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Abstract  

As the National Airspace System (NAS) in the 

United States becomes increasingly more 

complex and constrained, the associated 

hazard and safety risk modeling must also 

mature in sophistication.  This paper discusses 

the need for new methods of hazard, risk and 

uncertainty modeling for a new generation of 

air vehicles and supporting systems, such as 

unmanned aircraft systems.   

1  Introduction  

As the complexity of the National Airspace 

System in the United States increases, hazard 

and safety risk analysis have fundamental roles 

to play in the identification of hazard source 

potentials, the understanding of the underlying 

causal factors, the likelihood assessment of 

these factors, the severity evaluation of the 

potential consequence(s) of mishaps, and the 

prioritization of mitigations. A significant 

challenge in modern aviation system safety 

practice is the analytical modeling of emergent 

operations in the NAS that include the use of a 

new generation of air vehicles and supporting 

systems, such as very light jets, reusable launch 

vehicles, unmanned aircraft systems, among 

others [1-3].  Since these air vehicle operations 

are new, accident and incident data are 

extremely rare, and alternative modeling 

approaches to conventional fault tree logic are 

required to understand the impact of the 

introduction of these operations into the NAS.   

     A research team at Rutgers University 

followed a multi-step process that included 

systems-level hazard identification and 

categorization, hazard prioritization and 

reviews of technology and analytical methods 

supportive of hazard and risk analysis for 

unmanned aircraft systems. The first version of 

a systems-level hazard taxonomy included the 

system hazard sources of Airmen, Operations 

and NAS Interconnectivity, Unmanned Aircraft 

Systems, and Environment and was reported in 

[4]. In addition, through a system 

decomposition process, hazard sub-system 

sources were identified.  Through the use of 

208 hypothesized and some real UAS mishap 

scenarios, it was demonstrated how the 

proposed hazard taxonomy could lead to an 

implicit prioritization of the hazard system and 

sub-system sources [4]. 

     In this paper, a revised version of the 

systems-level taxonomy is presented. In 

addition, a framework for identifying and 

classifying hazard causal factors in proposed 

and a sample application of that framework is 

illustrated.  Finally, a brief section is included 

that provides an overview of a new hybrid 

method for combining both discrete and 

continuous random variables in an integrated 

risk analysis.  Finally, possible UAS research 

directions are presented. 

2  Hazard Taxonomy  

The systems-level hazard taxonomy developed 

for unmanned aircraft in this research is termed 

the Hazard Classification and Analysis System 

(HCAS).  Brief descriptions of both the original 

and revised versions are provided below.  

2.1 HCAS – original version  

The original version of the HCAS was 

presented in [4-5] and is shown in Fig. 1.  The 
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idea is to provide a structured framework to 

identify and classify or categorize both system 

and sub-system hazard sources for UAS 

operations. Before proceeding with describing 

the methodology used in UAS hazard 

categorization, it is important to establish some 

basic terminology.  For purposes of the Rutgers 

research, the following definition of a hazard is 

used: 

     Hazard:  A hazard is a state or set of 

conditions of a system that, together with other 

conditions in the environment of the system, 

may lead to an unsafe event (Source:  adapted 

from [6]). 

     The first version of HCAS identified the 

four system-level hazard sources of Airmen, 

Operations and NAS Interconnectivity, 

Unmanned Aircraft Systems, and Environment.  

It was constructed from an analysis of 208 

hypothesized UAS scenarios as well as some 

real UAS mishaps.  Details are provided in [5].  

Once the hazards for a given scenario set are 

categorized, an implicit prioritization of the 

hazards may be obtained by recomputing 

frequency counts as percentages as shown in 

Fig. 2 [4-5].  Such an approach provides a 

possible structured means to systematically 

weight the hazards.   

2.2 HCAS – revised version 

A review and critique of the original HCAS 

version by industry subject matter experts 

indicated a need to have the taxonomy become 

more aligned  with FAA regulations, and in 

particular the Title 14, Code of Federal 

Regulations (14 CFR) chapters on Aircraft, 

Airmen, Certification/Airworthiness, Flight 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.  HCAS  taxonomy – original version 
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Fig. 2.  Distribution of Hazards for given HCAS Scenario Set 

 

Operations, etc.) as well as FAA guidance [7]. 

Such an approach uniquely distinguishes the 

HCAS taxonomy from all other UAS hazard 

analyses being performed by the Department of 

Defense (DoD), the RTCA-Special Committee 

(SC) 203, etc.  The Rutgers Phase 1 research 

goal was to develop a generalized taxonomy of 

system-level UAS hazards that would have 

broad applicability across FAA part types.   

