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Abstract 
Fatigue analysis with very long loading 
histories and considerable yielding poses big 
problems to the analyst. Considerable yielding 
calls for a FE analysis with non-linear material 
model. With a very long loading sequence and a 
FE-model with necessary resolution the 
computing time can raise to such unrealistic 
levels as several weeks or even years. The 
solution to this problem has so far been to make 
a linear elastic FE-analysis of the loading 
history and to perform elastic-plastic 
corrections afterwards, using the Neuber rule or 
the linear rule. The quality of such corrected 
stresses and strains can however be doubtful; 
using one or the other of the two principles can 
cause quite different results and there are no 
safe rules for how to select the better of the two. 
A new technique is here suggested, the “Super 
Neuber technique”. It is based on the Neuber 
rule, with the Neuber hyperbola: 

ε
σ K

=  . It also 

uses a non-linear FE-result from one “simple 
load cycle” extracted from the loading history: 
“minimum load” – “maximum load” – 
“minimum load”. The result from the “simple 
load cycle” is used to calibrate a parameter q 
characteristic of the Super Neuber technique, 

with the Super Neuber hyperbola: q
qK

ε
σ = . 

When this parameter has been determined it is 
possible to calculate corrected stresses and 
strains for the complete loading sequence. The 
quality of this result will be comparable to the 
quality of a non-linear FE-result, as long as the 
loading can be characterized as proportional or 
close to proportional. 
 
 

INTRODUCTION 
 

Volvo Aero (VAC) is developing jet engine and 
rocket engine components. Fatigue life 
prediction is of course of utmost importance in 
our design system, and best possible methods 
for fatigue analysis are therefore necessary. We 
have during several years been working with 
improvements of methods involved at fatigue 
life prediction. One result of this work [2] was 
dealing with the Fatemi and Socie critical plane 
model, and how to calculate the fatigue damage 
based on among other things the initially 
calculated states of stress and strain. Of all 
factors influencing the quality of calculated 
fatigue damage, the quality of calculated stress 
and strain has a dominating impact. This first 
and vitally important step in the chain of 
analyses is normally performed with a FE-code. 
The most appropriate way to handle cases with 
multiaxial stresses above the yield point is to 
perform the FE-analysis with a suitable material 
model. Better computing capacity and improved 
FE-programs make non-linear FE-analysis 
increasingly frequent. For shorter load 
sequences this should be the primary choice. 
Non-linear FE-analyses can however be very 
time-consuming for very long load sequences 
and convergence problems are difficult to avoid. 
A tendency, that we are experiencing, is that 
longer and longer load sequences are delivered 
by engine contractors to VAC as a 
subcontractor. If the amount of yielding is small 
to considerable (often/sometimes such 
“contained plasticity” exist at “notches”) on 
such very long load sequences, a linear elastic 
analysis can be justifiable. Elastic-plastic 
corrections should then be performed directly 
after the FE-analysis. 
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The limitations of such elastic-plastic 
corrections must however be clear. They will 
inevitably be performed on a “node-by-node” 
basis; information about the situation for “the 
neighbouring nodes” is normally very difficult 
to utilize:  
• Stiffness dependent geometric redistribution 

of stresses can not be handled 
• Advanced yield models with visco-plastic 

effects and strain hardening are not 
meaningful 

• Non-proportional loading should be treated 
with caution; the use on strongly non-
proportional loading such as thermally 
dominated loading is not recommended. 

The analyst is recommended to take the 
limitations under extra consideration: 
• Is a non-linear FE-analysis (despite being 

arduous and time-consuming) the best 
approach ?; or  

• Will elastic-plastic corrections after a linear 
elastic FE-analysis be sufficient ? 

 
The limitations of the presumptions lead to the 
conclusion, that the elastic-plastic correction 
should be kept as simple as possible. It must 
however be able to follow the intended non-
linear material model; the one that had been 
used, if a non-linear FE-analysis had been 
performed. As kinematic hardening is a good 
model for many of the materials we are using, 
this is a necessary feature to be included in our 
elastic-plastic correction procedure. Kinematic 
hardening behaviour is therefore assumed in the 
following description. 
 
