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Abstract

The significant progress in sensing and data
processing technology has made monitoring and
damage detection of engineering structures
increasingly attractive.  This paper presents a
reliable in-situ damage detection technique,
which is based upon dynamic analysis of a
composite structure using a bonded piezo-
ceramic patches as an actuators and a Scanning
Laser Doppler Vibrometer as a sensor.  In
addition Neural Networks have been considered
to be a viable tool for handling the large
number of data. A multilayer perceptron (MLP)
neural networks, was trained and tested using
the slope, the y-intercept of the linear fit of the
root mean square of the Frequency Response
Function (FRFrms) and the Deviation of the
FRFrms of a candidate composite structure.

1  Introduction

Composite materials offer enormous potential
and benefits to the aerospace industry and many
other sectors.  However, composite laminates
are susceptible to delamination from a wide
variety of sources which include fabrication
stress, environmental cyclic loading, handling
damage, and foreign object impact damage.
Delamination may lead to the severe
degradation of the mechanical behaviour of
structures due to the loss of structural integrity.
The detection of delamination and the study of
their effects on the mechanical behaviour of
delaminated composite structures are important
practical issues.

The purpose of structural health monitoring
systems is to provide information about the

condition of a structure in terms of reliability
and safety before the damage threatens the
mission objectives of the structure.  In recent
years, vibration based structural health
monitoring using vibration based damage
detection has been rapidly expanding and shown
to be a feasible approach for detecting and
locating damage.  The philosophy behind this
technique is that modal parameters -notably
frequencies, mode shapes, and stiffness- change
in a detectable manner due to degradation in the
physical properties [1].  During the 1970s and
1980s, the aerospace industry made
considerable effort to develop vibration-based
damage detection methods in conjunction with
the development of the space shuttle.

In summary, the review of the technical
literature presented by Doebling et al. [2] shows
an increasing number of research studies related
to vibration-based damage detection. Numerous
artificial neural network (ANN) techniques have
been applied to structural health monitoring and
damage detection [2,3].  Recent research
indicates that neural networks, such as the radial
basis function (RBF) and multi-layer back
propagation (BP), can be trained on measured
frequency responses of healthy and damaged
specimens to recognise the actual condition of
the structure.  For instance, Chaudhry and
Ganino [4] used measured Frequency Response
Function (FRF) data over some specified
frequency range as input to a BP neural network
to identify the presence and severity of
delamination in debonded beams.  Although
such work demonstrates the feasibility of
training neural network on FRF data for damage
detection, a very signif icant hurdle remains.
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The size of the FRF data set is too large, which
is determined by the number of spatial response
locations and the number of spectral lines.  The
direct use of such data will lead to a very large
number of input nodes to the neural network,
which in turn will require a very large number
of connections.  Such neural networks remain
impractical in terms of both training effort and
convergence stability.  However, Levin and
Lieven [5] describe an alternative approach,
based on modal parameter input. They reduce
the size of the FRF data of a cant ilevered beam
by performing a modal analysis first, and
applied a RBF neural, which was successful in
detecting errors.  Marwala and Hunt [6] studied
a clamped beam using committee of multi-layer
perceptron (MLP) network, which employs both
modal properties and frequency response
functions simultaneous-sly for the identif ication
of faults. They conclude that the implementation
of the multiple criterion method gives results
that are more reliable than the results obtained
when either frequency response approach or
modal property approach is applied in isolation.

As mentioned earlier, the examples above
highlight the need to find a more compact
representation of the measured FRFs. A
compressed technique derived from the work by
castellini et al. [7] has been implemented in this
paper.  The rms.FRF, the slope of rms.FRF, and
the deviation of the normalised FRFs have been
used as a compact representation of the FRFs in
order to train a MLP network to classify the
delamination in composite structures.

2  Experimental Method

One of the principal failure modes in aerospace
composites is the delamination of adjacent
layers of pre-preg fibre layups.  A fundamental
requirement of the measurement technique is to
excite the structure in the high frequency range
(> 10 KHz), in order to reduce the wavelengths,
increase curvatures and activate the gaping of
the crack [8].  This requirement demands a very
dense and a non-contacting measurement
technique, which is attainable using a Scanning
Laser Doppler Vibrometry for global
assessment of delamination. As shown in fig. 1,

a dense meshing can be measured which
corresponds to the candidate structure; localised
geometry.
The method used here is to bond piezo-ceramic
patches to the surfaces of the composite capable
of excitation up to ~26 kHz.   An Epoxy/Glass
composite plate [45 90 -45 0 45 90 -45 0]s was
used as a candidate structure as shown in fig. 2,
which contained nine (9) delaminated areas,
which were made by inserting small pieces of
Teflon tapes at different layers during the
layups.

Fig. 1 Schematic of the experimental tes ting

Fig. 2 Delaminated Composite Plate
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3  Piezoelectric materials

Piezoelectric actuators are non-contacting
devices in the sense that they do not add any
signif icant additional stiffness or mass to the
structure.  The basic principle is to excite the
structure using the mechanical strain generated
when an electric field is imposed to the piezo-
actuator.

