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Abstract  

The transitional flight of tail-sitter aircraft is a 
challenging problem because the flight includes 
a wide operating range with nonlinearity and at 
low speed approaches the stall. In order to solve 
this problem, a robust autopilot design method 
using a variable environment genetic algorithm 
(VE-GA) is proposed. VE-GA is a new robust 
optimization method based on a real coded 
genetic algorithm (RCGA). Here, the word 
“environment” refers to the uncertainties 
considered in the evaluation functions. In a VE-
GA, the environment is changed repeatedly after 
several generations. In this manner, genes go 
through many types of environments over 
generations, and obtain robustness against 
uncertainties. In order to improve the efficiency 
and accuracy of the optimization, we introduce 
a local optimization method—Powell's direction 
set method (PDSM), and term the combined 
robust optimization procedure VE-GA/PDSM. 
Finally, our proposed method is applied to the 
offline-based parameter optimization of a 
neural network (NN) which is part of a tail-
sitter mini unmanned aerial vehicle’s (UAV) 
autopilot architecture. 

1  Introduction  
For a model-based controller design approach, it 
is essential to prepare an accurate model of the 
actual plant. If the model is sufficiently accurate, 
many kinds of controller design methods can be 
applied, but an accurate model is often 
unavailable in real implementations and so it is 
important to design controllers with high 
robustness against model uncertainties. 
However, designing such robust nonlinear 

controllers is not an easy problem, because 
robust optimization usually requires much 
greater calculation than conventional 
deterministic optimization. In previous research, 
the authors proposed robust controller design 
using a new robust optimization method—a 
variable environment genetic algorithm (VE-
GA) [1]. Here, “environment” refers to the 
model errors and disturbance settings assumed 
in the offline simulations used to optimize the 
controller parameters. During the evolutionary 
iteration of VE-GA, the environment is 
systematically changed after a number of 
generations. This way, genes go through many 
types of environments and achieve moderate 
fitness for all environments; the population 
becomes more robust.  

However, the VE-GA has the following 
two problems: low efficiency of the final phase 
because it is based only on a probabilistic 
approach, and a lack of accuracy of constraint 
evaluations because the weight factor of the 
penalty functions cannot be increased in order to 
maintain the algorithm’s stability. In this paper, 
we will reformulate the VE-GA, especially the 
evaluation (fitness) functions, and introduce a 
local optimization method—Powell's direction 
set method (PDSM)—to solve the problems of 
the previous VE-GA. The new robust 
optimization procedure (VE-GA/PDSM) is 
applied to the design problem of an autopilot for 
the transitional flight of a tail-sitter mini 
unmanned aerial vehicle (UAV). 

2  Tail-Sitter Mini UAV 
Mini UAVs are very small, single-person 
portable unmanned aircraft which are useful in 
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many applications in a variety of fields, such as 
environmental observation, law enforcement 
and disaster mitigation [2–4]. However, in spite 
of the potential of mini UAVs, there are a 
number of problems in their operation. One 
problem is takeoff and landing. Although mini 
UAVs do not require runways and can be 
operated from relatively compact areas such as 
athletic grounds or football fields, it can still be 
difficult to find such locations for takeoff and 
landing in practical operations. In fact, the 
authors experienced having to abandon a forest 
observation mission using mini UAVs because 
no suitable takeoff and landing point could be 
found in the deep forest. 

Common methods to improve the landing 
performance of mini UAVs are parachutes [2] 
and deep-stall decent technique. However, these 
methods also have disadvantages, such as low 
accuracy or impact shock at touchdown. 
Another option that also improves takeoff 
performance is the vertical takeoff and landing 
(VTOL) approach [5]. One of the simplest 
VTOL mechanisms is tail-sitter. A tail-sitter 
will takeoff and land on its tail section with its 
fuselage and nose pointing upward. Tail-sitters 
have the advantage of not requiring variable 
mechanisms to transition between hover and 
cruise, and this configuration is therefore 
particularly appropriate for “mini” UAVs that 
have a strict weight constraint because of their 
small size. 

