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Abstract  
Pilot control at the visual approach has been 
modeled using neural networks. The quality of 
the constructed pilot model depends on the 
given inputs and learning scheme because 
measured data includes noise and uncertain 
inputs. In order to cope with these uncertainties, 
a new learning scheme is proposed in this paper. 
Using the proposed scheme, pilot controls are 
analyzed for different flight conditions, such as 
day/night and no wind/gusty. The contribution 
ratios and sensitivity analysis results show clear 
differences between the flight conditions. 

1  Introduction  
Recent aircraft are equipped with a 
sophisticated autopilot system. While cruising, 
the autopilot system is fully used, and it is an 
indispensable part of the aircraft. On the other 
hand, during landing approach, the auto landing 
system is rarely used. First of all, this system 
can only be used if both aircraft and airport 
fulfill the requirements for auto landing. In 
addition, if the pilot relies on the auto landing 
system too often, it might lead to the pilot losing 
his skill. Furthermore, a computer can perform 
exact operations, and it does not has flexibility 
for uncertain conditions such as cross wind 
landings. Consequently, the pilot mostly 
performs a manual landing, and it is considered 
that the pilot control will remain important in 
the future.  

Additionally, pilot control skills are mostly 
obtained through experience, and it is difficult 
to teach such skills to junior pilots. Some of the 
accidents seem to be due to a lack of skill, 

which is the reason to develop a tool that can 
examine a pilot’s control skill quantitatively.  

A method has been developed to evaluate 
control skill using neural networks (NN).[1] It is 
expected that this method will be used as a skill 
evaluation tool at airline training centers. One 
problem for airlines is to train new pilots, 
because it is very costly and difficult to make a 
guideline for control. The proposed method will 
help to clarify pilots’ information processing 
flow and improve the efficiency of the pilot 
training. 

The target of this study is the flare 
maneuver, which is a pitch-up control during 
the final landing phase, because it is said to be 
the most difficult maneuver in normal 
operations for airline pilots. During this phase, a 
pilot gets visual cues from the out-of-the-
window view, because he or she has to obtain 
much information, and there is no time to watch 
instrument panels. The pilot has to estimate the 
aircraft state values, such as pitch angle and 
altitude, from visual cues. In our analysis, the 
relationship between visual cues and the pilot’s 
control is modeled using a NN which is trained 
so as to simulate the recorded pilot maneuver 
for recorded visual cues. The obtained NN is 
analyzed mathematically. 

In previous studies [1][2], the proposed NN 
modeling technique has been validated in 
several ways. However, in those studies, manual 
tuning of the NN parameters is necessary, which 
is an obstacle for making a pilot training tool. 
Thus, a new method with a fully automatic 
learning scheme is proposed in this paper. 
Additionally, using the proposed new method, 
pilot control under various flight conditions is 
analyzed and the differences are revealed. 
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2  Neural Network Modeling 

2.1 Neural Network Modeling of the Landing 
Phase 

2.1.1 Neural Network 
Artificial NNs[3][4] are analogous to the 
biological nervous systems, and consist of 
smaller units called neurons which are grouped 
in layers and perform only a few simple 
operations. This neuron operates very simply 
like this expression: 
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and ix , y, and iw  are the input, the output, and 
weights, respectively, and b is a bias of the 
activation function f. In this study, a normal 
three-layer hierarchical network is applied. This 
network is capable of very complex mappings 
due to the high interconnectivity of neurons in 
subsequent layers, and it is used as the pilot 
model and analyzed mathematically. In order to 
make the NN work as the pilot model, weights 
and biases have to be set. This process is called 
learning. For learning, the teaching data sets, 
which are model inputs and outputs, should be 
prepared. The learning minimizes the objective 
function F, which is normally the mean square 
error (MSE) between the teaching output data 
and the NN computed output data. The error 
back-propagation method is usually used as a 
learning scheme. In this paper, a scaled 
conjugate gradient algorithm[5] is applied, 
which uses an advanced conjugate gradient 
method. 

2.1.2 Model Outline 
In this study, a pilot model is constructed with a 
NN and the pilot’s control characteristics are 
discovered with an analysis of the obtained NN. 
Thus, the NN inputs — which are the facts on 
which the pilot bases his control — should be 
chosen appropriately.  