For a linear piezoelectric material, the
relation between the electrical and mechanical
variables can be described by linear relations
[9]:

mmij
E
j

EdTisiS +=               (1)

k
T
mkim ETdD mi ε+=              (2)

where:
{ } { }TT T T T T TT 231312332211= , { } { }321 E E EE =
{ } { }TS S S S S SS 231312332211= , and
{ } { }321 D D DD =
The superscripts T and E signify that these
quantities are measured at zero stress and
constant field respectively.

The first equation describes the converse
piezoelectric effect and the second equation
describes the direct effect.

3.1 Piezoelectric Actuator

As shown in fig. 3, a number of assumptions
must be made:

1. the patch of piezoelectric materials is
assumed to be perfectly bonded to the
surface of the plate;

2. the dimensions of the plate is infinite
compared to the dimensions of the
piezo-actuator;

3.  the piezo-actuator induces a linear strain
distr ibution in the in the plate; and

4. the strain energy in the actuator is equal
to the strain energy induced in the plate
by the actuator (conservation of the
strain energy).

Fig. 3 Stress distribution in plate generated by
bounded Piezo-Actuators

The magnitude of the strains induced by
the piezo-actuator is a linear function of the
applied voltage that can be expressed by [9]:

pz
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where 
31

d  is the piezoelectric strain constant ‘1’

is the induced strain direction and is
perpendicular to the direction of the poling ‘3’
and hence the applied field, pzt  is the piezo-
actuator thickness and 33V  is the applied
voltage.

The piezoelectric actuator gives the added
capability of applying a bending moment to the
plate when an electric field is applied.
Considering the free expansion of a
piezoelectric plate element, the free strain due to
the applied field, transforming this free strain to
an applied stress required a two-dimensional
Hooke’s Law.
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where pzυ  is the Poisson's ratio of the
piezoelectric lamina, E  is the field strength in
the 3rd direction and the subscripts x and y refer
to the principal stresses in the plate directions of
the piezoelectric actuator layer.
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Equations (4) and (5) can be solved for the
equivalent stress in the x and y directions
applied to the piezoelectric actuator to produce
the free piezoelectric strains to give :

)1(
31

pz

pz
pz

EdE
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σ
−

=                (6)

4  Data processing

The experimental testing was carried out by
applying a pseudo-random excitation force
through Piezo-Actuators up to ~26 kHz, and
using scanning laser doppler vibrometry in
order to obtain a dense and accurate reading of
the response.  The simultaneous acquisition of
force and response allows an FRF to be
acquired at each geometric mesh location, as
shown in fig. 4.

  

Fig. 4 Plate Mesh (972 nodes)

The FRFs obtained from modal testing
have been normalised Eq.8, frequency-by-
frequency in order to reduce dependence to
resonance or anti-resonance peaks by dividing
the FRFs by the α-trimmed average of the FRFs
Eq.7, which reduce the effects of the extreme
data. The trimmed mean is a modification of the
arithmetic mean, means that both the top α%
and the bottom α% of a ranked data set is

discarded and the mean is calculated for the rest
of the sample. Therefor, the Trimmed Mean is

%




=α

n
j ,  where n corresponds to the length

of the array of the measured data (FRFs), and j
is the number of data points discarded from
each end of the original array.
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Therefore an elevated value should
correspond to a high dynamic behaviour at
defective points.
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where 972, ... ,2,1=i  denotes the index relative
to the nodes, and kHz ]26,0[ =ω .

According to the hypothesis of small
damage, the normalised FRF should represent a
reduced dependence whether by resonance or by
anti-resonance peaks, therefore an elevated
value should correspond to a high dynamic
behaviour, i.e. to a defect. Figure 5 depicts a
clear demonstration of the theory, the
normalised FRFs correspond to a superficial
defect with high ampl itude, a deep defect and a
non-defect with low ampl itude and the
excitation point with a very low amplitude.

Fig. 5 Normalised FRFs
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In order to simplify the processing
procedure and reduce the amount of data
without losses of information, the rms values of
the FRFs in a limited number of frequency
bands are calculated:

( ) ( )
( )
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∆−∆
=

ω

ω

ωω
ω

k

k
normi dFRFkrmsFRF

i

1

21  (9)

where k is the considered band and ω∆  is the
integration range.  The ( )krmsFRFi  function is
called the damage index as shown in fig. 6.  It is
clear that such rms values are an effective
indicator of the defect.  However, this technique
is not entirely straightforward to use, as the
discrimination capability is related to the
analysis of several maps.  For this reason,
the ( )krmsFRFi  can be simply interpolated by a
linear curve fit using a least square algorithm in
order to obtain a line representing the general
trend of the amplitude values in each band,
which gives the slope or the gradient iα and

iµ the y-intercept.

In general, non-defective points are
characterised by a lower average level of the
linear fitting with a negative slope while the
defective points have higher average level with
a negative slope depending on the depth, and the
excitation points have a higher average level but
a positive slope.  However, there are some non-
defective points have a negative slopes and such
a cases can generate confusion with excitation
points as shown in fig. 7 a,b.

