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Abstract

Acoustic liners are widely used in jet engine inlet
and exhaust ducts, as a passive means of noise re-
duction. One possible way of liner optimization
is the use of a non-uniform acoustic impedance
distribution. It has been shown that such a liner
can lead to an attenuation in the acoustic ampli-
tude of some of the modes present in the duct.
However, the sound attenuation perceived by an
observer in the far-field is arguably the most im-
portant effect to be achieved.

These issues may be illustrated by consider-
ing the radiation of sound from a cylindrical duct
with impedance varying circumferentially, axi-
ally or in both directions and the acoustic pres-
sure at the far-field in each situation.

The radiation of sound from an open pipe is
represented by a pressure distribution on a disk,
viz. the exit plane. The radiation of sound in
free space,i.e.without obstacles, is specified by a
Kirchhof integral. The source distribution on the
duct exit plane, which allows the evaluation of
radiation integrals, is specified by the radial, ax-
ial, and circumferential modes, in the cylindrical
nozzle.

The evaluation of the radiation integrals show
that (i) the total acoustic field consists of a spher-
ical wave multiplying a sum of radial modes
n = 1, . . . ,∞ and azimuthal modes of odd order
only m= 1,3,5, . . . ; (ii) each mode consists of a
monopole term and a dipole term and depend on
the frequency and the radial wavenumbers, de-
termined by the boundary condition at the duct

wall. When the impedance distribution varies cir-
cumferentially or axially, the evaluation of the
wavenumbers involves the determination of the
roots of an infinite determinant, while when the
impedance aries both axially and circumferen-
tially, the roots of a doubly infinite determinant
have to be calculated.

In the case of external noise of an aircraft,
the observer is on the ground, at a distance much
greater than the duct diameter, and the radiation
integrals for an observer in the far-field can be
simplified, since the dipole term is weak. The
evaluation of the acoustic pressure for an ob-
server in the far-field, shows that it depends on
the radial wavenumbers in the nozzle, which are
specified by the wall boundary conditions, and
thus depend on the acoustic impedance distri-
bution. This allows comparison of hard-walled
nozzles, with liners with constant impedance and
non-uniform liners, the latter with impedance
distribution varying circumferentially, axially or
in both directions. The far-field acoustic pressure
is specified by a directivity factor that is calcu-
lated for several values of the parameters for each
of the cases mentioned above.

1 Introduction

In a cylindrical nozzle noise can be absorbed in
its interior by vortical flow [1–10] and at the walls
by acoustic liners, which may have uniform [11–
16] or non-uniform [17–24] impedances. The
sound field received by an observer in the far-
field is determined by radiation out of the open
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end of the nozzle [25–32] or inlet of a fan [33,34].
In the case of nozzle there is a refraction effect
which can be represented either by a vortex sheet
[35] or an irregular shear layer [1,2] issuing from
the lip.

The aim of the present paper is to relate the
acoustic field radiated through the nozzle exit
to the far-field to the acoustic modes in a noz-
zle with non-uniform wall impedance. The ra-
diation from the disk in the nozzle exit plane,
to an observer in the far-field, consists, to lead-
ing order, of monopole and dipole terms. The
acoustic pressure distribution in the nozzle exit
plane, is expressed in terms of duct modes, al-
lowing the evaluation of radiation integrals. The
latter involve the acoustic eigenfunction, corre-
sponding to the eigenvalues for propagating or
cut-on modes, in the case of rigid walls or walls
with uniform impedance, and also walls with
impedance varying circumferentially, axially or
in both directions. A numerical application is
made, including the calculation of radial eigen-
values and plotting od acoustic eigenfunctions for
uniform liner duct in comparison with weakly
and strongly circumferentially non-uniform lin-
ers; the benefits of the non-uniform lining are as-
sessed, not including the effects of transmission
across the irregular and turbulent shear layer is-
suing from the jet nozzle lip.

2 Sound radiation from an open pipe

The radiation of sound from an open pipe (Fig. 1)
is represented by a pressure distribution on a disk
(2.1), viz. the exit plane; the radiation integrals
are simplified (2.3) for an observer in the far-field
(2.2).

