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Abstract

This paper proposes an exact polytopic model for
the linear parameter varying (LPV) system of air-
craft. The LPV system of the linearized equa-
tion of aircraft is represented by a descriptor form
which reserves physical features of the equation.
A polytopic model, called descriptor polytopic
model, is derived through a variable transforma-
tion to satisfy conditions for the polytope. Using
the obtained descriptor polytopic model, a gain
scheduling state feedback law is then designed by
means of a linear matrix inequality (LMI) formu-
lation. It is shown in a numerical example of a
longitudinal flight control that the proposed de-
scriptor polytopic model of aircraft had no model
error and exactly represented the original LPV
system without any needless flight region.

1 Introduction

Linearized equations of aircraft are regarded as
linear time invariant (LTI) systems if the altitude
and the flight velocity are constant, but linear pa-
rameter varying (LPV) systems if they are vary-
ing. Recently, a number of flight control designs
in which aircraft are treated as LPV systems have
been proposed by gain scheduling techniques [1],
[2]. In those gain scheduling designs, the con-
straints which guarantee the global stability and
the global performance over the entire operating
region are expressed as linear matrix inequalities
(LMIs) [3]. A gain scheduling controller is nu-

merically obtained to satisfy the LMI constraints.
As a problem in control designs for LPV sys-
tems, the number of the LMI constraints and/or
the LMI variables is generally infinite. One of
methods for reducing the LMI constraints finitely
is to express an LPV system as a polytopic model
which is constructed by a linear combination of
LTI models at the vertices of the operating re-
gion [3]. Then, the LMI constraints are imposed
at the vertices of the operating region. Unfortu-
nately, in general it is not always possible to ex-
actly transform LPV systems into polytopic mod-
els. It depends on the structure of the LPV sys-
tems. There are undesirable cases where poly-
topic models have model errors [4], [5] and con-
tain needless operating regions to cover the oper-
ating region by a convex hull [6]. Consequently,
gain scheduling controllers designed may be con-
servative. The global stability and the perfor-
mance may be not guaranteed for the LPV sys-
tems. It is therefore necessary for construction of
polytopic models to make the model errors and
the needless operating region small as much as
possible.

This paper proposes an exact polytopic model
for the LPV system of aircraft. The LPV sys-
tem of the linearized equation of aircraft is repre-
sented by a descriptor form which reserves phys-
ical features of the equation. A polytopic model,
called descriptor polytopic model, is then derived
through a variable transformation to satisfy con-
ditions for the polytope. Using the descriptor
polytopic model, a gain scheduling state feed-
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back law is designed by means of an LMI for-
mulation. A numerical example of a longitudinal
flight control is shown to demonstrate the pro-
posed method.

2 Statement of Problem

Consider a descriptor LPV system

E�θ�ẋ�t� � A�θ�x�t��B�θ�u�t� (1)

where x�t� is the n-dimensional state vector, u�t�
the m-dimensional input vector and θ�t� the g-
dimensional varying parameter vector

θ�t� �� �θ1�t�� � � � �θg�t��
T (2)

The range of each varying parameter is given by

θ j�t� � �θ j�θ j�� θ j � θ j � j � 1� � � � �g� (3)

It is assumed that matrix E�θ� is nonsingular for
the range of Eq. (3). Equation (3) represents a
convex hull whose number of the vertices is 2g.
It corresponds to the operating region of the LPV
system (1) and is also called the parameter box
[3]. The vertex set of the parameter box (3) is
denoted as

Θ �
� �θ�t�� ℜ g : θ j�t� � θ j or θ j� j � 1� � � � �g�

(4)
The purpose of this study is to design a gain
scheduling state feedback law for the LPV sys-
tem (1)

u�t� ��F�θ�x�t� (5)

where the closed-loop system combining Eq. (5)
with Eq. (1) is stable and the specified control
performance is achieved in the parameter box.
This paper proposes a method designing such
gain scheduling state feedback laws in flight con-
trol problems. To do this in flight control de-
sign, the following section gives a general form
of polytopic models for the LPV system in the
descriptor form. A design of gain scheduling
state feedback law based on the polytopic model
is then presented in the frame of an LMI formula-
tion. The proposed techniques are applied to the
linearized equation of aircraft.

