiffness matrix 
K  orthonormalized stiffness matrix 
L new objective function 
M mass matrix 
M  orthonormalized mass matrix 
MAC  modal assurance criteria  
MDAO  multidisciplinary design, analysis, and 

optimization 
m number of equality constraints 
n number of modes 
q number of inequality constraints 
T transformation matrix 
W Computed total mass 
WG Target total mass 
X x-coordinate of the computed center of 

gravity 
X  design variables vector 
XG x-coordinate of target center of gravity 
YG y-coordinate of target center of gravity 
Y y-coordinate of the computed center of 

gravity 
Z z-coordinate of the computed center of 

gravity 
ZG z-coordinate of target center of gravity 
ε small tolerance value for inequality 

constraints 
λ Lagrange multiplier 
Φ  computed eigen-matrix 
ΦG target eigen-matrix 
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Ω j j-th computed frequency 
Ω jG j-th target frequency 

1  Introduction  
One of the top-level challenges of 

multidisciplinary design, analysis, and 
optimization [MDAO] tool development for 
modern aircraft is synergistic design, analysis, 
simulation, and testing. This challenge puts a 
clear emphasis on synchronizing all phases of 
experimental testing (ground and flight), 
analytical model updating, high- and low-
fidelity simulations for model validation, and 
complementary design. Compatible information 
flow between these procedures will result in a 
coherent feedback process for data-to-modeling-
to-design continuity using systematic and 
competent vertically integrated design tools and 
ensure that the unique benefits of data gained 
from flight research are integrated into the 
vehicle development process. 

One of the basic inputs into 
aeroservoelastic analysis is the underlying 
structural dynamics model, usually a finite 
element [FE] model. Generally created during 
aircraft development by the builders, the 
accuracy and fidelity of this with respect to the 
actual modal frequencies and shapes is critical. 
Models are often inaccurate, due to many 
factors such as joint stiffness, free play, 
unmodeled structural elements, or non-linear 
structural behavior. Thus, flight-test missions 
often require ‘tuning’ of the original FE model, 
for aeroservoelastic envelope clearance, to 
match experimentally observed structural 
characteristics. 

Accurate modeling of rigid body dynamics 
is important for flight control system design and 
aeroelastic trim analysis. In general, structural 
dynamics FE models for production aircraft 
need to be correlated to measured data to ensure 
the accuracy of the numerical models. Small 
modeling errors in the FE model will cause 
errors in the calculated structural flexibility and 
mass, thus propagating into unpredictable errors 
in the calculated aeroelastic and aeroservoelastic 
responses. If measured mode shapes will be 
associated with an FE model of the structure, 
they should be adjusted to reduce the structural 

dynamic modeling errors in the flutter analysis, 
thus also improving confidence of flight safety.  

The primary objective of the current study 
is to add model tuning capabilities in an MDAO 
tool. This model tuning technique is essentially 
based on a non-linear optimization problem, 
with the variables to be minimized being the 
differences between the model and the 
experimental values, including the dynamics 
variables and the static loading deflections, the 
total mass, and center of gravity [CG] of the test 
article. 

Model tuning is a common method to 
improve the correlation between analytical and 
experimental modal data, and many techniques 
have been proposed [1, 2]. These techniques can 
be divided into two categories: direct methods 
(adjust the mass and stiffness matrices directly) 
and parametric methods (correct the models by 
changing the structural parameters). The direct 
methods correct mass and stiffness matrices 
without taking into account the physical 
characteristics of the structures and may not be 
appropriate for use in model updating processes. 
In this paper, the updating method used in the 
optimization process is the parametric method. 
In the optimization process, structural 
parameters are selected as design variables: 
structural sizing information (thickness, cross-
sectional area, area moment of inertia, torsional 
constant, etc.); point properties (lumped mass, 
spring constants, etc.); and materials properties 
(density, Young's modulus, etc.). Objective 
function and constraint equations include mass 
properties, mass matrix orthogonality, 
frequencies, and mode shapes. The use of these 
equations minimizes the difference between 
analytical results and target data. 