2.1 Source distribution on a circular disk

The radiation of sound in free space,i.e. without
obstacles, is specified by the Kirchhof integral:

p(x) =
1
4π

∫

D

1
|x−y|e

−iω(t−|x−y|/c)q(y)d3y,

(1)
for a spatial source distribution of strengthq at
position y in the domainD, with frequencyω,
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Fig. 1 Sound radiation from the disk on the exit
plane of a cylindrical pipe to an observer in the
far-field

and radiation to the observer atx, in a homoge-
neous medium at rest, for which the sound speed
is c. In the case of a disk of radiusa on theXOY-
plane with centre at the origin, the position of the
source is written in polar coordinates(R,α):

0≤ α≤ 2π, 0≤ R≤ a;

y = R(excosα+eysinα), (2)

and the position of the observer in spherical co-
ordinates(r,θ,ϕ):

x = r(excosθ+ezsinθ), (3)

whereϕ = 0 because theXOZ-plane can be taken
through the observer. The radiation integral (1)
becomes in this case

p(r,θ, t) =
e−iωt

4π
×

∫ 2π

0
dα

∫ a

0
dR

R
D(R,α)

ei(ω/c)D(R,α)q(R,α) (4)

whereq(R,α) is the source distribution, and

D(R,α) = |x−y|= |R2+ r2−2Rrsinθcosα|1/2,
(5)

is the distance between observer and source.

2.2 Reception by an observer in the far-field

In the case of external noise of an aircraft, the
observer is on the ground, at a distance much
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greater than the nozzle diameter,

R2≤ a2 << r2 :

D(R,α) = r−Rsinθcosα+O(R2/r2), (6a)

and the distance may be simplified by (6a), and
the inverse distance by:

1/D(R,α) = 1/r +R/r2sinθcosα+O(R2/r2).
(6b)

Substitution of (6a, 6b) in the radiation integral
(4) specifies

p(r,θ, t) =
e−iωt

4π

∫ 2π

0
dα

∫ a

0
dR q(R,α)×

R
r

[
1+

R
r

sinθcosα
]

ei(ω/c)(r−Rsinθcosα) (7)

the acoustic field received by the observer in the
far-field.

2.3 Decomposition into monopole and dipole
terms

The acoustic pressure received in the far-field (7)
may be written

p(r,θ, t) =
eiω(r/c−t)

4πr
(I1 + I2), (8)

as a spherical wave radiated from the origin (or
disk or nozzle centre) to the observer, multiplied
by monopole (9a) and dipole (9b) terms

I1 =
∫ 2π

0
dα

∫ a

0
dRq(R,α)Re−i(ωR/c)sinθcosα)

(9a)

I2 =
∫ 2π

0
dα

∫ a

0
dR q(R,α)×

Re−i(ωR/c)sinθcosα)(R/r)sinθcosα (9b)

where the latter is related to the former by

I2 =−1
r

d
d(iω/c)

I1, (10)

since differentiation with regard toiω/c is equiv-
alent to multiplication byRsinθcosα. Substitu-
tion of (9a) and (10) in (8) yields:

p(r,θ, t) =
eiω(r/c−t)

4πr

{
1+ i

d
d(ωr/c)

}

∫ 2π

0
dα

∫ a

0
dRq(R,α)Re−i(ωR/c)sinθcosα, (11)

as the acoustic pressure received by an observer
in the far-field, from a source distributionq(R,α)
on a disk. The latter is specified next in terms of
the acoustic modes of a nozzle.

3 Modal structure in a cylindrical nozzle

The source distribution on the nozzle exit plane
(3.2), which allows the evaluation of radiation in-
tegrals (3.3), is specified by the radial, axial, and
circumferential modes, in the cylindrical nozzle.

3.1 Radial, axial and circumferential modes

The modes in a cylindrical nozzle are specified
by the solution of the classical wave equation in
cylindrical coordinates:
{

1
R

∂
∂R

R
∂

∂R
+

1
R2

∂2

∂α2 +
∂2

∂z2 −
1
c2

∂2

∂t2

}
Q = 0,

(12)
in the absence of mean flow. Since the coeffi-
cients of the wave equation depend only on radius
R, it is convenient to use a Fourier decomposition
in (z,α, t), viz.:

Q(R,α,z, t)= e−iωt
+∞

∑
m=−∞

eimα
∫ +∞

−∞
dkeikzPm(R,k),

(13)
a wave of frequencyω, with longitudinal
wavenumberk and circumferential wavenumber
m. Substitution of (13) in (12) shows that:

[
R2 d2

dR2 +R
d
dR

+κ2R2−m2
]

Pm(R,k) = 0,

(14)
the radial dependence is specified, for a cylindri-
cal nozzle, by a Bessel function of orderm:

Pm(R,k) = Jm(κR), (15a)
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with radial wavenumber

κ2 =
√

(ω/c)2−k2, (15b)

specified by a boundary condition at the nozzle
wall R= a, which specifies the radial modesκnm

with n= 1, . . . ,∞, which may be distinct for each
circumferential orderm.

3.2 Amplitudes of sound generation in a noz-
zle

Thus the acoustic field in the nozzle consists of a
superposition (13, 15a) of:

Q(R,α,z, t) = e−iωt
+∞

∑
m=−∞

eimα×
∞

∑
n=1

Jm(κmnR)eikmnzAmn, (16)

wherem is the azimuthal andn the radial order,
the radial wavenumbersκmn are specified by the
boundary condition at the nozzle wallR= a, the
axial wavenumbers are related by (15b),viz.:

kmn =
√

(ω/c)2− (κmn)2, (17)

and the amplitudesAmn of each mode are speci-
fied by the source distribution in the nozzle. The
pressure distributionq(R,α)e−iωt in the nozzle
exit planez= 0 is thus specified by:

q(R,α) = Q(R,α,0,0) =
+∞

∑
m=−∞

eimα
∞

∑
n=1

Jm(κmnR)Amn, (18)

which may be substituted in the radiation inte-
gral (11) to specify the sound field received by
the observer in the far-field. Substitution of (17)
into (11) shows that the sound field received by
the observer in the far-field

p(r,θ, t) =
eiω(r/c−t)

4πr

+∞

∑
m=−∞

∞

∑
n=1

pmn(r,θ)Amn,

(19a)

is specified by a superposition of radiation inte-
grals for each mode:

pmn(r,θ) =
{

1− i
d

d(ωr/c)

}

∫ 2π

0
dα

∫ a

0
dRRe−i(ωR/c)sinθcosαeimαJm(κmnR),

(19b)

which are evaluated next.

3.3 Evaluation of radiation integrals for each
mode

The acoustic pressure in the far-field for then-th
radial andm-th azimuthal mode is given by an
integration inR:

pmn(r,θ) =
{

1+ i
d

d(ωr/c)

}

∫ a

0
dRRJm(κmnR) Im((ωR/c)sinθ) , (20a)

where the integration inα appears in

ζ =−(ωR/c)sinθ :

Im(ζ) =
∫ 2π

0
eimα+iζcosαdα. (20b)

The integral may be re-written:

Im(ζ) =
∫ π

0
eimα

(
eiζcosα +(−1)me−iζcosα

)
dα

=
∫ π

0
cos(mα)

[
eiζcosα +(−1)me−iζcosα

]
dα,

which is expressible in terms of Bessel functions
[36]:

Jm(ζ) =
i−m

π

∫ π

0
eizcosα cos(mα)dα, (21)

by:

Im(ζ) = πim[Jm(ζ)+(−1)mJm(−ζ)] . (22)

The series expansion for the Bessel functions

Jm(ζ) = (ζ/2)m
∞

∑
s=0

{
(−ζ2/4)s/(s!(s+m)!)

}
,

(23)
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implies that

Jm(−ζ) = (−)mJm(ζ), (24)

so that
Im(ζ) = 2πimJm(ζ). (25)

4 Acoustic effects of non-uniform impedance

The evaluation of the acoustic pressure for an ob-
server in the far-field (4.1), shows that it depends
on the radial wavenumbers in the nozzle, which
are specified by the wall boundary conditions
(4.2). This allows comparison of hard-walled
nozzles, with liners with constant impedance and
non-uniform liners, the latter with impedance
distribution varying circumferentially, axially or
in both directions.