In order to overcome this problem, the
Standard Deviation iDV  of the ( )krmsFRFi

was introduced by:

  
( )( )

m

krmsFRF
DV

m

j
ii

i

∑
=

−
= 1

2µ
    (10)

 where m is the number of frequency bands.

As shown in fig. 8 c, the defects in zones 1,
2 and 3 were clearly observable, which
correspond to delaminations between layers 1-2,

4-5, and 6-7 respectively.  Unfortunately, the
deep defects (i.e. between layers 8-9, 13-14, and
15-16) were not detected. However, the authors
believed that a distributed high voltage piezo-
actuators in the plate will correct the responses,
which will activate the gaping of the deep
cracks.

(a) Non-delaminated zone

(b) Deep delaminated zone
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(c) Superficial delaminated zone

d) Excitation zone

Fig. 6  Damage Index

(a) The slope iα

(b)  iµ the y-intercept

c)  Deviation

Fig. 7 Maps of the slope iα , iµ , and the

Deviation DVi

5  Neural Networks

In this study, neural networks are viewed
as parameterised graphs that make probabilistic
assumptions about the data. Learning algorithms
are viewed as methods for finding parameter
values that look probable in light of the data.
Learning processes occur by training the
network through either supervised learning or
unsupervised learning.

Unsupervised learning is used when only
the input data are available. Supervised learning
is used when the input and the output are
available and neural networks are used to

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x
10

4

40

60

80

100

120

140

160

180

200

220

D
am

ag
e

 In
de

x

rmsFRF
Linear fit

Frequency

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10 4

40

50

60

70

80

90

100

110

120

130

rmsFRF
Linear fit

Frequency

D
am

ag
e

 In
de

x

5 10 15 20 25 30 35

5

10

15

20

25

Zone 2

Zone 1

 Excitation
Zone

Zone 3

5 10 15 20 25 30 35

5

10

15

20

25

 Excitation
Zone

Zone 1

Zone 2

Zone 3

5 10 15 20 25 30 35

5

10

15

20

25

 Excitation
Zone

Zone 3

Zone 2

Zone 1



835.7

LASER VIBROMETRY BASED DETECTIONS OF DELAMINATIONS IN AEROSPACE COMPOSITES

approximate the functional mapping between
the two. A supervised learning has been used in
this study.

There are several types of neural network
architectures, namely, multilayer perception
(MLP) and radial basis function [10].  A MLP
has been chosen because it provides a complex
non-linear mapping between the input and the
output. Figure 8 shows a schematic illustration
of a typical MLP network.

Models of this form can approximate any
continuous function to arbitrary accuracy if the
number of hidden units NH is sufficiently large.
If x is the output and y is the output, than non-
linear mathematical relation that maps the input
to the output may be written as follows [10]:

( ) ∑ ∑
= =







++=
NH

i

NI

j
ijijkjkk xwbwbxy

1 1

φ (11)

Here kb  and jb  are bias parameters, NI is the
number of input units and NH is the number of
hidden units.  The function ( )⋅φ  used was a
sigmoid basis function and is defined as:

( )
xe

x −+
=

1
1φ                (12)

The error vector can be defined as being the
difference between the network output and the
desired output value.

kkk ydE −=                (13)

Based on the error vector we can calculate the
sum of squared vector as:

∑
=

=
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kE

1

2

2
1ε                (14)

Where NO is the number of output units.
This is the cost function to be minimised

during the learning process.  The sum-squared-
error ε  is a function of all the variables of the
network.

Fig. 8  MLP neural network (Classification)

In order to perform the training and the
testing of the neural network, the candidate
structure has been divided into two areas as
shown in fig. 9.

Fig. 9   Training and testing areas
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• the output layer that provides the result
of the analysis, ie., healthy (0) or
damaged (1)

One of the issues that has to be decided in
configuring a back-propagation net is the hidden
elements to be used. Therefore, different
networks have been used. After 4500 learning
cycles, a minimised error has been reached
through a network contains 1200 set of neurons
in the hidden layer using a 1GHz P?  processor.

 Figure 10 shows a plot of the sum square
error SSE between the target and the output as a
function of number of cycles that a data set was
presented to the network, the training process
has been stopped at a minimised value of the
mean square error MSE=0.65637%, where the
Error=8.101% . To validate the network a test
process has been carried out using the input data
from the testing area (see fig. 9) and the value of
the mean square error was MSE=1.333% where
the Error=11.545%, the authors believe that
such error is acceptable.

Fig. 10 Rate of convergence

6 Conclusion

The investigation carried out in this paper,
gives us the ability of detection and
discrimination of the overlapping defects in
composite structures. Currently this technique is
capable of detecting the superficial defects.

However, for the deep defects the authors
believe that a distributed high voltages piezo-
actuators on the structure may improve the
sensitivity of the deviation and the deep defects
could be detected.

The results obtained from the artificial
neural network indicate that compressed data of
the measured FRF provides a suitable
methodology for damage detection.
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