3 Descriptor Polytopic Model and Gain
Scheduling State Feedback

3.1 Construction of descriptor polytopic
model

The number of design constraints for the LPV
system is, in general, infinite if the structure of
E�θ�, A�θ� and B�θ� in Eq. (1) is not particu-
larly specified. One of techniques reducing the
design constraints finitely is that LPV system (1)
is transformed into a polytopic model which is
constructed by linearly combining LTI models in
the vertex set Θ.

2g

∑
i�1

αi�θ�Eiẋ�t� �
2g

∑
i�1

αi�θ��Aix�t��Biu�t��(6)

�Ei Ai Bi�
�
� �E�θi� A�θi� B�θi��

θi � Θ �i � 1� � � � �2g�

αi�θ�� 0�
2g

∑
i�1

αi�θ� � 1 (7)

Equation (6) is called the descriptor polytopic
model in this paper. Whether Eq. (1) is exactly
transformed into Eq. (6) or not depends on the
structures of E�θ�, A�θ� and B�θ� in Eq. (1).
A general form of descriptor polytopic models is
given as the following theorem.

Theorem 1 Suppose that (a1-i) E�θ�, A�θ� and
B�θ� in Eq. (1) is affine with respect to functions
f j�θ j� � j � 1� � � � �g� whose variable is θ j, and
(a1-ii) in the parameter box (3), f j�θ j� �� f j�θ j�.
Then, Eq. (1) is exactly transformed into Eq. (6)
where αi�θ� �i � 1� � � � �2g� satisfying Eq. (7) are
given by

αi�θ� �
g

∏
j�1

φj�θ j� �i � 1� � � � �2g� (8)

where φj�θ j� is either φ
j
�θ j� or φj�θ j� defined as

φ
j
�θ j�

�
�

f j�θ j�� f j�θ j�

f j�θ j�� f j�θ j�
� (9)

φj�θ j�
�
�

f j�θ j�� f j�θ j�

f j�θ j�� f j�θ j�
(10)

� j � 1� � � � �g�
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�

The proof is given in Appendix A. Even if as-
sumption (a1-i) does not hold, Eq. (1) can be
transformed into a polytopic model by defining a
new varying parameter. However, the following
problems arise in this aspect: the number of the
vertices is increased to twice if a new varying pa-
rameter is added. The obtained polytopic model
includes needless operating regions which are not
contained in the original LPV system (1). These
may lead to conservative results in control analy-
sis and design. Although some techniques for re-
ducing the needless operating regions have been
proposed [6], it is not possible to delete those re-
gions completely. Furthermore, assumption (a1-
ii) is needed for the definition of φ

j
and φj in Eq.

(10).

3.2 Variable transformation for polytope
and gain scheduling state feedback

Once a descriptor polytopic model is obtained, a
gain scheduling state feedback law is designed as
will be shown in the next section. Assumptions
(a1-i) and (a1-ii) of Theorem 1 is not always sat-
isfied in general. Transforming variables is one
of possibilities to satisfy the assumptions. This
section gives a variable transformation and the
gain scheduling state feedback gain. The variable
transformation is defined as

x
�
� Tx�θ�x̃� u

�
� Tu�θ�ũ (11)

where Tx�θ� and Tu�θ� are nonsingular in the pa-
rameter box (3). Applying Eq. (11) to Eq. (1),
the transformed LPV system is written as

Ẽ�θ� ˙̃x�t� � Ã�θ�x̃�t�� B̃�θ�ũ�t� (12)

Ẽ
�
� ETx� Ã

�
� ATx� B̃

�
� BTu�

If the transformed LPV system satisfies assump-
tions (a1-i) and (a1-ii), a gain scheduling state
feedback gain is obtained as the following the-
orem.

Theorem 2 Suppose that (a2-i) the transformed
LPV system (12) satisfies assumptions (a1-i) and

(a1-ii) of Theorem 1, and (a2-ii) a gain schedul-
ing state feedback law for the transformed LPV
system (12) is obtained as

ũ�t� ��F̃�θ�x̃�t� (13)

which stabilizes the closed loop of the trans-
formed system and achieves the specified con-
trol performance. Then, the gain scheduling state
feedback gain for the original LPV system (1) is
given by

F�θ� � Tu�θ�F̃�θ�T�1
x �θ�� (14)

�

The proof is given in Appendix B.