2 Optimization Background 
Discrepancies between ground vibration 

test [GVT] data and numerical results are 
common. Discrepancies in frequencies and 
mode shapes are minimized using a series of 
optimization procedures [3]. Recently, the 
National Aeronautics and Space Administration 
[NASA] Dryden Flight Research Center 
[DFRC] began developing an MDAO tool [4]. 
This MDAO tool is object-oriented: users can 
either use the built-in pre- and post-processor to 
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convert design variables to structural parameters 
and generate objective functions, or easily plug 
in their own analyzer for the optimization 
analysis. The heart of this tool is the central 
executive module. Users will utilize this module 
to select input files, solution modules, and 
output files; and monitor the status of current 
jobs. There are two optimization algorithms 
adopted in this MDAO tool: the traditional 
gradient-based algorithm [5], and the genetic 
algorithm [6]. Gradient-based algorithms work 
well for continuous design variable problems, 
whereas genetic algorithms can handle 
continuous as well as discrete design variable 
problems easily. When there are multiple local 
minima, genetic algorithms are able to find the 
global optimum results, whereas gradient-based 
methods may converge to a locally minimum 
value. In this research work, the genetic 
algorithm is used for the solution of the 
optimization problem. 

The genetic algorithm is directly applicable 
only to unconstrained optimization; it is 
necessary to use some additional methods to 
solve the constrained optimization problem. The 
most popular approach is to add penalty 
functions in proportion to the magnitude of 
constraint violation to the objective function [7]. 
The general form of the penalty function is  
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where ( )XL  indicates the new objective 
function to be optimized, ( )XF  is the original 
objective function, ( )Xg

i
 is the inequality 

constraint, ( )Xh
j  is the equality constraint, λi 

are the Lagrange multipliers, X  is the design 
variables vector, and q and m are the number of 
inequality and equality constraints, respectively. 

Matching the mass properties, the mass 
matrix orthogonality, and the natural 
frequencies and mode shapes to target value at 
the same time is a multiple objective functions 
problem. The easy way to minimize multiple 
objective functions is to convert the problem 
into one with only a single objective function 
and optimize in the usual fashion, however, this 
is time-consuming. One of the solution methods 

for a multi-objective optimization problem is to 
minimize one objective while constraining the 
remaining objectives to be less than given target 
values. This method is employed in this paper, 
since our main goal is to match the frequencies 
and mode shapes while minimizing the error in 
the rigid body dynamics and mass properties. 

2.1 Mass Properties 
The difference in the analytical and target 

values of the total mass, the CG, and the mass 
moment of inertias at the CG location are 
minimized to have the identical rigid body 
dynamics.  
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2.2 Mass Matrix 
The off-diagonal terms of the 

orthonormalized mass matrix are reduced to 
improve the mass orthogonality: 
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where n is the number of modes to be matched 
and M  is defined as  
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In the above equation the mass matrix, M, is 
calculated from the FE model, while the target 
eigen-matrix G!  is measured from the GVT. 
The eigen-matrix G!  remains constant during 
the optimization procedure. A transformation 
matrix T in the above equation is based on 
Guyan reduction [8] or improved reduction 
system [9]. This reduction is required due to the 
limited number of available sensor locations.  

2.3 Frequencies and Mode Shapes 
Two different types of error norm can be 

used. In the first option, the objective function 
considered combines an index which identifies 
normalized errors from the GVT and computed 
frequencies with another index which defines 
the total error associated with the off-diagonal 
terms of the orthonormalized stiffness matrix. 
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The matrix K are obtained from the following 
matrix products, 

 
K = !
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where the stiffness matrix, K, is calculated from 
the FE model. 