4.1 Selection of cut-off and cut-on modes

When substituting equations (25) in (19b):

pmn(r,θ) =
{

1+ i
d

d(ωr/c)

}

∫ a

0
Jm(κmnR)Jm((ωR/c)sinθ)RdR, (26)

the property [37] of Bessel functions:

J−m(ζ) = (−)mJm(ζ), (27)

implies that

pmn(r,θ) = p−m,n(r,θ), (28)

so that the total pressure field (19a) simplifies to:

p(r,θ, t) =
eiω(r/c−t)

2πr

∞

∑
n=1

+∞

∑
m=0

pmn(r,θ)Amn. (29)

The second term of (26) involves:

d
d(ωr/c)

Jm((ωR/c)sinθ) =

R
r

d
d(ωR/c)

Jm((ωR/c)sinθ) =

R
r

sinθJ′m((ωR/c)sinθ), (30)

where prime denotes derivative of the Bessel
function with regard to its argument:

J′m(ζ) = Jm−1(ζ)−m
ζ

Jm(ζ). (31)

Substitution of (31) in (30) yields

d
d(ωr/c)

Jm((ωR/c)sinθ) =

R
r

sinθJm−1

(
ωR
c

sinθ
)
−mc

ωr
Jm

(
ωR
c

sinθ
)

,

(32)

which specifies the dipole term in the acoustic
pressure received in the far-field:

pmn(r,θ) = a2
∫ 1

0
Jm(κmnas)

{
Jm(sΩsinθ)−

i
a
r

[m
Ω

Jm(sΩsinθ)−sinθJm−1(sΩsinθ)
]}

sds,

(33)

where a dimensionless radial distance (34a) and a
dimensionless frequency (34b) were introduced:

s= R/a (34a)

Ω = ωa/c. (34b)

Thus: (i) the total acoustic field (29) consists
of a spherical wave multiplying a sum of radial
modesn= 1, . . . ,∞ and azimuthal modes of order
m= 0,1, . . . ,∞; (ii) each mode (33) consists of a
monopole term (first in the curly brackets) and a
dipole term (in square brackets); (iii) the param-
eters are the dimensionless frequency (34b) cal-
culated from the nozzle radiusa, the ratio of the
latter to the distance of the observera/r in the
dipole term (which is weak becausea2 << r2 for
observers in the far-field), andκmna which are the
radial wavenumbers, determined by the boundary
condition at the duct wall.

4.2 Rigid, impedance and non-uniform walls

The simplest case (I) is a nozzle with rigid walls,
for which the normal velocity at the wall is zero,
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implying from the momentum equation that the
normal derivative of the pressure is zero:

0 = iωvn(R= a) = ρ−1 ∂p
∂r

∣∣∣∣
r=a

, (35)

whereρ is the mass density. Thus:

0 = J′m(κmna), (36)

so that the radial wavenumbersκmn are deter-
mined by the zerosjmn of the derivative of the
Bessel functionJm:

J′m( jmn) = 0 : κmn = jmn/a. (37)

Since these zeros are real, the radial wavenum-
bersκmn are real, and the corresponding (17) ax-
ial wavenumbers:

kmna =
√

Ω2− ( jmn)2, (38)

are: (i) either real, for propagating or cut-on
modes, if| jmn| ≤Ω; (ii) or imaginary, for evanes-
cent or cut-off modes, if| jmn| > Ω. Since the
zeros of the derivative of the Bessel function
J′m form an unbounded sequencejm1, jm2, . . . ,
there is a finite number of cut-on modes, larger
for larger dimensionless frequency. The cut-off
modes make a negligible contribution to radiation
to the far-field, so the sum in the total acoustic
pressure (29) is restricted to cut-on modes. The
amplitude of the latter cut-on modes has been
found to be weakly dependent on mode order for
turbomachinery noise, and thusAmnmay be taken
as a constant factor, and omitted together with the
spherical wave termeiω(r/c−t)/2πr anda2, which
are common factors, regardless of the wall con-
dition, and thus do not affect the comparison be-
tween rigid lined walls. For a rigid wall, the far-
field acoustic pressure is thus specified by a di-
rectivity factor:

P(θ) =
∞

∑
m=0

jmn<Ω

∑
n=1

∫ 1

0
Jm( jmns)Jm(sΩsinθ)sds,

(39)
where only the monopole term was considered,
since it dominates the dipole term.