4 Design of Gain Scheduling State Feedback

This section describes a design of the gain
scheduling state feedback gain F̃�θ� satisfying
(a2-ii) of Theorem 2 by means of an LMI formu-
lation. The LMI formulation proposed for fuzzy
model [7] is modified to the descriptor form in
this section.

Consider a Lyapunov function V �x̃� � x̃T Px̃
for a descriptor polytopic system (12) where P �
ℜ n�n � 0. Then, a sufficient condition for the
quadratic stability is given by [7]

V̇ �t���x̃T �Q� F̃T RF̃�x̃ (15)

where Q � ℜ n�n � 0 and R � ℜ m�m � 0 are
weighting matrices and are remained to be de-

signed. Defining X
�
� P�1 and introducing an

auxiliary variable

M̃�θ� �� F̃�θ�XẼT �θ� (16)

the condition (15) is transformed into the follow-
ing matrix inequality.

He�ÃXẼT � B̃M̃�� ẼXQXẼT � M̃T RM̃ � 0
(17)

where He�A�
�
� A�AT . Applying Schur Com-

plement to the matrix inequality (17), we have
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the following LMI.

�
���

He�ÃXẼT � B̃M̃� � �

HXẼT �Iq �

M̃ 0 �R�1

�
���� 0 (18)

where Q � HT H and rankH � q. ‘�’ means the
transpose of the elements located at diagonal po-
sition. LMI (18) must be satisfied over the entire
parameter box. To express the LMI finitely, the
polytopic form is used. Since Eq. (12) is a de-
scriptor polytopic system, Ẽ�θ�, Ã�θ� and B̃�θ�
are written as

�Ẽ�θ� Ã�θ� B̃�θ�� �
2g

∑
i�1

αi�θ��Ẽi Ãi B̃i�(19)

�Ẽi Ãi B̃i�
�
� �Ẽ�θi� Ã�θi� B̃�θi��

In this paper, the auxiliary variable M̃�θ� is also
given by a polytopic form:

M̃�θ� �
2g

∑
i�1

αi�θ�M̃i (20)

Substituting the above relations into LMI (18), it
is sufficient to satisfy the inequality in the vertex
set Θ. Then, the following LMIs are derived.

�
���

He�ÃiXẼT
i � B̃iM̃i� � �

HXẼT
i �Iq �

M̃i 0 �R�1

�
���� 0 (21)

�
������

He�ÃiXẼT
j � B̃iM̃ j

�Ã jXẼT
i � B̃ jM̃i�

� �

HX�Ẽi � Ẽ j�
T �2Iq �

M̃i � M̃ j 0 �2R�1

�
������
� 0(22)

�i � 1� � � � �2g� j � i�1� � � � �2g�

After all, if X � 0 and M̃i �i � 1� � � � �2g� sat-
isfying LMIs (21) and (22) are found, the gain
scheduling state feedback gain for the original
LPV system (1) is obtained as

F�θ� � Tu�θ�M̃�θ�Ẽ�T �θ�X�1T�1
x �θ�� (23)

5 Descriptor Polytopic Model of Aircraft

This section derives descriptor polytopic models
of aircraft using the proposed method.

5.1 LPV system of aircraft

Consider that the linearized equations of motion
of aircraft are expressed as the following longitu-
dinal and the lateral equations in the frame of the
stability axes [8].
� Longitudinal equation
����������
��������	

u̇�Xuu�Xαα �gcosΘ0θ� 0

�Zuu�V α̇�Zαα ��V �Zq�q

�gsinΘ0θ� Zδeδe

�Muu�Mα̇ α̇�Mαα�Mqq � Mδe
δe

θ̇� q

(24)

u is the x-axis velocity, α the angle of attack, q
the pitch angular velocity, θ the pitch angle and
δe the elevator angle.
� Lateral equation
����������������
��������������	