In the second option, the error norm 
combines the same index used above (which 
defines the normalized error in the GVT and 
computed frequencies) with another index 
which defines the total error between the GVT 
and computed mode shapes at given sensor 
points.  
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In this research, the second optimization 
option is employed since the definition of the 
objective function is much simpler than in the 
first option. Any errors in both the modal 
frequencies and the mode shapes are minimized 
by including an index for each of these in the 
objective function. For this optimization, a 
small number of sensor locations can be used at 
which errors between the GVT and computed 
mode shapes are obtained. Any one of J1 thru 
J13 can be used as the objective function with 
the others treated as constraints. This gives the 
flexibility to achieve the particular optimization 
goal while maintaining the other properties at as 
close to the target value as possible. The 
optimization problem statement can be written 
as 

Minimize: Ji 
Such that: Jk !  εk , for k = 1 thru 13 and  
k !  i 
 

where εk is a small value which can be adjusted 
according to the tolerance of each constraint 
condition. 

3 Applications  

3.1 Square Cantilever Plate  
A cantilever plate shown in Fig. 1 is used 

to demonstrate how to set up design variables, 
the objective function, and the constraints for 
the optimization process. The target 
configuration of the plate is 10 in. by 10 in. and 
0.1 in. thick, containing 16 quadrilateral 
elements and 100 (20 × 5) degrees of freedom 
[DOFs]. Only 12 DOFs as shown in Fig.1 are 
used to simulate sensor output. The modulus of 
elasticity and Poisson’s ratio are 1.0 × 107 psi 
and 0.3, respectively. The mass density is 2.39 × 
10-4 slug/in3.  

The FE analysis results based on the target 
configuration are used as target values. The 
optimization process starts by selecting 
thickness and mass density to be the design 
variables. Total mass, CG, moment of inertia, 
and mass orthogonality are selected as 
constrained equations. Frequencies and mode 
shape errors are selected as the objective 
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function. Initial design variables of 0.5 in. thick 
and a mass density of 5.0 × 10-4 slug/in3 are 
modeled such that a discrepancy between the 
two models is generated. Twenty populations 
and 100 generations are used for the genetic 
algorithm. Mass properties, modal 
characteristics, and design variables before and 
after optimizations are given in Tables 1 and 2. 
The thickness and mass density have converged 
to the target values and the frequencies and 
mode shapes have minimal errors. The 
optimization history of the objective function is 
shown in Fig. 2. 

3.2 Aerostructures Test Wing  
A second example is an experiment known 

as the aerostructures test wing [ATW] which 
was designed by NASA DFRC to research 
aeroelastic instabilities. Specifically, this 
experiment was used to study an instability 
known as flutter. Flight flutter testing is the 
process of determining a flight envelope within 
which an aircraft will not experience flutter. 
Flight flutter testing is very dangerous and 
expensive because predictions of the instability 
are often unreliable due to uncertainties in the 
structural dynamic and aerodynamic models. 

The ATW was a small-scale airplane wing 
comprised of an airfoil and wing tip boom as 
shown in Fig. 3. This wing was formulated 
based on a NACA-65A004 airfoil shape with a 
3.28 aspect ratio. The wing had a span of 18 in. 
with root chord length of 13.2 in. and tip chord 
length of 8.7 in. The total area of this wing was 
197 in2. The wing tip boom was a 1-in. diameter 
hollow tube of 21.5 in. length. The total weight 
of the wing was 2.66 lb.  

Ground vibration tests have been 
performed to determine the dynamic modal 
characteristics of the ATW [10]. It is shown in 
Table 3 that the first bending and torsion modes 
were at 13.76 and 20.76 Hz, respectively. 
Corresponding frequencies and mode shapes 
computed using MSC/NASTRAN 
(MSC.Software Corporation, Santa Ana, 
California, USA) [11] are also listed in Table 3 
and given in Fig. 4, respectively. 