The authors proposed a new design for 
such a tail-sitter mini UAV in previous research 
[6,7] (Fig. 1). The vehicle can cruise efficiently 
like a conventional fixed wing airplane (Fig. 1 
left) and hover like a helicopter (Fig. 1 right). 

Transition flight between cruise and hover 
is a challenging problem for the tail-sitter 
because the transition covers a wide operating 
ranges with nonlinearity and tends to approach 
the stall, an uncontrollable condition in low 
speed flight. Additionally, the sensor and on-
board processing performance of mini UAVs is 
limited because of their size, weight, and cost 
constraints. Therefore, simple controllers for a 
nonlinear system are required, with robustness 
being very important. 

2.1 Design Features of the Vehicle 
Although other experimental tail-sitter VTOL 
UAVs exist [8–10], our proposed design has the 
following distinguishing features: 

1. Twin contra-rotating propellers. This has 
the advantage of being much simpler than 
other configurations that eliminate engine 
torque effects such as coaxial contra-
rotating propellers/rotors. 

2. The ailerons, rudders, and elevators are 
immersed in the propeller slipstream and so 
are effective for attitude control even in 
low-speed flight. No other complex control 
devices are required. 

3. Apart from the control surfaces, there are 
no variable mechanisms such as the tilt 
mechanisms of tilt-rotors, tilt-wings, or tilt-
ducts that would complicate the system. 

2.2 Operation Scenario 
An assumed operation scenario for the tail-sitter 
mini UAV is illustrated in Fig. 2. In the takeoff 
phase, the vehicle is launched by hand or by 
support equipment and climbs vertically to a 
certain altitude. The vehicle then increases its 
flight speed and transitions to forward wing-
borne flight; this is called an outbound transition. 
After completing its mission, the vehicle 
approaches the landing point. It decreases its 
flight speed and transitions to the hovering 
mode; this is called an inbound transition. 
During the final landing phase, the vehicle 
descends vertically and touches down on its tail 
gear, then drops forward to touch down on its  

Fig.1 The proposed tail-sitter mini UAV 

Hover mode
Cruise mode 

Wingspan: 1 m 
Takeoff weight: 2 kg 
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main gear, and comes to rest supported by both 
the tail and main gear. 
 

Outbound transition Inbound transition

Vertical takeoff Vertical landing

Mission

 
Fig.2 Operation scenario over forest area from vertical 

takeoff to vertical landing 

3  Control System Architecture 
Only the longitudinal dynamics of the vehicle 
were considered in this paper. The control 
inputs to the longitudinal dynamics are elevator 
deflection δele and throttle setting δthr. The major 
challenges faced in this problem are as follows: 

1. Wide operating range of the vehicle from 
hover to cruise with nonlinearity. 

2. Control system robustness required for 
practical application. 

Additionally, the following limitations exist: 

3. Only limited information available about 
the vehicle dynamics. 

4. Limited computational power of the control 
hardware. 

Considering these issues, the control system 
architecture shown in Fig. 3 was proposed. 
 

 
Fig.3 Control system architecture 

3.1 Gain Scheduled Linear Quadratic 
Regulator 
A gain-scheduled (GS) linear quadric regulator 
(LQR) was used for the pitch attitude control 
[1,11]. This controller is suitable for a plant 
with a wide operating range and nonlinearity, 

such as the transitional flight of a tail-sitter. The 
pitch command signal is filtered by a first-order 
filter in order to reduce the impulsive elevator 
input at the initial rise due to the feed forward 
term of the pitch attitude GS controller. The 
propeller rotation speed controller was designed 
using a conventional fixed-gain LQR since the 
propeller rotation dynamics vary only 
marginally. 