V β̇�Yββ�Yp p��V �Yr�r

�gcosΘ0φ� Yδrδr

�Lββ� ṗ�Lp p� �Ixz�Ixx�ṙ�Lrr �

Lδaδa �Lδrδr

�Nββ� �Izx�Izz�ṗ�Npp� ṙ�Nrr

� Nδaδa �Nδrδr

φ̇� p� r tanΘ0

(25)

β is the sideslip angle, p the roll angular veloc-
ity, r the yaw angular velocity, φ the roll angle,
δa the aileron angle and δr the rudder angle. The
notations used in Eqs. (24) and (25) are based
on the symbols which have been usually used in
flight dynamics [8]. The variables denoted by
small letters mean the perturbed values. Θ0 is
the pitch angle in the steady-state. g is the center
of gravity. Ixx, Ixz, etc. are the mass moments of
inertia. Xu, Mα , etc. are the dimensional stability
derivatives [8]. The definition of the dimensional
stability derivatives is given in Appendix C. It is
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seen that the dimensional stability derivatives are
functions with respect to the atmospheric density
ρ and the flight velocity V . ρ is a monotonously
decreasing function with respect to the altitude
H. After all, Eqs. (24) and (25) can be regarded
as LPV systems whose varying parameters are H
and V . In this paper, the flight region; that is, the
parameter box with respect to H and V is given
by

H � �H�H�� H � H

V � �V �V �� V �V �
(26)

As shown in Appendix C, all dimensional stabil-
ity derivatives are linear with respect to ρ. On
the other hand, Xu, Zu, Mu, Mα̇ , Zq, Mq, Yp, Yr,
Lp, Lr, Np and Nr are linear with respect to V ,
while Xα , Zα , Mα , Zδe

, Mδe
, Yβ, Lβ, Nβ, Yδa

, Yδr
,

Lδa
, Lδr

, Nδa
and Nδr

are linear with respect to V 2.
Therefore, Eqs. (24) and (25) are written as the
following descriptor LPV system

E�H�V �ẋ�t� � A�H�V�V 2�x�t��B�H�V 2�u�t��
(27)

The variable vectors and the matrices in Eq. (27)
are given as
� Longitudinal equation

x�t� � �u α q θ�T u�t� � δe (28)

E�H�V � �

�
������

1 0 0 0

0 V 0 0

0 �Mα̇ 1 0

0 0 0 1

�
������

(29)

A�H�V�V 2� ��
������

Xu Xα 0 �gcos Θ0

Zu Zα V �Zq �gsinΘ0

�Mu Mα Mq 0

0 0 1 0

�
������

(30)

B�H�V 2� � �0 Zδe Mδe 0�T (31)

� Lateral equation

x�t� � �β p r φ�T u�t� � �δa δr�
T (32)

E�H�V� �

�
������

V 0 0 0

0 1 �Ixz�Ixx 0

0 �Izx�Izz 1 0

0 0 0 1

�
������

(33)

A�H�V�V 2� �

�
������

Yβ Yp Yr �V gcos Θ0

Lβ Lp Lr 0

Nβ Np Nr 0

0 1 tanΘ0 0

�
������
(34)

B�H�V 2� �

�
������

0 Yδr

Lδa
Lδr

Nδa Nδr

0 0

�
������

(35)

5.2 Transformed descriptor polytopic model

The matrices in Eq. (27) are affine with respect to
ρ�H� but not V . The proposed variable transformation
is then applied to Eq. (27) to be affine with respect to
ρ and V . The transformed matrices in Eq. (11) are
given by
� Longitudinal equation

Tx � diag�1 1�V 1 1�� Tu � 1�V (36)

� Lateral equation

Tx � diag�1�V 1 1 1�� Tu � diag�1�V 1�V� (37)

Then, the transformed descriptor LPV system is writ-
ten as

Ẽ�H� ˙̃x � Ã�H�V �x̃� B̃�H�V �ũ (38)

where

Ẽ
�
� ETx� Ã

�
� ATx� B̃

�
� BTu�

The matrices in Eq. (38) are affine with respect to
ρ�H� and V . That is, assumptions (a1-i) and (a1-ii) of
Theorem 1 are satisfied. Then, the linearized equa-
tions of aircraft can be transformed into descriptor
polytopic models which consist of four LTI models
at the vertices of the parameter box (26).
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According to Theorem 1, the matrices in Eq. (38)
are written as follows.