NEW PROCEDURE FOR ELASTIC-
PLASTIC CORRECTION 
Elastic-plastic corrections of linear elastic 
stress/strain have been generally accepted in 
industry and performed as standard procedure 
according to procedures described in for 
instance reference [1]. 
One basis for such elastic-plastic correction is 
the yield criterion of von Mises, stating that 
yield occurs when the effective stress reaches 
the uniaxial yield stress value of the material. 
This is one of the assumptions we also make in 

our elastic-plastic correction procedure. 
Calculation of von Mises effective stress and 
strain, based upon stress and strain components 
are according to: 
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(from ref. [1] pages 245 and 246) 
A second basis is material behaviour as 
described by the stress-strain curve, with a link 
between linear elastic data and corrected 
elastic-plastic data.  
Traditionally this link has been the Neuber rule, 
with the linear rule as alternative. 
The Neuber rule is applicable at states of 
“contained plasticity”=”plasticity limited to 
areas surrounded by and ruled by elastic 
conditions”. Normally this condition exists at 
“notches”, a situation for which the method 
was developed (actually torsion of a notched 
shaft): 
σe

elasti c. εe
elastic=σcorr 

.  εcorr=constant=K 
where 
σcorr and εcorr are the intersection point for the 
material data curve and the Neuber hyperbola, 
σe

elastic
 and εe

elastic are elastic effective stresses 
according to formulae above. The only existing 
alternative has up to now been “the Linear rule”, 
see figure 1. 
Two major problems have however been: 
• Which one to select 
• Bad agreement between corrected 

stresses/strains and stresses/strains achieved 
with a non-linear material model. 

 
 

A modification of the Neuber rule is suggested, 
the Super Neuber Rule: 
The Neuber equation 

Kcorrcorr
elastic
e

elastic
e =⋅=⋅ εσεσ  is often 

presented in a more general form, ε
σ K

= , 

representing the Neuber hyperbola. 
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We are suggesting a modification, which reads 

as follows: q
qK

ε
σ =  

It can be concluded, that putting q =1 results in 
the normal Neuber hyperbola, and putting q = ∞  
results in the so called “Linear rule”, which is 
represented by a vertical line through (σe

elastic
 , 

εe
elastic), intersecting the material data curve at 

(σcorr , εcorr), see fig. 1.  

 
Fig. 1. The Neuber rule, the Linear rule and the “Super-
Neuber” technique. 
 
The modification implies that, if a loading 
cycle is analyzed both linearly and with a non-
linear material model, it is by changing q 
possible to match corrected results from the 
linear analysis, with results from a non-linear 
FE-analysis (fig. 1). If the loading cycle 
represent one of the largest cycles in a specific 
loading sequence, it is now possible, with the 
acquired value of q, to produce corrected stress 
and strain values not only for the analyzed 
loading cycle, but for the complete loading 
sequence. 
This is essentially what the new technique is all 
about. We call it the “Super Neuber technique”. 
There are two reasons for using “super” in the 
name: 

1) the expression q
qK

ε
σ =  could be called a 

super hyperbola (in analogy with the 
definition of a super ellipse)  

2) the technique is with respect to accuracy 
clearly superior to the Neuber rule, but we 
still consider it as being just a modification 

to the well reputed and acknowledged 
Neuber rule. 

 

The formulation q
qK

ε
σ =  is elegant, but it has 

one drawback when it comes to the numerical 
part. It leads to an iterative procedure to find the 
intersection with the stress-strain curve. A more 
efficient approach is to make a linear 
interpolation between results achieved using the 
“Linear rule” and results achieved using the 
“Neuber rule”. This modification is illustrated in 
fig. 2.  

 
Fig. 2. Correction achieved by an approximation with a 
line through the intersection points of the Neuber rule and 
the Linear rule. 
 
The corrected stresses and strains will then be 
according to: 