3.2 Reference Command Generator (Neural 
Network) 
In order to achieve the control objectives, 
appropriate reference command signal 
sequences must be provided to the inner loop 
system. An improper reference command, such 
as a very rapid pitch up command in high-speed 
flight, may cause the vehicle to stall. Therefore, 
the reference command generator has to be 
designed considering such constraints, and at 
the same time the existence of uncertainties 
must also be considered. In this study, a neural 
network (NN) optimized by offline simulations 
is used as a reference command signal generator. 
This outputs the pitch attitude command θc and 
propeller rotation speed command ωc. In order 
to improve robustness, the network parameters 
are optimized using VE-GA/PDSM considering 
constraints and uncertainties. The details will be 
described in the next section. 

4  Variable Environment Genetic Algorithm 
The VE-GA which the authors proposed in 
previous papers [1] it has a problem of a lack of 
accuracy of constraint evaluations because the 
weight factor of the penalty functions cannot be 
increased to maintain the algorithm’s stability. 
Here, we reformulate the evaluation (fitness) 
functions and handling of constraints. 

4.1 Formulation of a Robust Optimization 

A general deterministic optimization problem 
without uncertainty can be formulated as 
follows: 

Minimize: ( )
Subject to: ( ) 0 ( 1,2, , )i

f
g i m≤ = L

x
x

 (1)
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where x is the parameter vector to be optimized, 
function f(x) is an evaluation function to be 
minimized, and functions gi(x) indicate 
constraints. However, if these functions contain 
uncertainties δ, that is f(x,δ) and g(x,δ), they 
cannot be optimized using only such 
deterministic formulations because their values 
depend on δ. 

In such a case, we need a robust 
optimization approach, which is optimization 
that considers variation of the evaluation 
function f(x,δ) and constraints g(x,δ). The 
following equations using statistical values of 
the functions are one way to formulate such a 
robust optimization problem: 

, , ,

Minimize: ( ) ( )

Subject to: ( ) ( ) 0
( 1,2, , )

f f f

g i g i g i

k

k
i m

μ σ

μ σ

+

+ ≤
= L

x x

x x (2)

where μ and σ are respectively the mean and 
standard deviation values of the functions. 
Using a penalty function method, the robust 
optimization problem including constraints can 
be written as the following single evaluation 
function Jrob: 

( )
rob

, , , ,
1

Minimize: ( ) ( ) ( )

max 0, ( ) ( )
f f f

m

g i g i g i g i
i

J k

w k

μ σ

μ σ
=

= +

+ +∑
x x x

x x (3)

where wg,i (i = 1, 2, ..., m) are penalty weighting 
factors. If this Eq. (3) can be optimized, a robust 
optimal solution will be obtained. However, this 
“direct” optimization is inappropriate because of 
the high calculation cost of evaluating the 
statistical terms. 

We previously proposed a new robust 
optimization method, VE-GA [1], based on a 
real coded genetic algorithm (RCGA) [12,13]. 
Here, we use a non-statistical fitness function 
F(x) defined as follows: 

( ),
1

( , ) ( , ) max 0, ( , )
m

g i i
i

F f v g
=

= +∑x δ x δ x δ (4)

This function considers only one sampling point 
δ in the uncertainty space. For further 
discussions below, the following index Frob(x) is 
defined: 

rob ( ) ( ) ( )F F FF kμ σ= +x x x  (5) 

where μF(x) and σF(x) are respectively the mean 
and standard deviation of the function F(x,δ) 
against uncertainties δ. 

4.2 Variable Environment Concept 
A VE-GA is a probabilistic robust optimization 
method based on an RCGA. An algorithm flow 
for a conventional RCGA is illustrated in Fig. 4. 
An initial population is created randomly, and 
this population is then optimized through 
evolutionary operations such as crossover, 
alternation, and mutation. In this research, we 
use unimodal normal distribution crossover 
(UNDX) [12] as the crossover method and the 
distance dependent alternative (DDA) model 
[13] as the alternation model for the crossover. 
Mutation operations are not used. The 
evolutionary process is continued until a given 
maximum number of generations (iterations). 
 