�Ẽ Ã B̃��H�V � �
4

∑
i�1

αi�H�V ��Ẽi Ãi B̃i� (39)

where

�Ẽ1 Ã1 B̃1�
�
� �Ẽ Ã B̃��H�V �

�Ẽ2 Ã2 B̃2�
�
� �Ẽ Ã B̃��H�V �

�Ẽ3 Ã3 B̃3�
�
� �Ẽ Ã B̃��H�V �

�Ẽ4 Ã4 B̃4�
�
� �Ẽ Ã B̃��H�V �

α1�H�V �
�
� φ�H�φ�V �� α2�H�V �

�
� φ�H�φ�V �

α3�H�V �
�
� φ�H�φ�V �� α4�H�V �

�
� φ�H�φ�V �

φ�H�
�
�

ρ�H��ρ�H�

ρ�H��ρ�H�
� φ�H�

�
�

ρ�H��ρ�H�

ρ�H��ρ�H�

φ�V �
�
�

V �V

V �V
� φ�V �

�
�

V �V

V �V

6 Numerical Example

This section presents a numerical example of the lon-
gitudinal equation [9] to illustrate the construction of
the descriptor polytopic model and the design of the
gain scheduling state feedback law. The flight region
of H and V was given as

H � �1000�7000� m� V � �50�150� m/s (40)

The other numerical data were referred from Ref. [9].
For the flight region (40), the following three types of
the state feedback laws were designed and were com-
pared with each other.

� Fix-lqr: LQR state feedback law (fixed state
feedback). The design model was an LTI model
whose flight condition was given by �H�V � �
�7000�50�.

� GS-ss: gain scheduling state feedback law. The
design model was given by a state-space poly-
topic model1 which was essentially the same as
fuzzy model described in Ref. [7].

� GS-dsc: gain scheduling state feedback law.
The design model was given by a descrip-
tor polytopic model which was the proposed
model in this paper.

1When the LPV system is given as a state-space form;
that is, E�θ� � In in Eq. (1), the polytopic model is also
given as the state-space form; that is, Ei � In in Eq. (6).

The weighting matrices of the quadratic index in LQR
and the quadratic stability condition in Eq. (15) were
given as

Q � 0�1I4� R � 1 (41)

First, the model error between the design model
and the original LPV system was evaluated in the
flight region by the ν-gap metric. Letting Pd�s;H�V �
and Plpv�s;H�V � be transfer functions of the design
model and the original LPV system where the flight
condition was �H�V �, the ν-gap metric is defined as
[10]

δν�Pd�Plpv�
�
� sup

ω
κ�Pd� jω;H�V ��Plpv� jω;H�V ��

(42)
where

κ�X �Y �
�
� σ

�
�I �YY ��1�2�Y �X��I �XX��1�2

�

where σ means the maximum singular value. The
range of δν�Pd �Plpv� is δν � �0�1�. A large δν means
that the model error is large. Figure 1 shows the
plot of the δν�Pd �Plpv� where the design model was
Pd�s;7000�50� which was used for designing Fix-
lqr. δν�Pd �Plpv� was monotonously increased when
the flight condition was shifted from the design point
�H�V � � �7000�50�. The plots of ν-gap metric whose
design models were the state-space polytopic model
and the descriptor polytopic model are shown in Figs.
2 and 3, respectively. In Fig. 2, δν�Pd�Plpv� was zero
at the four vertices, but not zero in the intermediate
flight region. On the other hand, in Fig. 3, δν�Pd �Plpv�
was zero over the entire flight region. That is, the
obtained descriptor polytopic model was completely
equivalent to the original LPV system.