)()( nlncorr m σσσσ −⋅−+= 1  

)()( nlncorr m εεεε −⋅−+= 1  
Here 
σn and εn are the corrected values using the 
Neuber rule 
and 
σl and εl are the corrected values using the 
Linear rule. 
Then 
m=1 will represent the Neuber rule and 
m=2 will represent the Linear rule.  
1<m<2 represents a linear interpolation 
between the Neuber rule and the Linear rule. 
m<1 is a possible situation. It represents an 
extrapolation with respect to the “line” between 
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the Neuber rule and the Linear rule, but the 
value is controlled by a non-linear FE-result 
(see below), without the usual risks with 
extrapolation. We are today suggesting m=0 to 
represent the minimum value of m. 
m>2 represents also a possible situation; we are 
suggesting a maximum value to be given by the 
intersection with the E-modulus line, see fig. 2. 
m (as well as q) is thus not known á priori. A 
best value of m is achieved by running a FE-
analysis with a non-linear material model 
(showing kinematic hardening behavior) and 
with the component loaded by a simple load 
sequence consisting of minimum load and 
maximum load in the load sequence of interest. 
The same simple load sequence is run with 
linear elastic data in the FE-model. The 
parameter m is then varied to get best match 
between corrected stresses/strains and non-
linear stress-strain FE-results.  
The introduction of this new method, “the Super 
Neuber Rule”, represents a significant 
improvement with respect to the quality of 
corrected stresses and strains. The quality is 
comparable to FE-results achieved with a non-
linear material model. 
This method then implies that a FE-analysis 
with a non-linear material model must be 
performed. As it is only necessary to analyze a 
simple load sequence containing “minimum 
load” and “maximum load”, this will be a 
reasonable effort, compared to analyzing the 
complete sequence containing numerous load 
steps. The method works very well on cases 
with proportional loading and on cases with 
non-proportional loading, if the load steps with 
yielding are mainly proportional. If the loading 
is mainly thermal (thermal loading is to its 
character non-proportional) the method will not 
work very well. Neither will the Neuber rule nor 
will the Linear rule work well on thermal 
loading. Having said this, it could be added, that 
the “Super Neuber rule” will unarguably work 

better than the Neuber rule or the Linear rule 
because of the matching procedure. 
It must also be pointed out, that acquired m-
values are different for different nodes, and to 
be able to perform the described procedures 
consistently and rationally we have developed a 
computer program, elasplasgen.f90. 
Now that we have calculated (σcorr , εcorr), it is 
possible to make corrections on the component 
stresses and strains. This is done by first 
calculating the ratios  
SRep=σcorr / σe

elastic
  and  

ERep=εcorr / εe
elastic

  .  
The component stresses and strains are then 
calculated as  
σx corr =σx . SRep   ,   
σy corr =σy . SRep  , …,  
τxz corr =τxz . SRep  
 
εx corr =εx . ERep   ,   
εy corr =εy . ERep  ,…, 
γxz corr =γxz . ERep  

 
This means that the corrected component 
stresses and strains (state after yielding) 
remains relative to each other as the elastic 
component stresses and strains (state before 
yielding), which often is a deviation from actual 
behaviour. This deviation is however small for 
proportional loading.  
Now we have performed a best possible elastic-
plastic correction during a load cycle with 
yielding. To make the process work for a whole 
load sequence, more definitions and procedures 
have to be added. 
Memory rules have to be added for how the 
yielding in different load steps is related to the 
stress-strain data of the material. The memory 
rules described below are modelling “kinematic 
hardening” and “Bauschinger effect”. 
“Kinematic hardening” and “Bauschinger 
effect” can be seen in fig. 3, where the “single 
cyclic stress-strain curve” is exchanged by the 
“double cyclic stress-strain curve” upon 
reversing the load after reaching maximum load. 
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Fig. 3. Single and double cyclic stress-strain curve, also 
depicting kinematic hardening. 
 
It is however possible to also have other types 
of behaviour, such as “isotropic hardening”, by 
modifying the procedure.  
Here is the description of “the memory rules”, 
see fig. 4.  

 
Fig. 4. Stress-strain for 6 load steps, here used in the 
explanation of “memory rules” 
 
Before first “turning point” (point 2 in fig. 4) 
(turning is assumed to take place, when the 
largest of the normal stress component ranges 
changes sign), all load steps will be corrected 
using the “single cyclic stress-strain curve”. As 
the temperature in the general case is changing, 
the procedure will be to interpolate the “single 
cyclic stress-strain curve” to the mean 
temperature value of first load step and the 
“turning point” load step. 
The “single cyclic stress-strain curve” is the 
normal cyclic stress-strain curve, which can be 
obtained at uniaxial material testing. The “single 
cyclic stress-strain curve” should not be mixed 
up with the “monotonic stress-strain curve”, 
which is obtained at a tension test. 