 
Fig.4 Flow chart of conventional real coded genetic 

algorithm (RCGA) 
 

For our proposed VE-GA, a variable 
environment algorithm is added to the 
conventional RCGA as shown in Fig. 5. Here, 
the word “environment” implies the 
uncertainties δ considered in the evaluation of 
the fitness function F(x,δ). If a counter j reaches 
a value E, the environment setting is updated 
randomly, the parameter E is updated, and the 
counter j is reset. Therefore, a variation of the 
uncertainties δ is considered through the 
iteration of the optimization process. If we focus 
only on single generation step, the fitness 
function F(x,δ) for the particular value of δ 
given for that generation is evaluated not 
statistically but deterministically. However, 
over a number of generations, various F(x,δ) 
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based on different values of δ will be evaluated, 
and this can be considered as virtually 
equivalent to a statistical evaluation. 

We therefore term this algorithm the 
variable environment genetic algorithm, VE-GA. 
Using this algorithm, genes go through many 
types of environments over generations; in this 
manner, they not only converge to an optimal 
solution for one particular environment but also 
have moderate fitness for all environments. 
 

 
Fig.5 Flow chart of proposed variable environment 

genetic algorithm (VE-GA) 

4.3 Parameter E Update Rule 
Partially similar concepts can be found in other 
researches [14,15], but these researches use a 
“fixed value E”. If a fixed E is used, only 
“average” optimization results, that is the genes 
can be optimized in a manner of average μF(x) 
(see Eq. (5)), and so the controller cannot obtain 
sufficient robustness. In this study, we propose a 
new algorithm to sequentially update E so that it 
is not fixed but variable, and thereby obtain a 
robust population. 

The E update rule concept is very simple: 
“if the new environment is ‘difficult’ for the 
current population, the parameter E is updated 
to a large value, and if the new environment is 
‘easy’, the parameter E is updated to a small 
value.”  
This concept can be formulated as: 

( )EE f m= ⎢ ⎥⎣ ⎦
 (6) 

where the symbol ⋅⎢ ⎥⎣ ⎦  denotes the Gauss symbol 
(i.e. x⎢ ⎥⎣ ⎦  is the greatest integer that does not 
exceed x) and m is the average fitness of the 
current population to the new environment. The 
function fE(m) is a monotonically increasing 

function of m. At every environment change, E 
is updated using this equation depending on the 
value of m. There is an indefinitely large 
number of such monotonically increasing 
function options that we can design. In this 
paper, we will use a simple linear function with 
saturation defined as follows: 

( )max 1 1 1 1( ) min ,Ef m E E Eζ ζ= +  (7)

where E1, E2, and Emax are constant parameters. 
The coefficients ζ1 and ζ2 are defined as follows: 

maxmin
1 2

max min max min

, m mm m
m m m m

ζ ζ −−
= =

− −
 (8)

where mmax and mmin are the recorded maximum 
and minimum values over the history of the 
average fitness m. E = Emax is used only for the 
first environment in order to avoid dividing by 
zero. 

If a new environment is difficult for a 
current population (i.e. m is large), the 
parameter E is updated to a larger value. This 
implies that a difficult environment continues 
for more iterations than an easy environment. In 
this manner, the population becomes fit not only 
for major easy environments but also for minor 
difficult ones. 

4.4 Guidelines for Setting Parameters 
Three parameters (E1, E2, and Emax) are used for 
updating parameter E, and are strongly related 
to the stability of the algorithm. The following 
guidelines for the parameter settings were 
determined through numerical experiments. 

1. E1 should be set to 0 or another small 
number. This implies that if a new 
environment is sufficiently easy for the 
current population, further learning of the 
new environment is not required. E1 = 0 is 
best for the most cases; however, 
sometimes the iteration may plateau 
depending on problems. In such cases, E1 
should be set to non-zero value such as 1. 