The robustness of the designed state feedback
laws was evaluated by the stability margin. The stabil-
ity margin of the state feedback gain F for the original
LPV system Plpv�s;H�U� is defined as [10]

bPl pv�F
�
� inf

ω
ρ�Plpv� jω��F� (43)

where

ρ�X �Z�
�
� 1�σ

�
	
�
� X

I

�
��I �ZX��1��Z I�



�

The range of bPl pv�F is bPl pv�F � �0�1�. According to
Ref. [10], a sufficient condition for the robust stability
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is to satisfy the relation δν�Pd�Plpv�� bPl pv�F over the
entire flight region. Figures 4, 5 and 6 show the plots
of bPl pv�F in which the state feedback laws were Fix-
lqr, GS-ss and GS-dsc, respectively. It is seen from
Figs. 1, 2, 4 and 5 that the robust stability was guar-
anteed near the design point �H�V � � �7000�50� and
the four vertices by Fix-lqr and GS-ss, respectively.
On the other hand, in Figs. 3 and 6, it was guaranteed
over the entire flight region by GS-dsc.

Figures 7, 8 and 9, furthermore, show the initial
time responses of the closed-loop system at �H�V � �
�4000�100� by using the three state feedback laws.
The solid-lines indicate the responses whose plant was
the original LPV system, while the dashed-line indi-
cate the responses whose plant was the design model.
In Figs. 7 and 8, the influence of the model error was
appeared in the responses. On the other hand, when
the descriptor polytopic model was used, there was no
difference between both responses as shown in Fig.
9. These figures present the responses which were de-
viated from the trimmed states. The designed state
feedback laws should be evaluated by nonlinear time-
varying simulation. It is expected from the above re-
sults that GS-dsc may show acceptable control perfor-
mance also in the nonlinear time-varying simulation;
that is, be able to stabilize the responses of the state
and track guidance commands.

7 Conclusions

This paper proposed an exact polytopic model for the
LPV system of aircraft. The LPV system of the lin-
earized equation of aircraft was represented by a de-
scriptor form which reserves physical features of the
equation. A descriptor polytopic model was derived
through a variable transformation to satisfy condi-
tions for the polytope. Using the descriptor polytopic
model, a gain scheduling state feedback law was de-
signed by means of an LMI formulation. It was shown
in a numerical example of a longitudinal flight con-
trol that the proposed descriptor polytopic model had
no model error and exactly represented the original
LPV system without any needless operating region.
It should be noted that the proposed method is effec-
tive in the case where assumptions (a1-i) and (a1-ii)
of Theorem 1 hold. Nevertheless, the descriptor form
and the variable transformation used in this paper may
be useful for general LPV systems to reduce the model
error and to be less conservative.
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Appendix

A. Proof of Theorem 1

If a matrix A�θ� � ℜ n�n is affine with respect to func-
tions f j�θ j� � j � 1� � � � �g� whose variables are θj, it
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can be written as

A�θ� � X �
g

∑
j�1

f j�θ j�Yj (A.1)

where X �Yj � ℜ n�n � j � 1� � � � �g� are constant ma-
trices. Using φ

j
�θ j� and φj�θ j� defined in Eq. (10),

f j�θ j� is written as

f j�θ j� � φ
j
�θ j� f j�θ j��φj�θ j� f j�θ j� (A.2)

The following relation holds in the parameter box Eq.
(3).

φ
j
�θ j�� φj�θ j�� 0� φ

j
�θ j��φj�θ j�� 1� θ j � �θ j�θ j�

(A.3)
First, consider the single varying parameter case; that
is, g � 1, A�θ� is

A�θ� � X ��φ
1

f1�θ1��φ1 f1�θ1��Y1

� φ
1
�X � f1�θ1�Y1��φ1�X � f1�θ1�Y1� (A.4)

Defining αi�θ� �i � 1�2� as

α1�θ�
�
� φ

1
� A1

�
� X � f1�θ1�Y1

α2�θ�
�
� φ1� A2

�
� X � f1�θ1�Y1

A�θ� is then represented by Eq. (6). The matrices A1

and A2 are respectively A�θ� at θ1 � θ1 and θ1 � θ1.
Similarly, when g � 2, A�θ� is written as

A�θ�� X �
2

∑
j�1

�φ
j
f j�θ j��φj f j�θ j��Yj

� φ
1
φ

2
�X � f1�θ1�Y1 � f2�θ2�Y2�

�φ
1
φ2�X � f1�θ1�Y1 � f2�θ2�Y2�

�φ1φ
2
�X � f1�θ1�Y1 � f2�θ2�Y2�

�φ1φ2�X � f1�θ1�Y1 � f2�θ2�Y2� (A.5)