During the landing, the pilot receives the 
visual cues as main information, because the 
pilot generally cannot afford to watch the 
instrument panels. The optical flow of visual 
cues, such as the position of the horizon or the 
runway shape, can help the pilot estimate the 
current aircraft state values.[6] In the current 
work, some visual cues are quantified as NN 
inputs to construct a pilot model, and the 
column movement and throttle setting are used 
as outputs, and the relationship between inputs 
and outputs has been analyzed. Fig. 1 shows the 
quantified visual cues in this study, and Table 1 
shows mathematical relationships between 
quantified visual cues and aircraft state values. 
Note that only longitudinal motion is considered. 
The neural network structures for each output 
are shown in Fig. 2. It should be noted that not 
only the visual cues but also their time 
derivatives and time lagged data are used as NN 
inputs, because data flow and time-delayed 
information also affects the pilot control and 
human response has a time delay. 

 
Fig. 1 Visual Cues. 

 

Fig. 2 Network Structure. 
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Table 1 Relationship between Visual Cues and Aircraft 
States 

Visual Cue Related Main Aircraft State
Y Pitch angle 
θ Altitude 
W Distance to Runway 

2.2 Neural Network Construction Problems 

2.2.1 Generalization 
When constructing a neural network model, one 
problem is how to obtain a good generalization. 
Generalization means that the NN model can 
generate reasonable outputs in the various 
situations, which were not included in the 
teaching data sets. It is obviously true that the 
NN cannot deal with every situation, because 
the NN learns just a few typical cases of a 
pilot’s control. However, a NN sometimes 
imitates the noise of human control, and it does 
not act like the pilot when the inputs go off the 
teaching data sets. Many methods with good 
generalization capability have been proposed for 
constructing or training NN, but there is no 
well-understood method at present. However, it 
is considered that this problem can be solved by 
choosing the right learning scheme, and some 
other methods had been considered in a 
previous study.[7]  

2.2.2 Regularization 
One method to improve generalization is to use 
regularization. As previously noted, the normal 
objective function consists of only the MSE 
between the NN output and the teaching output 
data. The teaching output data is the pilot 
control which includes much human noise. The 
human noise consists of hand tremor, 
misconception, non-typical environmental 
conditions, and confirmative control of aircraft 
reaction, which are difficult to model and do not 
have to be modeled. 

It is said that the absolute values of the 
network weights become larger, when fitting 
more detailed. With the use of this characteristic, 
the weight values are added to the objective 
function F as follows. 
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where γ is a regularization parameter, and 
N is the number of teaching data sets, and n is 
the number of all weights. If γ is equal to 1, 
regularization does not work. The smaller γ is, 
the more noise is removed because of the latter 
term. However, if γ gets too small, necessary 
output data is also treated as noise, and the NN 
model loses the ability to reproduce the teaching 
data. Thus, γ should be decided properly. There 
is a method (Bayesian Regularization 
method[8]) to decide a proper value for γ. 
However, this method is based on the Bayesian 
probabilistic framework, which assumes the 
noise is white noise. The human noise is very 
different from the white noise, so another 
method should be considered. 

2.2.3 General Neural Network Problems 
The proposed analysis method is to be used as a 
pilot training tool at airlines, so the learning has 
to be completely automated. However, when 
learning, the initial weights and biases should be 
decided randomly, and this randomness 
sometimes causes the random convergence, 
which means the NN converges to a local 
solution. If they are decided manually every 
time, it is very time consuming, and it contains 
subjectivities, which means that the pilot control 
cannot be analyzed objectively. This problem 
can be solved by decreasing local minima to 
some extent by refining the inputs of the 
network, but this is not enough. In addition, it is 
widely said that the number of hidden neurons 
is also important to keep the generalization of 
the network. 

3 Automation for Pilot Modeling  

3.1 Proposed Learning Method 
In order to solve problems of overfitting, bad 
generalization, and convergence to local minima, 
a new training method is proposed. The concept 
is that the network is trained including noise 



R. Mori 

4 

with high gamma first, and then the noise is 
removed from the network decreasing gamma 
gradually. It is known that the proper value of 
gamma is 0.4 to 0.9 by experience. The detailed 
flow of learning is written as follows. Fig. 3 also 
shows the flow of learning a network.  
1)  The initial weights and thresholds are 

decided randomly. Gamma is set to a value a 
little higher than 0.9 (e.g. 0.95). The 
network is trained to minimize α+β as 
defined in Eq. 2 until α+β is converged (the 
gradient reached sufficiently small value).  

2)  Gamma is set to a slightly lower value (e.g. 
0.949), and the network is trained again. 
This is repeated until the gamma is 0.4. (e.g., 
0.948, 0.947, …, 0.401, 0.400) 

3)  The network with lowest α/(α+β) is chosen. 
 

 
Fig. 3 A flow of the proposed learning method. 