2. E2 should be set depending on the problem. 
If E2 is set to a small value, the stability of 
the VE-GA increases. However, the 
computational cost also increases because 
the number of recalculations required for 
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the fitness functions of new environments 
increases. On the other hand, if E2 is set to a 
large number, the computational cost 
decreases but so does stability. This is a 
trade-off problem. 

3. Emax determines the upper limit of E. For 
some problems, E2 should be set to a much 
greater value than the population size N. 
Then, E will be large particularly during 
initial iterations because m is still large for 
some environment at the initial phase of the 
optimization. If E is too large, though, the 
population may converge to a local 
optimum for the current environment before 
changing to a next environment, thus losing 
robustness. Therefore, Emax should be set to 
a moderate number. We recommend setting 
the value of Emax to similar to the order of 
the population size N. This also depends on 
the complexity of the problem; Emax may be 
set to a larger number for a complex 
problem and a smaller number for a simple 
problem. 

5  Powell's Direction Set Method 
The VE-GA proposed above has two problems. 
One is low efficiency in the latter phase of 
iteration. Since VE-GA does not continuously 
monitor a history of the true robust evaluation 
function Jrob to save calculation cost, it cannot 
keep the best elite individual at each generation, 
and so a good individual based on robust 
criterion Jrob can sometimes be lost in the 
evolutionary operations. The other problem is a 
lack of accuracy of constraint evaluations, 
because the weight factor of the penalty 
functions cannot be increased in order to 
maintain the stability of the algorithm. If the 
penalty weight factor is set too large, the 
population has difficulty moving close to the 
constraint lines because of the characteristics of 
RCGA. 

To solve these problems, we use 
Powell's direction set method (PDSM) [16] (Fig. 
6). The best individual selected from output 
groups generated through the VE-GA process is 
fed to PDSM as an initial solution for it. 
Although this direct robust optimization based 

on the evaluation function Jrob incurs high 
calculation cost, fewer iterations are required 
because of pre-convergence, so the total 
required computational cost is not unfeasibly 
high. 
 

VEVE--GAGA

PDSMPDSM

StartStart

EndEnd

Robust global search using VERobust global search using VE--GAGA

Selection from the output ofSelection from the output of
VEVE--GA based on robust criteriaGA based on robust criteria JJrobrob

Direct local optimization based onDirect local optimization based on JJrobrob
using Powellusing Powell’’s direction set methods direction set method

SelectionSelection

Randomly created initial populationRandomly created initial population

 
Fig.6 VE-GA/PDSM flow overview 

6  Transitional Flights of Tail-Sitter VTOL 
Mini UAV 
In this section, we apply the new robust 
optimization method proposed above to the 
problem of autopilot design for transitional 
flight of a tail-sitter mini unmanned aerial 
vehicle (UAV). 

6.1 Preparation 
Flight speed V was selected as the scheduling 
parameter, and three trimmed level flights (V = 
0, 4, and 18 m/s) were selected as sampling 
points for the linear time invariant (LTI) models. 
A linear parameter varying (LPV) model of the 
tail-sitter was constructed by interpolating these 
LTI models [1] for the offline optimization 
simulations. 

The NN used as the reference command 
generator has four, four, and two neurons for the 
input, hidden, and output layers, respectively. 
Thirty parameters are to be optimized in this 
problem. The inputs x and outputs r of the 
network are as follows: 

[ ]T T,T T
c cH V qθ θ ω⎡ ⎤= =⎣ ⎦

&x r  (9)

In this problem, model uncertainties, initial 
state errors from the trim conditions and a 
random gust were considered in the evaluation 
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simulations for robust optimization. The model 
uncertainties are variations of the system 
matrices and initial conditions. It is assumed 
that every element of the system matrix has a 
variation range of ±30%. The initial conditions 
have variation ranges as follows: Ui, ±1 m/s; Wi, 
±0.5 m/s; qi, ±0.1 rad/s; θi, ±0.1 rad; ωi, 
±10 rad/s. With regard to gusts, the horizontal 
component has zero average and 1 m/s standard 
deviation, and the vertical component has zero 
average and 0.5 m/s standard deviation, which is 
a reasonable gust condition for mini UAV 
flights. Time series gust data were constructed 
from white noise through a second-order low 
pass filter with a cut-off frequency ωf = 1 rad/s. 