     The revised version of the HCAS taxonomy 

is shown in Fig. 3.  Some of the significant 

changes include embedding the Control Station 

system source under the original Aircraft 

system source renamed as UAS.  A fourth cube 

termed as Environment was added to the 

revised version and numerous sub-system 

hazard sources added.  A detailed review of the 

HCAS taxonomy by industry subject matter 

experts improved the taxonomy by moving it to 

be more closely aligned with the existing FAA 

14 CFR chapters. 
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Fig. 3.  HCAS – revised version 

2.3 Hazard Causal Factors  

Since civil UAS operations are relatively new 

and emergent, databases of mishaps are not 

readily available.  In the Rutgers Phase 2 

research, the proposed UAS hazard taxonomy 

depicted in Fig. 3 is being transformed into 

influence diagrams as conceptually shown in 

Fig. 4 for select UAS mishap scenarios.  These 

influence diagrams will display specific hazard 

causal factors and their interactions.  A high 

level, notional framework depicting the 

interactions among the HCAS system sources  

is portrayed in Fig. 5.  The HCAS system 

sources may then be decomposed into their 

sub-system hazard sources as shown in Fig. 6.  

The use of modifiers placed on the HCAS 

taxonomy elements, such as “inappropriate”, 

“inadequate”, etc. may be used to create the 

causal factor diagram as shown for an exemplar 

scenario. 

     For example, suppose that a hypothesized 

UAS mishap scenario involves a UAS collision 

with terrain and loss of the vehicle. As 

illustrated in Fig. 7, an incident analysis of the 

hypothesized scenario reveals the existence of a 

strong wind conditions, thus the environment 

HCAS numbered element 4.2 is added.  An 

analysis of the scenario further reveals that in 

switching control from one ground control 

station to the other due to a lock up, that UAS 

data links were lost.  Further analysis of 

upstream causal factors indicated that due to 

deficient pilot training the UAS fuel valve was 

inadvertently shut off leading to a loss of 

engine power.  Additional incident analysis 

noted that checklist procedures were not 
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followed in switching control from one ground 

control station to the other and some concerns 

about maintenance procedures may have 

contributed to the lock up.  Fig. 7 graphically 

portrays how an influence diagram could be 

constructed using the corresponding HCAS 

taxonomy elements to depict possible 

causation.  Such a causal diagramming 

approach is presented in [8-9] and also in [10]. 

     Uncertainties will exist in likelihood and 

severity assessments and the impact of these 

uncertainties on UAS scenario risk evaluations 

need to be systematically explored.  Future 

Rutgers research tasks will lead to the 

development of new analytical methods and 

corresponding prototype software tools for 

assessing the uncertainties associated with the 

construction of the influence diagrams of 

hazard causal factors for selected UAS 

scenarios.  Such a research task will lead to 

more robust and defensible risk modeling and 

facilitate exploration of the sensitivities and 

impacts of both single-and multi-factor 

perturbations on the risk values.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.  Conceptual UAS Hazard Influence Diagram 

 

 

 

 

 

Fig. 5.   Notional HCAS Causal Factor Framework 
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Fig. 6.  Numbered HCAS Taxonomy Elements 

 

 

 

 

 

 

 

 

Fig. 7.  Hypothesized UAS Mishap Scenario Characterization Using an Influence Diagram
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3  Hybrid Risk Modeling Methodology  

Consider the cluster of continuous and discrete 

variables shown in Fig. 8a. The variables 

airspeed measured in knots and loss of engine 

power represented by a percentage are 

continuous entities. The variables data link and 

airspeed indicator, represented by mutually 

exclusive states such as “up or down” and 

“operational or “not operational”, respectively, 

are discrete in their nature. In this section we 

introduce the concept of an inferencing 

methodology for hybrid complex systems 

where the continuous variables are transformed 

into Fuzzy discrete variables whose states are 

represented by Fuzzy Sets. An example of such 

a transformation is illustrated in Fig. 8b. Next 

we outline this hybrid inferencing idea with 

incorporates Fuzzy Set theory and Bayesian 

Network.  

Fig. 8. A Sample Cluster of a Hybrid 

Bayesian Network (BN) and its Fuzzified 

Counterpart 

     Taxonomy development that is specific to a 

contextual domain such as UAS dramatically 

increases the analyst’s understanding of the 

system to be modeled. However, without the 

appropriate theoretical tools supporting the 

proper modeling approach this contextual 

knowledge in the form of the taxonomy does 

not guaranty a realistic representation of the 

problem domain. In this section we introduce 

the conceptual basis of a hybrid risk modeling 

approach that, we believe, best suits the rather 

unique features of the UAS contextual domain. 

     Modeling complex systems is a very broad 

area of research where, more often than not, a 

multi-disciplinary approach is needed to 

achieve a meaningful representation of the 

subject matter. The analytical methods 

employed along the process remain as much art 

as science, especially, if the subject matter is 

safety and risk analysis of a complex system. 