Defining αi�θ� �i � 1� � � � �4� as

α1�θ�
�
� φ

1
φ

2
� A1

�
� X � f1�θ1�Y1 � f2�θ2�Y2

α2�θ�
�
� φ

1
φ2� A2

�
� X � f1�θ1�Y1 � f2�θ2�Y2

α3�θ�
�
� φ1φ

2
� A3

�
� X � f1�θ1�Y1 � f2�θ2�Y2

α4�θ�
�
� φ1φ2� A4

�
� X � f1�θ1�Y1 � f2�θ2�Y2

A�θ� is also represented by Eq. (6). This expression
also holds for g � 3.

B. Proof of Theorem 2

The characteristic equation of the closed-loop LPV
system combining Eq. (5) with Eq. (1) is given by
�sE � A � BF� � 0. While, that of the transformed
closed-loop LPV system combining Eq. (13) with Eq.
(12) is given by

�sẼ � Ã� B̃F̃�� ��sE �A� B̃F̃T�1
x �Tx�� 0 (B.1)

To meet both equations, the following relation must
hold.

BF � B̃F̃T�1
x � BTuF̃T�1

x (B.2)

Equation (14) is thus obtained.

C. Dimensional Stability Derivative

The definition of the dimensional stability derivatives
in the frame of the stability axes is given as follows.
� Longitudinal equation

Xu �
ρVS
2m

�Cxu �2CL tanΘ0�� Zu �
ρV S
2m

�Czu �2CL�

Mu �
ρV Sc
2Iyy

Cmu� Xα �
ρV 2S
2m

Cxα

Zα �
ρV 2S
2m

Czα� Mα �
ρV 2Sc

2Iyy
Cmα� Mα̇ �

ρV Sc2

4Iyy
Cmα̇

Zq �
ρVSc
4m

Czq� Mq �
ρV Sc2

4Iyy
Cmq

Zδe �
ρV 2S
2m

Czδe � Mδe �
ρV 2Sc

2m
Cmδe

� Lateral equation

Yβ �
ρV 2S
2m

Cyβ� Lβ �
ρV 2Sb

2Ixx
Clβ� Nβ �

ρV 2Sb
2Izz

Cnβ

Yp �
ρVSb

4m
Cyp� Lp �

ρVSb2

4Ixx
Clp� Np �

ρVSb2

4Izz
Cnp

Yr �
ρV Sb

4m
Cyr� Lr �

ρV Sb2

4Ixx
Clr� Nr �

ρVSb2

4Izz
Cnr

Yδa �
ρV 2S
2m

Cδa� Lδa �
ρV 2Sb

2Ixx
Cδa� Nδa �

ρV 2Sb
2Izz

Cδa

Yδr
�

ρV 2S
2m

Cδr
� Lδr

�
ρV 2Sb

2Ixx
Cδr

� Nδr
�

ρV 2Sb
2Izz

Cδr

Where m is the mass of aircraft, S the main wing area,
c the main wing chord, and b the main wing span.
CL is the lift coefficient. Cxu, Cmα , etc. are the non-
dimensional stability derivatives [8] and are obtained
from the structural parameters of aircraft.
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Fig. 1 ν-gap metric between LPV system and
LTI model obtained at �H�V � � �7000�50�.
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Fig. 2 ν-gap metric between LPV system and
state-space polytopic model.
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Fig. 3 ν-gap metric between LPV system and
descriptor polytopic model.
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Fig. 4 Stability margin of Fix-lqr designed at
�H�V� � �7000�50� for LPV system.
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Fig. 5 Stability margin of GS-ss for LPV system.
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Fig. 6 Stability margin of GS-dsc for LPV sys-
tem.
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Fig. 7 Initial time response using Fix-lqr,
�H�V� � �4000�100�.
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Fig. 8 Initial time response using GS-ss,
�H�V� � �4000�100�.
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Fig. 9 Initial time response using GS-dsc,
�H�V� � �4000�100�.
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