This proposed method can solve many 
problems discussed before. With the old method, 
firstly, even if the gamma is fixed to one value, 
there are local minima, and the network does 
not always converge to the same structure as it 
depends on the initial network values. However, 
using the new method, the gamma and the 
network have a one-to-one relation, which 
means that the network does not depend on the 
initial network values but only depends on the 
gamma. Fig. 4 shows one example of time 
histories of learning. The red points mean that 
the gamma is fixed to some values using the old 
method. The black points (line) mean that the 
new method is used. The learning in each 
method is carried out 20 times. The figure 

indicates that the MSE depends on only the 
gamma using the new method when the gamma 
is between 0.4 and 0.9. On the other hand, the 
MSE has several discrete values using the old 
method. 

 
Fig. 4 MSE vs. gamma between the proposed method and 

the old method. 

Secondly, the gamma can be decided 
automatically. One indicator — minimum of 
α/(α+β) — is proposed. When gamma decreases, 
the learning can be separated into two stages — 
“deleting noise stage” and “over deleting stage”. 
“Deleting noise stage” means that the network is 
deleting noise, which is a proper stage. “Over 
deleting stage” means that the network is 
deleting necessary parts of the network, which 
is an improper stage. The noise accounts for a 
relatively small part of the network, which 
means that α increases steeper in the over 
deleting stage. On the other hand, in the over 
deleting stage, the necessary part of the network 
accounts for relatively bigger part of the 
network, which means the necessary weights 
also account for the most part. The β 
fundamentally increases with regard to the 
decrease of the gamma, but in the over deleting 
stage, the main parts of weights are deleted, and 
β increases slowly or decreases. What it comes 
down to is that the turning point between the 
deleting noise stage and the over deleting stage 
gives the minimum value of α/(α+β). Fig. 5 
shows one example of time histories of α, β, and 
α/(α+β). It shows that γ = 0.764 gives the 
minimum of α/(α+β). The effectiveness of this 
way of deciding the gamma is verified in the 
next section. 

Thirdly, using the proposed method, the 
number of hidden neurons does not have to be 
considered. The term of β works to decrease the 
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magnitude of weights, so it is expected that the 
unnecessary weights are deleted automatically. 
This means that the excess of hidden neurons 
does not matter. Fig. 6 shows one example with 
15, 20, 25, and 30 hidden nodes. In each case, 
the minimum value of α/(α+β) is determined, 
and the corresponding values of gamma are 
0.764, 0.721, 0.661, and 0.618, respectively. 
The corresponding MSE are 0.0244, 0.0237, 
0.0243, and 0.0243, respectively, which have 
almost the same value with different number of 
hidden nodes. This means that the network 
structures also seem to be the same. This fact is 
also verified with Monte Carlo simulations in 
the next section. 

 
Fig. 5 α, β, α/(α+β) vs. γ. 

 
Fig. 6 α/(α+β)[dotted line], MSE[solid line] vs. gamma 

with different number of hidden nodes.  

3.2 Experiment and Simulation Conditions 
The evaluation of the generalization of the 
network by only the MSE and the magnitude of 
weights is difficult. Thus, Monte Carlo 
simulations are carried out to evaluate it. Firstly, 
the flight data should be obtained. A PC-based 
simulator (Fig. 7) using a mathematical model 
of a big jet airliner was used, and a B747 airline 
captain pilot was asked to land the aircraft three 
times to generate training data for the NNs (for 
initial settings see Table 2). The visual cues 
were computed from the recorded flight data. Of 
this data, the data under the altitude of 200 ft is 
extracted as teaching data, because the pilot 
commented that at 200 ft or a little less is the 
turning point to the visual approach completely. 
Note that only longitudinal motion was 
simulated, and the data sampling ratio was 10 
Hz. 

 
Fig. 7 PC-based Simulator. 

In order to check how much the 
generalization capability of the proposed 
methods can improve, Monte Carlo flight 
simulations are carried out. The obtained NN 
model is used as an automatic controller, and 
flight simulations are carried out many times 
with a random variation of initial flight 
conditions. The range of initial flight conditions 
are configured as shown in Table 2. The Monte 
Carlo simulations are carried out 200 times each, 
and the criterions of the simulation results are 
sink rate, pitch angle, and the position of the 
landing. 