 

The FE model has been tuned to match the 
experimental data, but still the frequency error 
of 9.9% is observed for the second mode. This 
amount of frequency error violates the 3% limit 
for the primary modes described in military 
specifications [12, 13]. The 4% error in the total 
weight is also listed in Table 3. Therefore, the 
FE model needs to be further updated for a more 
reliable flutter analysis. The original FE model 
used rigid body elements to connect the wing tip 
to the boom which could produce the so-called 
‘idealization error.’ Therefore, we used scalar 
springs to replace rigid body elements so that 
stiffness could be adjusted in this area. Point 
masses and scalar springs are selected for the 
design variables to minimize the frequencies 
and total weight errors. Two runs have been 
performed to demonstrate the sensitivity of the 
optimization solution to the constraint 
equations: (1) J12 was used as the objective 
function and J1 as a constraint equation; (2) J12 
was used as the objective function and J1 thru 
J11 and J13 as constraint equations. With 50 
populations and 100 generations of genetic 
algorithm optimization parameters, the final 
frequencies and total weight for case (1) are 
listed in Table 4. A summary of the center of 
gravity, moment of inertia, mass orthogonality, 
and MAC for the ATW for case (1) are shown 
in Table 5. Table 6 shows the final frequencies 
and total weight for case (2); a summary of the 
center of gravity, moment of inertia, mass 
orthogonality, and MAC are shown in Table 7. 
The optimization histories for the objective 
function of case (1) and case (2) are shown in 
Figs. 5 and 6 respectively. In case (1), there is a 
great reduction in the total weight and frequency 
errors but no improvement for the mass 
orthogonality.  In case (2), total mass, mass 
orthogonality and frequencies are improved but 
not as much in case (1). 

4 Conclusions 
Simple and efficient model tuning 

capabilities based on a non-linear optimization 
problem are successfully integrated with the 
multidisciplinary design, analysis, and 
optimization [MDAO] tool developed at the 
NASA Dryden Flight Research Center. Instead 
of modifying the stiffness and mass matrices 
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directly, we updated the structural parameters 
such that the mass properties, mass matrix, 
frequencies, and mode shapes were matched to 
the target data, maintaining some similarity with 
the actual structure.  The computer program has 
been coded in such a way that each J1 thru J13 
can be used as a constraint or objective function. 
When Ji is selected as the objective function, all 
or part of the Jk ( k ! i ) can be selected as a set 
of constraints. This gives the flexibility to 
achieve a particular optimization goal. 

Two examples were used to demonstrate 
the application of this model updating process. 
These examples showed that the number of 
constraint equations that is adequate to be used 
in the optimization process depends on the 
complexity of the model. For a simple model, 
the number of constraint equations may not 
have much effect on the solution, but for a 
complex model this effect could be significant.  
In either case, the approach investigated in this 
work proved to be a robust method of 
improving the accuracy of structural dynamics 
finite element models. 
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Tables 
 

  Target Initial Error, % 
Thickness 0.1 0.5 400.0 
Mass density 0.000239 0.0005 109.2 
Total mass 0.00239 0.025 946.0 

CG 5.0, 5.0, 0.0 5.0, 5.0, 0.0 0 
Ixx 
Iyy  
Izz 

Ixy, Iyz, Izx 

0.0224 
0.0224 
0.0448 

0.0, 0.0, 0.0 

0.234  
0.234  
0.468 

0.0, 0.0, 0.0 

944.6 

Mode 1, Hz 33.27 114.84 245.2 
Mode 2, Hz 77.84 265.00 240.4 
Mode 3, Hz 187.91 650.70 246.3 

Modal 
assurance 

criteria 
 

0.999 
0.999 
0.996 

  

Table 1. Errors between the target and the initial 
configuration of the cantilever plate. 