For fatigue analyses, the “single cyclic stress-
strain curve” should normally be used. It can be 
provided as a table of data points with stress 
versus strain (to be preferred) or on the 
Ramberg-Osgood form. The “double cyclic 
stress-strain curve” is differing from the single 
(or normal) cyclic stress-strain curve with a 
factor of 2 . Having the single cyclic stress-
strain curve as a table of data points, the “double 
cyclic stress-strain curve” is obtained by 
multiplying each of the stress versus strain data 
points with 2, see fig. 3.  
Upon turning (after point 2 in fig. 4), the 
“double cyclic stress-strain curve” (interpolated 
to the mean temperature value of first “turning 
point” load step and the second “turning point” 
load step) will be used until the second turning 
point (point 3 in fig. 4). If next turning takes 
place without yielding, the former curve (in this 
case the “single cyclic stress-strain curve”) will 
be used again, but with the yield point shifted to 
the stress and strain of the first turning point 
(point 2 in fig. 4). If, however, next turning 
takes place after yielding (point 4 in fig. 4), a 
new “double cyclic stress-strain curve” will be 
used. This principle is followed and repeated 
through the whole load sequence: turning after 
yielding – use new “double cyclic stress-strain 
curve”, turning without yielding – remember the 
former curve and use it, but with shifted yield 
point. The values of those “turning points” 
having yielding are especially important (as for 
instance point 5 in figure 4). Each “turning 
point” with yielding represents the start of a new 
stress-strain curve. It also represents a reference 
value for increments in stress-strain of 
succeeding load steps, until next yielding takes 
place. As these “turning points” represent such 
reference points, it is important to make the 
calculation of the corrected value of these 
“turning points” as numerically accurate as 
possible, to minimize accumulation of 
truncation and interpolation errors. Again, the 
procedures require a computer program. 
Fig. 3 is showing a typical behaviour at load 
cycling: during the first phase, before the load is 
turning, the behaviour follows the “single cyclic 
stress-strain curve” (or just “cyclic stress-strain 
curve”), during next phase, after the load has 
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turned, the behaviour follows the “double cyclic 
stress-strain curve”. The data points of the 
“double cyclic stress-strain curve” are achieved 
as the data points of the “single cyclic stress-
strain curve” multiplied by 2. The Bauschinger 
effect is also clearly illustrated: A material 
subjected to tension above the yield stress point 
will normally yield in compression at a 
considerably lower stress value than original 
yield stress. 
 
THE PRIMARY REASON FOR THE 
DEVELOPMENT OF THE NEW METHOD 
Problems to achieve reliable stresses and strains 
are often encountered during product 
development. To us it was carried to an extreme 
during the development of a rocket engine 
component. The load specification was changed 
considerably with respect to the magnitude of a 
vibration load. It was then found, that one part 
of the component could become critical with 
respect to fatigue life, as considerable yielding 
took place. This critical part can be seen in fig. 
5. Also seen there is a von Mises stress plot for 
a large amplitude value and accompanying 
deformation plot. As the loading was 
complicated, it was decided to run a component 
test, to get the correlation between fatigue life 
prediction and actual fatigue life. The result of 
this correlation is however another story. 

 
Fig. 5. von Mises effective stress for non-linear FE (left) 
and displacement plot (right) for load step 
“displacement=0.369 mm”. Maximum von Mises value is 
607 MPa, a linear analysis resulted in a maximum von 
Mises value of 2389 MPa. 
 
The specified load, which had received a raised 
magnitude, was a random vibration. For the test 
however, it was transformed to a deterministic 
vibration load, see fig. 6, with very strong 
variation in amplitude and long duration. At the 
fatigue analysis stage it was found, that the load 
had around 27500 load steps and a large part of 

the steps resulted in considerable yielding. This 
indicated that a non-linear FE-analysis was 
needed. An estimation of computer time gave 
the unrealistic figure of 3.5 years (on a Silicon 
Graphics Octane workstation)! With the Super 
Neuber technique, the computer time was 
reduced to a couple of hours. For this specific 
problem, where the loading resulted in an 
eigenmode displacement pattern, there was at 
least one other way to go to solve the problem: 
non-linear FE-analysis of a couple of load 
cycles with increasing amplitude up to the 
maximum amplitude value of the sequence, 
followed by interpolation in these results to get 
stress and strain-values for all the cycles of the 
complete load sequence. With respect to 
resulting fatigue life, it gave exactly the same 
figure as the Super Neuber technique. It is 
however, in contrast to the Super Neuber 
technique, not applicable in more general cases 
of loading. It must be added here, that sequences 
with around 30000 load steps are very rare to 
us; more general are lengths of around 1000 
load steps. 3.5 years divided by 30 is however 
43 days, and that is, modestly expressed, a 
considerable amount of time, especially for a 
project leader!  

 

 
Fig. 6. The very long load sequence defined as a test 
specific displacement. Yield occurred at displacement 
values above 0.1 mm. 
 