6.2 Outbound Transition 
Outbound transitions are relatively easy because 
the control results are only slightly affected by 
uncertainties or disturbances. Since outbound 
transitions are accelerating flight, the throttle 
settings are higher than in trimmed and 
decelerating flight, and so the propeller 
slipstream over the wing is strong and the 
effective angle of attack becomes smaller. As a 
result, the main wing does not stall even in low-
speed flight in gusty wind conditions. Because 
of this, there are only very small differences 
between the results obtained using the 
conventional RCGA and those obtained using 
the proposed VE-GA/PDSM. 

6.3 Inbound Transition 
Inbound transitions on the other hand are 
relatively difficult. There are remarkably large 

differences between the results obtained using 
conventional RCGA and the proposed VE-
GA/PDSM. 

The objective function to be minimized is 
given as: 

,1 tar

2
,2 ,3 NN0

Minimize: ( )

( )f

f tf
t

f f

f w V V

w H dt w P

= −

+ +∫ &

x

x
(10) 

The first term causes the vehicle to change its 
flight speed to the target flight speed Vtar. For 
inbound transition, this is the hovering speed 
Vtar = 0 m/s. The second term is to reduce 
variations in altitude. The third term, PNN(x) is a 
regularization term to constrain the size of the 
parameter vector x. If the parameters of the 
network are large, the network will have high 
sensitivity, which means its outputs change 
sensitively against its inputs. This term is 
defined as: 

2( )NN i
i

P x=∑x  
(11) 

Constraints are given as: 

1 ,stall,

2 ,stall,

( ) 0
( ) 0

s s u

s l s

g
g

α α
α α

= − ≤

= − ≤

x
x

 (12) 

It is very important to maintain flight 
conditions to within the controllable region. If 
the angle of attack becomes too high, lateral 
control margin decreases because large aileron 
deflection can cause the main wing to stall, 
which is an uncontrollable condition. The 
parameter settings are listed in Table 1. 

Table 1 Calculation settings 

f(x, δ) Weight factor wf  = (1, 0.15, 10–3) 
 Stall angle of attack (αs,stall,l, αs,stall,u) = (–15, +25) deg 
F(x) Penalty weight factor vg  = (1, 1) 
Frob(x) Standard deviation weight factor kF  = 1 
Jrob(x) Penalty weight factor wg  = (20, 20) 
 Standard deviation weight factor kf  = 1, kg,1 = kg,2 = 3 
VE-GA E update parameters (E1, E2, Emax) = (0, 500, 200) 
 Population size N = 100 
 Maximum number of generation G = 5×104 
PDSM Maximum number of iteration I = 3 
 Number of sampling points for 

statistical estimation of μ and σ 
M = 1000 
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6.4 Comparison of Evaluation Value 
Histories and Discussion 
The following four types of optimizations were 
tested: a) conventional GA without considering 
uncertainties, b) PDSM only with a randomly 
selected initial solution, c) VE-GA only, and d) 
the proposed VE-GA/PDSM. The histories of 
Frob (Eq. (5)) and Jrob (Eq. (3)) are plotted in Fig. 
7. 

In case a), the conventional GA, robustness 
was lost rapidly just after iteration started 
because it is based only on the nominal case 
without considering uncertainties. In case b), 
using only PDSM, a large number of iterations 
were required and what is worse, an appropriate 
solution was not obtained because of 
convergence to a local optimum. 

In case c), using only VE-GA, a relatively 
better value of index Frob was achieved and the 
value Frob was kept below 8; this steady state is 
a “convergence” of VE-GA. However, the 
convergence of index Jrob was not steady. From 
this, it can be seen that VE-GA is a method to 
optimize based on the index Frob. It is natural to 
understand that VE-GA optimizes based on the 
index Frob, because F(x,δ) is used in each 
generation step of VE-GA. 