Table 2 Initial Condition for Monte Carlo Simulation 

Initial Condition Case Initial 
Velocity 

Initial Path 
Angle 

Initial Pitch  
Angle 

Initial Position 
from Markers 

Monte Carlo Simulation 258±5 ft/s –3±1 deg 1.72±1 deg 4016±500 ft 
Teaching Data 1 259.9 ft/s –3.10 deg 1.73 deg 3715 ft 
Teaching Data 2 257.8 ft/s –2.81 deg 2.23 deg 4535 ft 
Teaching Data 3 256.2 ft/s –2.77 deg 2.11 deg 4129 ft 
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3.3 Simulation Results 

3.3.1 Gamma Optimization 
In the previous section, the gamma optimization 
method was explained. Thus, in this section, it is 
explained how the gamma is optimized. Two 
separate networks are trained with column 
deflection and throttle deflection as their 
respective outputs, so both gammas are 
optimized. The optimized gammas are 0.764 
and 0.891, respectively. For comparison, the 
results with gamma (0.6, 0.7, 0.75, 0.8, 0.85, 
and 0.9) are also shown in Fig. 8. Three 
criterions are separated into several stages; good 
(blue), normal (sky blue), acceptable (yellow), 
bad (red), and it shows the percentage of each 
stage for 200 Monte Carlo simulations. If the 
blue part is big, it means that the landing 
performance is good. For sink rate, with high 
gamma, there are both good and bad landings, 
while with low gamma, most landing are normal. 
With optimized gamma, there are many good 
landings and few bad landings. For pitch angle, 
higher gamma shows the bad landings. For 
landing position, lower gamma shows the 
relatively few good landings. From these results, 
it can be said that the optimized network shows 
good performance for every criterion.  

 

 

 
Fig. 8 NN Performance for several gamma settings in 

Monte Carlo simulations. 

Trajectories of simulations show more 
clear characteristics of each gamma. Fig. 9 
shows the trajectories of Monte Carlo 
simulations with different gammas. The black 
lines indicate the Monte Carlo simulation results, 
and the red lines indicate the obtained flight 
trajectories. When gamma is 0.9, there are good 

landings, but sometimes the NN controller 
makes the aircraft climb instead of land. When 
gamma is 0.4, the simulation results deviate 
much from the real flight trajectories, especially 
just before the landing. It means that the 
network cannot imitate the real pilot 
characteristic. With the optimized gamma, the 
result shows the good performance for almost 
every landing. 

 

 

 
Fig. 9 Trajectories for Monte Carlo simulation for several 

gamma settings. 

3.3.2 The Number of Hidden Nodes 
As explained in section 3.1, the network 
performance does not seem to depend on the 
number of hidden nodes, which is verified in 
this section. The landing results with Monte 
Carlo simulations are shown in the same manner 
as Fig. 8 (discussed in section 3.3.1). The 
number of hidden nodes is chosen as 15, 20, 25, 
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and 30 with the optimized gammas 0.764, 0.721, 
0.661, and 0.618, respectively. Fig. 10 shows 
that no significant difference can be found 
between all cases, which means that the number 
of hidden nodes does indeed not affect the 
construction of the network. Of course, the 
excess of hidden nodes causes slower training, 
so a too high number of hidden nodes is not 
appropriate for learning. 

 

 

 
Fig. 10 Simulation Results with different number of 

hidden nodes. 

4.  Pilot Analysis Results for Different Flight 
Condition 

4.1 Background of Analysis 

4.1.1 Experiment Conditions 
Using the proposed method explained in the last 
section, pilot controls under different conditions 
are analyzed. The experiments were carried out 
with a B767 flight simulator owned by All 
Nippon Airways (Fig. 11). This flight simulator 
is used for pilot training. A B767 captain pilot 
operated this simulator three times in each 
condition, and the flight conditions are 
summarized in Table 3. The obtained flight and 
control data are used to construct a neural 
network model in each condition. The initial 
altitude is 200ft, the same as in the last section. 

 
Fig. 11 ANA Flight Simulator. 

Table 3 Experiment Condition. 

Case Wind Day/Night 
Normal No Wind Day 
Gusty Cross wind & Gust  Day 
Night No Wind Night 

4.1.2 Analysis Methods 
In order to analyze a pilot’s control, a 
contribution ratio analysis and a sensitivity 
analysis are proposed.  

In the contribution ratio analysis, the 
influence of each visual cue can be recognized. 
This method is based on the weights method. 
The weights method was first proposed by 
Garson[9], and the procedure can be used for 
partitioning the connection weights of the NN’s 
neurons to determine the relative importance of 
the various inputs. The contribution with the 
improved weights method can be calculated as 
follows: 
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where std means the standard deviation. In 
some researches, it is concluded that this 
weights based method is not a good 
indicator[10], because the unnecessary neurons 
also contribute to the calculation. However, in 
this research, the unnecessary neurons are 
deleted with the regularization method, and it is 
confirmed that this method works well with a 
linear control model. 