In the case (II) of a wall with uniform
impedancēZ0, the radial wavenumbers are spec-
ified by the roots of:

iZ0J′m(κmna) = Jm(κmna), (40)

where Z0 is the specific impedance,i. e. the
impedance divided by that of a plane wave:

Z0 = Z̄0/ρc. (41)

In this case the radial wavenumbersκmn are gen-
erally complex, and the axial wavenumbers (17)
also:

kmna =
√

Ω2− (κmna)2. (42)

Although the distinction between cut-on and cut-
off modes is not so clear in the case of an
impedance wall, the sum for the total acoustic
field is taken for the cut-on modes of a rigid wall,
as in (39), but for the complex radial wavenum-
bers, so that (39) remains valid, and can be eval-
uated (cfr. [36]). The acoustic pressure received
in the far-field is:

pmn(θ) =−2ikmna
[
(κmna)2− (Ωsinθ)2]−1

[
Ω sinθJmn(κmna)J′m(Ωsinθ)−

κmnaJm(Ωsinθ)J′(κmna)
]

(43)

We proceed to consider the calculation of ra-
dial eigenvalueskmn in the case of liners of cir-
cumferentially or axially non-uniform impedance
or both.

4.3 Axially and /or circumferentially non-
uniform liners

This expression (43) can also be used in the
case of non-uniform wall impedanceZ(θ,z), ex-
cept that radial wavenumbers are no longer deter-
mined as the roots of (40). In the case of a cir-
cumferentially non-uniform distribution, which
is represented by the first two terms of a Fourier
series:

ZA(θ) = Z0(1+2εcosθ), (44)

the radial wavenumbers are specified exactly by
the roots of an infinite determinant,

det

[
i

Ω
κa

Jm(κa)δmm′−Zm′−mJ′m(κa)
]

= 0, (45)
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where all the impedance Fourier coefficients
Zm = 0 exceptZ0 andZ±1 = εZ0.

In the case of an axially non-uniform wall
impedance over a lengthL of duct, represented
by the first two terms of a Fourier series:

ZB(z) = Z0 [1+2δcos(2πz/L)] , (46)

the radial wavenumbers are specified exactly by
the roots of an infinite determinant,

det

[
i

√
1+

2πl
κa

Jm(κa)δll ′−Zl−l ′J
′
m(κa)

]
= 0,

(47)
where all the impedance Fourier coefficientsZl =
0 exceptZ0 andZ±1 = δZ0.

In the case of impedance distribution varying
both axially and radially, represented by the first
two terms of the double Fourier series:

ZC(θ,z) = Z0(1+ εcosθ) [1+δcos(2πz/L)] ,
(48)

the radial wavenumbers are specified exactly
by the roots of a double infinite determinant,
i.e. an infinite determinant whose terms are
infinite determinants in a combination of (45)
and (47). The directivity of the acoustic pres-
sure in the far-field is specified by (43) also
in the case of non-uniform impedance, except
that the radial wavenumbers are given by the
roots of (45) for circumferentially non-uniform
impedance (44), the roots of (47) for axially non-
uniform impedance (46), and roots of a combina-
tion of (45) and (47) for impedance varying both
axially and circumferentially (48).

5 Noise reduction for far-field observer

The eigenvalues and eigenfunctions are calcu-
lated for circumferentially non-uniform liners, to
assess the noise reduction benefit relative to uni-
form liners.

5.1 Eigenvalues for the dimensionless radial
wavenumbers

Arguably the best measure of the effectiveness of
an acoustic liner is the effect on the reduction of

far-field noise. As a numerical example consider
a nozzle of radiusa = 1m, and a wave frequency
f = 1kHz or ω = 2π f = 6.28× 103s−1, corre-
sponding, for a sound speedc = 340ms−1, to
a dimensionless frequency or Helmholtz number
Ω = ωR/c = 18.5.

The conditionjmn< Ω for the rootsjmnof the
derivatives of the Bessel functionsJ′( jmn) = 0,
specifies the propagating or cut-on modes.

The radial wavenumbers can be determined
using (40) for a uniform specific impedance
impedance:

Z0 = 2.5− i0.4, (49)

and (45), for circumferentially non-uniform
impedances (44), with relative amplitude of the
harmonic

ε = 0.1+0.1i, (50a)

ε = 0.2−0.3i. (50b)

The former is designated comparatively the
‘weakly’ (50a) and the latter the ‘strongly’ (50b)
non uniform liner, although in both cases the
impedance is the same (49) on the mean, and the
variation from the mean is small in absolute terms
in both cases.