     One aspect that particularly increases the 

complexity of modeling many real-world 

systems is the fact that they naturally include 

both discrete and continuous variables. We can 

further argue that because of the hybrid nature 

of real-world systems, many of them can best 

be modeled as hybrid stochastic processes, i.e., 

stochastic processes that contain both discrete 

and continuous variables. Due to their hybrid 

nature, they can be used in a wide variety of 

problem domains, such as fault diagnostics of 

complex machinery, pattern recognition, and 

risk analysis of complex systems. Although the 

problem domains are different, the task asked 

of the model is to perform probabilistic 

inference, such as to determine the probability 

of system failure given the malfunction of 

certain components of the machinery, to 

calculate the probability that a certain word is 

pronounced given the readings by the 

microphone, and to determine the likelihood 

that a mishap occurs given a set of precursors. 

     Within this context, in order to perform 

these tasks, an intelligent agent should be able 

to perform reasoning under uncertainty. As the 

most complex of intelligent agents, humans 

certainly can perform a complex reasoning task 

given little or no information regarding the 

situation they are in. The ultimate goal of a 

designer of an intelligent system is to mimic 

the human reasoning process under uncertainty 

and enhance it with the help of the infallible 

memory and unrivaled computational skills of 

computers. 

     The method of choice by the engineering 

and academic communities to deal with 
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uncertainty in real-world applications is 

probability theory. Probability theory is a well-

established area of study with an extensive 

historical background of successfully 

understanding randomness in natural 

phenomena. However, its application as a tool 

to model uncertainty in complex real-world 

systems is quite recent. In particular, its use as 

a modeling tool started with Bayesian 

Networks (BNs) in the late eighties following 

the introduction of the concept by Pearl [11]. In 

a nutshell, Bayesian Networks are directed 

acyclic graphs (DAGs) that have the analogous 

form of an influence diagram discussed in 

section 2.3 and shown in Fig. 4 and Fig. 7.  

However, in a DAG, a probability distribution 

is attached to each element in the graphical 

structure. The DAG of a Bayesian Network is 

composed of nodes representing the variables 

in the domain of interest and directed links 

representing the conditional relations among 

the variables. Furthermore, each node is 

denoted by a conditional probability 

distribution (CPD) imposed by its parentage. 

     As popular tools for modeling uncertainty, 

models based on Bayesian Networks are used 

in a variety of complex problem domains, such 

as troubleshooting for MS Windows, junk e-

mail filtering, medical diagnosis, and safety 

risk assessment in aviation. 

     There are two aspects of using Bayesian 

Networks to model uncertainty in complex 

systems. First is the representation of the 

problem domain and second is the inferencing 

within the resulting graphical structure. As one 

might expect, the majority of the research on 

Bayesian Networks focused on solving the 

inferencing problem. The research on the 

inferencing aspect can be further divided into 

two sub-categories: inferencing in discrete only 

Bayesian Networks and inferencing for hybrid 

Bayesian Networks, which include both 

discrete and continuous variables. 

     The problem of inferencing in discrete 

Bayesian Networks is fairly well understood 

and an overwhelming majority of existing 

studies either are based solely or focus mainly 

on discrete BNs. After the introduction of 

Bayesian Networks by Pearl, Lauritzen and 

Spiegelhalter proposed an exact inferencing 

algorithm for discrete BNs [12]. By exact 

inferencing, we mean that the inferencing 

algorithm results in exact answers to the 

probabilistic query given the graphical 

structure and CPDs of the BN.  By now we 

have a few exact inferencing algorithms for 

discrete BNs and furthermore, we have a good 

understanding of the computational complexity 

of exact inferencing and how it relates to the 

graphical structure of the BN. Particularly, the 

existing exact inferencing algorithms can be 

very efficient for small discrete BNs. 

     Notwithstanding its accumulated knowledge 

on exact inferencing and wide acceptance on 

various problem domains, discrete BNs are not 

always adequate, since many real-world 

systems are not entirely composed of discrete 

variables. For example, consider the complex 

problem of assessing the safety risk associated 

with operating unmanned aircraft systems 

(UAS) in the airspace over a populated area. A 

Bayesian Network model of the system may 

include flight-hours, altitude, speed, and fuel 

on board, as model variables, none of which 

could easily be represented by discretization 

without sacrificing some of the representative 

power of the network. However, when 

employing BNs, crude discretization of 

continuous variables is commonly used to 

perform exact inferencing on the system model. 

     We understand the need for discretization of 

continuous variables especially in BNs where 

the lack of hard data forces the analysts to 

resort to expert judgment to quantify the model. 