In the sensitivity analysis, the degree of 
change of the output is calculated for small 
changes of inputs. The sensitivity can be 
calculated with the following expression: 
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When constructing the network, the inputs 
and outputs are scaled to the interval [–1, 1], but 
the sensitivity is scaled back to the absolute 
values (which have a unit), so they can be 
compared between different experiments. 
Moreover, if the sensitivity is assumed to be like 
a feedback gain in a linear model, it can be seen 
whether the direction of the sensitivity is stable 
or unstable. For example, if the pitch angle gets 
lower, the stable direction of the column is to 
pull up. In this paper, the direction of the 
sensitivity is also discussed. 

4.2  Pilot Analysis Results 

4.2.1 Contribution Ratios Analysis  
Table 4 shows the contribution ratios. This 
result shows some interesting characteristics. In 
the normal case, the ratio of dθ/dt is higher, 
while the ratio of θ is lower than in other cases. 
Note that θ is an inclination of the runway 
sidelines, and it depends on the altitude 
information. According to the pilot comment, θ 
is the most important cue for learning. The 
derivative information is normally used to 
estimate the aircraft movement in the near 
future. In the gusty wind case, it is difficult to 
estimate the near future condition because of the 
gusty wind, and as a result, the cue is shifted 
from the derivative of θ to θ itself.  

Pilot comments were also obtained about 
night landing. He says that it is difficult to 
recognize the necessary information compared 
to a day time landing, especially for altitude 
information. A false sense is sometimes caused, 
so he gives extra attention to the altitude 
information. This comment reflects on the 
higher ratio of θ than normal case. The ratio of 
dY/dt is also shifted to the ratio of Y in the night 
case. Note that Y indicates the position of the 

horizon, and it corresponds to the pitch angle. 
He maybe cannot afford to pay attention to the 
change (derivative) of the information, and the 
ratio of dY/dt and dθ/dt decreases. 

4.2.2 Sensitivity Analysis  
For the sensitivity analysis, only characteristic 
results are shown. Figs. 12, 13, and 14 show the 
sensitivity to Y, θ, and dθ/dt, respectively. Three 
landing data sets were obtained in each case, but 
only one set is shown because all three data 
have similar trends. The sensitivity to θ has a 
similar trend between cases; it is first close to 
zero and it increases at almost the same time. 
This increase corresponds to the flare maneuver. 
However, in the night case, the magnitude of 
increase is the biggest, which implies the pilot’s 
close attention to the altitude information at 
night. In addition, the sensitivity to θ increases 
monotonously in the normal and night cases, 
while it decreases at about –8 s once. It is 
considered an influence of a wind gust, and he 
tried to take care of the windy situation. 

In the sensitivity to Y and dθ/dt, the 
sensitivity in case normal is varying more 
widely than other cases, which implies that the 
pilot tries to control daringly and attempt a soft 
landing because the flight condition is good. 

Moreover, in the gusty case, the 
characteristic wind at the airport is simulated, 
which is extremely gusty between 100 and 200 
ft of altitude. It corresponds to the high ratio of 
dθ/dt between –15 s and –8 s, while this type of 
increase cannot be seen in the other cases. It is 
considered that the gusty wind is dealt with 
according to the change of the altitude. 

Table 4 Contribution Ratios Analysis Reults 

Case Y dY/dt θ dθ/dt W 
Normal 17.3% 23.3% 18.9% 16.1% 24.4% 
Gusty 13.9% 23.0% 24.4% 11.2% 27.6% 
Night 19.6% 18.3% 22.5% 10.9% 28.7% 
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Fig. 12 Sensitivity Analysis to Y. 

 
Fig. 13 Sensitivity Analysis to θ. 

 
Fig. 14 Sensitivity Analysis to dθ/dt. 

5.  Conclusions 
The NN analysis helps us to know a pilot’s 
information processing flow from visual cues to 
control operations for a visual approach. In this 
paper, a new learning scheme was proposed, 

and it enables to construct a NN pilot model 
with good generalization capability without 
careful manual tuning. Using this proposed 
method, the pilot controls under different flight 
conditions, such as gusty and night condition, 
are analyzed with contribution ratios and 
sensitivity analysis. These results reveal the 
control strategy of the pilot, and clarify the 
differences between flight conditions. It is 
expected that this analysis can be used for an 
airline pilot training, and it will help the 
efficient pilot training of pilots. In a future study, 
this analysis should be extended to lateral 
control, and characteristic landings with cross 
wind condition will be analyzed. 
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