5.2 Sound attenuation due to non-uniform
liner

In order to assess the sound attenuation due
to the non-uniform liner, the eigenfunctions for
the acoustic pressure (39) with non-uniform
pmn(θ;Z0,ε) and uniformpmn(θ;Z0,0) liner are
compared in a logarithmic scale:

Amn(θ;Z0,ε)≡ log10

∣∣∣∣
pmn(θ,Z0,ε)
pmn(θ,Z0,0)

∣∣∣∣ , (51)

in decibels; the effect on energy would be the
double of that given by (51), and is plotted as a
function of azimuthal angleθ in Figs. 2 and 3. In
Fig. 2 the axisymmetric modem= 0 is consid-
ered for increasing radial ordersn= 1, . . . ,6. The
fundamental radial moden = 1 (top left) is not
much affected by the non-uniform impedance,
but the effect becomes visible for the second
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Fig. 2 Comparison on a decimal logarithmic scale (51) of the ratio of amplitudes of the acoustic pressure
(43), for a non-uniform (44) and a uniform (49) liner with the same mean impedance, in the cases of
‘weak’ (- -) and ‘strong’ (—) non-uniformity, as a function of azimuthal angleθ, for axisymmetric modes
m= 0 and (a) the fundamental radial moden = 1 and the harmonics (b)n = 2, (c) n = 3, (d) n = 4, (e)
n = 5, and (f)n = 6.

n = 2 (top right) and thirdn = 3 (middle left)
radial modes. Significant amplitude variation oc-
cur for the fourthn= 4 (middle right), fifthn= 5
(bottom left), and sixthn = 6 (bottom right) ra-
dial modes; these amplitude variations are mostly

reductions, although some increases occur.
Broadly similar conclusions can be drawn

from Fig. 3, which considers the fundamental
radial moden = 1 for several azimuthal orders
m= 0,2, . . . ,14. The axisymmetric modem= 0
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Fig. 3 As Fig. 2, for the fundamental axial moden = 1 and (a) axisymmetricm = 0, and non-
axisymmetric modes of increasing even azimuthal order (b)m = 2, (c) m = 4, (d) m = 6, (e) m = 8,
(f) m= 10, (g) m= 12, and (h)m= 14.
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(top left) is not much affected by the non-uniform
liner. The azimuthal modesm= 2 (top right) and
m= 4 (second row, left) show visible reductions.
The higher order azimuthal modesm = 6 (third
row, left),m= 10(third row, right),m= 12(bot-
tom left), andm= 14(bottom right) show a clear
amplitude reduction due to the ‘strongly’ non-
uniform liner over most directions, although an
increase is seen for some directions. It is clear
that a non-uniform liner, with relative impedance
variations in the range20−30%, can provide an
overall sound reduction.

6 Discussion

The effect of non-uniform impedance on sound
radiation to the far-field has been assessed on the
basis of the acoustic pressure on the disk cor-
responding to the nozzle exit plane, without ac-
counting for edge diffraction effects. The latter
can be quite important [35], in particular in the
presence of a mean flow, when a turbulent and
irregular shear layer [1,2] is issued from the noz-
zle lip. The latter causes spectral and directional
broadening of sound, which further reduces the
noise levels. Although the latter effects have
not been modelled here, it is clear that an at-
tenuation of the ‘input’ sound field incident on
the shear layer from the interior of the jet will
result in a further attenuated sound field trans-
mitted to an observer in the far-field outside the
shear layer. The attenuations shown for the ba-
sic in-duct sound field are clear even though: (i)
the non-uniform liner (44) has the same average
impedance as the uniform liner; (ii) only one liner
impedance ‘harmonic’ was used, involving a sin-
gle parameterε, which was not optimized. By
considering multi-harmonic impedance distribu-
tion

Z(θ) = Z0

[
1+

L

∑
l=1

εl cos(lθ)

]
, (52)

and optimizing the parameterεl , greater noise re-
duction could be obtained. In the present exam-
ple a relative impedance variation|ε| of 20−30%
was shown to be sufficient to affect significantly
the sound fields.
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