 
  Target Final Error, % 

Thickness 0.1 0.0977 -2.3 
Mass density 0.000239 0.000236 -1.2 
Total mass 0.00239 0.00231 -3.3 

CG 5.0, 5.0, 0.0 5.0, 5.0, 0.0 0 
Ixx 
Iyy  
Izz 

Ixy, Iyz, Izx 

0.0224 
0.0224 
0.0448 

0.0, 0.0, 0.0 

0.02162 
0.02162 
0.04320 

0.0, 0.0, 0.0 

-3.5 

Mode 1, Hz 33.27 32.74 -1.6 
Mode 2, Hz 77.84 77.01 -1.1 
Mode 3, Hz 187.91 186.54 -0.7 

Modal 
assurance 

criteria 
 

0.999  
0.999 
0.999 

  

Table 2. Errors between the target and the final 
configuration of the cantilever plate. 
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 GVT, Hz NASTRAN, Hz 
(Guyan/Full) Error, % 

Mode 1 13.763 13.354/13.354 -2.97/-2.97 
Mode 2 20.763 22.819/22.819 9.90/9.90 
Mode 3 77.833 79.062/78.771 1.58/1.21 
Total  

weight, lb 2.66 2.77 4.13 

Table 3. Frequencies and total weight of the 
aerostructures test wing before optimization. 

 

 GVT, Hz NASTRAN, Hz 
(Guyan/Full) Error, % 

Mode 1 13.763 13.753/13.753 -0.07/-0.07 
Mode 2 20.763 20.764/20.763 0.00/0.00 
Mode 3 77.833 77.817/77.842 -0.02/-0.45 

Total 
weight, lb 2.66 2.67 0.37 

Table 4. Frequencies and total weight of the 
aerostructures test wing after optimization  

(without J11 constraint). 

 

 Before 
optimization 

After 
optimization 

CG (X, Y, Z) 12.94, 9.16, 0.0 12.88, 8.8, 0.0 
Ixx 161.22 152.06 
Iyy 113.08 112.83 
Izz 268.20 258.79 
Ixy 95.27 93.75 
Ixz 0.011 0.00996 
Iyz -0.028 -0.0349 

M11 1.0 1.0 
M12 0.089 0.157 
M13 0.177 0.148 
M22 1.0 1.0 
M23 0.093 0.109 
M33 1.0 1.0 
MAC 0.99 

0.99 
0.95 

0.98 
0.99 
0.95 

Table 5. Summary of center of gravity, moment of inertia, 
mass orthogonality, and modal assurance criteria for the 

aerostructures test wing before and after optimization 
(without J11 constraint). 

 

 

 

 

 

 GVT, Hz NASTRAN, Hz 
(Guyan/Full) Error, % 

Mode 1 13.763 13.406/13.405 -2.59/-2.60 
Mode 2 20.763 21.014/21.013 1.21/1.2 
Mode 3 77.833 77.871/77.502 0.04/-0.40 

Total 
weight, lb 2.66 2.698 1.43 

Table 6. Frequencies and total weight of the 
aerostructures test wing after optimization  

(with J11 constraint). 

 

 Before  
optimization 

After 
optimization 

CG (X, Y, Z) 12.94, 9.16, 0.0 12.72, 8.91, 0.0 
Ix 161.22 154.78 
Iy 113.08 102.57 
Iz 268.20 251.26 

Ixy 95.27 89.45 
Ixz 0.011 0.0068 
Iyz -0.028 -0.033 

M11 1.0 1.0 
M12 0.089 0.0297 
M13 0.177 0.119 
M22 1.0 1.0 
M23 0.093 0.028 
M33 1.0 1.0 
MAC 0.99 

0.99 
0.95 

0.95 
0.97 
0.95 

Table 7. Summary of center of gravity, moment of inertia, 
mass orthogonality, and modal assurance criteria for the 

aerostructures test wing before and after optimization 
(with J11 constraint). 
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Figures 

 
Fig. 1. Cantilever plate. 

 
Fig. 2. Objective function history of the cantilever plate. 
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Fig. 3. Aerostructures test wing.  

 
Fig. 4. Finite element model and mode shapes. 
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Fig. 5. Objective function history of the aerostructures test wing (without J11 constraint). 

 

Fig. 6. Objective function history of the aerostructures test wing (with J11 constraint). 
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