It is quite hard, if not impossible to generate 

continuous conditional distributions when the 

distributions are required to be constructed by 

subject matter expert input only. However, we 

further argue that using simple discretization of 

a problem domain to be able to perform exact 

inferencing is equivalent to approximate 

reasoning and in most cases, leads to unreliable 

results. Consider the variable airspeed, which 

is inherently a continuous entity. Now, for the 

sake of computational simplicity and exact 

inferencing, the modeler may choose to treat it 

as a discrete variable with three mutually 

exclusive states: slow, medium, and fast. 

Further assume that the crisp boundary between 

states slow and medium is defined by “less than 
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or equal to” 80 knots and “greater than” 80 

knots and we observe a reading from the 

sensors on the UAS that it is cruising at 85 

knots. According to our predetermined 

mutually exclusive three-state discretization 

scheme, we are observing a medium airspeed 

and perform the exact inferencing accordingly. 

However, one could argue that even though the 

states slow and medium are different, the actual 

observation about the airspeed is so close to the 

crisp boundary separating them that any 

inferencing using this discretization scheme is 

fundamentally flawed to produce meaningful 

results. 

3.1  Hybrid Bayesian Networks  

Hybrid Bayesian Networks (HBNs), which 

include both continuous and discrete variables, 

are a generalization on discrete only Bayesian 

Networks. HBNs are inherently more suitable 

for modeling complex systems; such as visual 

target tracking as in “see and avoid” type of 

applications where the variables defining 

location of the target and its speed are 

inherently continuous and speech recognition 

where the bits and pieces of processed audio 

signals are often continuous. 

     However, HBNs as the generalization of 

discrete BNs have their own shortcomings that 

arise when we would like to perform exact 

inferencing on them. Exact inferencing on 

general HBNs imposes restrictions on the 

network structure of the HBN. The state of the 

art exact inferencing algorithm for HBNs, the 

Lauritzen algorithm, requires that the network 

satisfies the constraint that no continuous 

variables have discrete children [13]. As one 

would expect, this restriction places quite a 

burden on the generalization claim of the 

HBNs. We propose an approach that, using 

Fuzzy Set theory, builds on the Lauritzen 

algorithm to generate a hybrid exact 

inferencing algorithm for general HBNs. 

     Fuzzy Set theory, introduced by Zadeh in 

the late sixties [14], proposes a framework to 

deal with a poorly defined concept in a 

coherent and structured way. Examples of 

poorly defined concepts suitable for the 

application of Fuzzy logic are semantic 

variables, such as heavy workload, inadequate 

training, fast, slow, tall, short, etc. Within the 

context of our current research, Fuzzy Sets 

present two important features worthwhile for 

further exploration:  

 Fuzzy Sets provide a complete set of 

tools to partition continuous domains 

into overlapping membership regions, 

which result in a much more realistic 

discretization of the continuous domain 

in question. 

 Uncertainty regarding any empirical 

observation can be represented as a 

Fuzzy measure. 

     Previously, we stated that Bayesian 

Networks are tools to model uncertainty in the 

form of a probability distribution imposed by a 

directed acyclic graph representing the domain 

of interest. Hence, BNs only address the 

uncertainty in the form of randomness about a 

problem domain. However, uncertainty in a 

typical real-world application has three 

dimensions: vagueness, ambiguity, and 

randomness [15] and BNs, being solidly 

anchored to probability theory, only address 

one of these dimensions, namely randomness. 

For instance, consider that there is ambiguity 

regarding the observed evidence associated 

with some variable in a given Bayesian 

Network. 

     We believe that Fuzzy Set theory offers a 

comprehensive structure to introduce the 

ambiguity dimension of uncertainty to the 

existing framework of classical Bayesian 

Networks and within this context, we are 

currently researching the development of a 

complete formalism that combines Fuzzy Sets 

and Bayesian Networks for reasoning about 

complex problems such as modeling the safety 

risk in UAS applications. 

 

4  Conclusions  

In this paper, a systems-level structured process 

for identifying, categorizing and modeling 

hazards for unmanned aircraft operations is 

presented.  Termed the Hazard Classification 

and Analysis System (HCAS), the taxonomy 

comprises a core of four cubes representing 
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system and sub-system hazard sources.  

Hazards are not causal factors, so a notional 

method is also presented that relies upon 

influence diagrams to depict the interactions of 

causal factors in unmanned aircraft mishaps.  

These influence diagrams may then be used to 

facilitate subsequent risk analysis for a 

complex system.  The concept of a hybrid 

fuzzy-Bayesian approach is outlined that is 

being developed to handle both discrete and 

continuous variables when uncertainty and 

vagueness may co-exist in the safety risk 

analysis.  Future research involves more 

mathematical development of the hybrid 

methodology and applications to the unmanned 

aircraft contextual domain. 
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