VALIDATION 
The just related example shows the potential of 
the technique with respect to saving of time. It is 
however not showing clearly the accuracy. Two 
more examples are therefore presented to show 
more in detail what results the Super Neuber 
technique is giving. The validation is done by 
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comparison with ANSYS results. ANSYS is 
here naturally the reference as the purpose with 
the new method was to replace the time-
consuming non-linear FE-analyses performed 
with ANSYS. 
Example 1:  
Tension load sequence applied on a hollow test 
specimen with notch, see fig. 7.  
The material of the specimen is Ti 6-4, inner 
diameter is around 10.85 mm, minimum outer 
diameter at notch is around 14.98 mm, and 
notch radius is around 2 mm. The applied load 
sequence has a character of “flight mission”, but 
only the first 17 load steps of this typical “flight 
mission” have been used for this validation test. 
The complete flight mission load sequence can 
bee seen in fig. 8. The truncation at 17 load 
steps can also be seen. Fig. 9 is showing a plot 
of 1:st principal stress (linear elastic analysis) 
for a “maximum load” load step. Fig. 10 (next 
page) is showing plots of stress versus strain for 
a critical node for the 17 load steps: σx-εx , σy-
εy and σz-εz as calculated by ANSYS and 
elasplasgen.f90 with best possible m-value 
(1.67). Also shown are σy-εy as calculated by 
elasplasgen.f90 having Neuber-value of m (=1) 
and Linear-value of m (=2). Fig. 10 (next page) 
clearly shows how well the elasplasgen.f90 
results follow the ANSYS results, and also that 
both the Neuber rule and the Linear rule cause 
rather bad corrections. 
 
 
 
 
 
 
 

 
Fig. 7. Hollow test specimen with notch, which was 
subjected to tension. Fatigue tests were performed, hence 
the crack, these were however not the subject of this 
article. 
 

 
Fig. 8. The complete load sequence. The pink line shows 
where the sequence was truncated. 
 

 
Fig. 9. Maximum principal stress for tension load case.
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Fig. 10. Acquired stress-strain behavior of a critical node for ANSYS and for elasplasgen.f90: run with Neuber rule (m=1), 
linear rule (m=2) and with best correlated m=1.67. The points on the curves represent 17 load steps of the tension load 
sequence. Only the most significant stress- and strain components are plotted. 
 

 
Fig. 14. Acquired stress-strain behavior of a critical node for ANSYS and for elasplasgen.f90: run with Neuber rule (m=1), 
linear rule (m=2) and with best correlated m=0.29. The points on the curves represent 17 load steps of the torsion load 
sequence. Only the most significant stress- and strain components are plotted. 
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Example 2:  
Torsion load sequence applied on a hollow test 
specimen with notch, see fig. 11.  
Here it is the same test specimen as in example 
1, but now with a load sequence with torsion 
only. The applied load sequence has the same 
character as for example 1, similar to a “flight 
mission”, but only the first 17 load steps have 
been used for the validation test. The complete 
flight mission load sequence can bee seen in fig. 
12. The truncation at 17 load steps can also be 
seen. Fig. 13 is showing a plot of von Mises 
effective stress (linear elastic analysis) for a 
“maximum load” load step. Fig. 14 (former 
page) is showing plots of stress versus strain for 
a critical node for the 17 load steps: τxy-γxy and 
τyz-γyz as calculated by ANSYS and 
elasplasgen.f90 with best possible m-value 
(0.29). Also shown are τyz-γyz as calculated by 
elasplasgen.f90 having Neuber-value of m (=1) 
and Linear-value of m (=2). Fig. 14 (former 
page) clearly shows how well the 
elasplasgen.f90 results follow the ANSYS 
results, and also that both the Neuber rule and 
the Linear rule cause really bad corrections. 

 
Fig. 11. Hollow test specimen with notch, which was 
subjected to torsion. Fatigue tests were performed, hence 
the crack, this is however another story. 
 

 
Fig. 12. The complete load sequence. The pink line shows 
where the non-linear FE-analysis was interrupted. 

 

 
 

Fig. 13. von Mises effective stress for torsion load case 
 

CONCLUSION 
A new method, called the Super Neuber 
Technique, to make elastic-plastic corrections 
for a load sequence calculated with a linear 
elastic FE-analysis, has been developed. It has 
been shown in two examples, that the quality of 
the performed corrections is far better than what 
can be achieved with the Neuber rule or the 
Linear rule, and comparable to non-linear FE-
results. It has also been shown in one example, 
that the purpose of speeding up the analyses, 
compared to non-linear FE-analysis of the 
complete load sequence, has been fulfilled.  
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