However, the primary objective is to 
optimize Jrob, and Jrob is better for handling 
penalty terms accurately because it contains 
explicit penalties considering variations caused 
by uncertainties. In contrast, Frob cannot express 
penalties accurately. Therefore, actual robust 
evaluation Jrob is not stable after convergence of 
VE-GA, which means the population, even the 
optimum one in respect to Jrob, sometimes 
slightly violates the constraints. However, if 
PDSM is used additionally, case d), the 
proposed VE-GA/PDSM algorithm is able to 
reach a better solution based on index Jrob. 

What it comes down to is as follows: The 
ultimate objective is optimization based on Jrob, 
but VE-GA is an optimization method based on 
Frob. However, the VE-GA based on Frob can 
yield a sufficient initial solution for PDSM, and 
PDSM can improve the solution based on Jrob 
directly so that finally, we obtain a significantly 
better solution than by other methods. 
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Fig.7 Histories of robust evaluation index Frob (upper) and 

Jrob (bottom) 

6.5 Comparison of Control Results 
The NNs optimized with the above-mentioned 
algorithms were evaluated using Monte Carlo 
simulations (MCSs) based on a nonlinear flight 
simulation of the tail-sitter mini UAV. The 
results are shown in Figs. 8–11. 

Since inbound transitions are decelerative 
flight, throttle settings are lower than in 
trimmed and accelerative flight, the propeller 
slipstream over the wing is weaker and the 
effective angle of attack becomes larger. Hence, 
stall margin decreases and flight can easily 
violate the stall constraint due to model 
uncertainties and disturbances. Flights 
controlled by an NN trained using the 
conventional GA therefore often violated the 
stall constraint (Fig. 8). 

The results using b) PDSM (Fig. 9) show 
that the control objective is not achieved 
because of the local optimum. 

In the results using c) VE-GA only (Fig. 
10), the stall constraint is still violated in a few 
case. On the other hand, for case d) using 
proposed the VE-GA/PDSM (Fig. 11), the stall 
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constraint is not violated and the terminal 
altitude deviations are smaller. 

7  Summary and Future Work 
A variable environment genetic algorithm 

(VE-GA) and Powell's direction set method 
(PDSM) were used to optimize the parameters 
of a neural network (NN) that was used as a 
reference command generator to achieve the 
control objectives of transitional flight with 
small altitude changes without violating the stall 
constraint. VE-GA is a new robust optimization 
method based on the real coded genetic 

algorithm (RCGA) in which the environment 
(i.e. uncertainty settings considered in 
evaluation of the fitness function) is changed 
repeatedly after several generations. In this 
manner, genes go through many types of 
environments over generations and obtain 
robustness. PDSM was used to improve the 
efficiency and accuracy of the optimization 
process. We term the combined method VE-
GA/PDSM. A notable characteristic of this 
method is that it is a “global” robust 
optimization method. 

Finally, the method was applied to the 
design of an inbound transitional flight 

 

Fig.8 Monte Carlo simulation results of inbound transition control using NN optimized with conventional GA without 
considering uncertainties 

 
Fig.9 Monte Carlo simulation results of inbound transition control using NN optimized with PDSM with a randomly 

selected initial solution 

 
Fig.10 Monte Carlo simulation results of inbound transition control using NN optimized with only VE-GA 

 
Fig.11 Monte Carlo simulation results of inbound transition control using NN optimized with proposed VE-GA/PDSM 
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controller for a tail-sitter mini unmanned aerial 
vehicle (UAV). In the case of inbound transition, 
the new algorithm was found to be superior, and 
robust controllers for the transition were 
obtained.  

While numerical simulations were used in 
this paper, it is necessary to conduct real flight 
tests for further evaluation. 

The robust optimization method proposed 
in this paper is a general methodology and 
therefore can be applied to a variety of robust 
optimization problems. 
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