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Abstract 
 

A new hybrid genetic algorithm for 
solving optimization problems in 
multidimensional space has been developed. 
The idea behind the method is to 
simultaneously use the numerical models of 
different fidelity. The bulk of computations is 
based on low-fidelity and low time-consuming 
model, while the small amount of computations 
are based on a high-fidelity model for refining 
the behavior of the objective function. As a 
result, the computational accuracy of the 
developed algorithm corresponds to higher 
accuracy model, and total computational time 
is reduced by several times as compared to a 
conventional genetic algorithm. Basic features 
of the developed algorithm are described and 
several examples of applying this algorithm to 
transonic aircraft aerodynamic configuration 
design are presented in the paper. 
 
1  Introduction 
 
 The models of different complexity can 
be employed in numerical simulation of objects 
or phenomena under study. These may be quite 
dissimilar approaches or different levels of 
approximations in the framework of the single 
approach. An example of dissimilar approaches 
in aerodynamics is using the panel methods and 
Navier-Stokes methods for low speed flow 
analysis. The different approximation levels 
can be exemplified by use of coarse and fine 
grids in the framework of the same method. As 
a rule, going to a more complicated model 
entails a significant increase in amount of 
computations. The optimization methods, 

which are presently the most powerful design 
tool, often require hundred or even thousands of 
direct system computations. When performing 
such computations with the use of a high-fidelity 
model, the computation time becomes 
unacceptably large. On the other hand, the use of 
low-fidelity models does not allow one a true 
optimum to be determined. Therefore the 
creation of a hybrid algorithm capable of 
operating alternatively with the models of 
different complexity is a logical solution. With 
the computational process well organized, it is 
hoped that the computer time may be 
considerably reduced as compared to the high-
level optimization while retaining accuracy of 
high-fidelity model.  
 Taylor series approximation in the 
vicinity of a base point is the most simple and 
widely used method of hybrid representation of 
objective functions and constraints [1]. 
Unfortunately, the accuracy of such an 
approximation drastically decreases with the 
distance from the base point. A well-accepted 
approach is to construct a response surface (RS) 
approximation, in particular quadratic RS 
describing the behavior of functions under study 
[2-4]. However, the amount of computations 
required for constructing an approximation 
surface increases quickly (as ½(N+1)(N+2) in 
case of quadratic approximation) as problem 
dimensionality increases. Alternative ideas about 
constructing hybrid algorithms can be met in the 
literature. For example, proposed in [5,14] is the 
local-global approximation implying the 
matching of the values of both the functions and 
their derivatives, obtained in various models. 
The idea of accumulated approximation that 
refines a rough model with increasing available 
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information is employed in [6,7]. The authors 
of ref. 3 propose to approximate not the 
objective function itself but the difference 
between the values corresponding to the 
accurate and rough models. 
 In the present work the hybrid 
optimization procedure is developed as applied 
to the genetic algorithm (GA). The genetic 
algorithms recently acquired general popularity 
[8-11] in view of their simplicity, robustness, 
convenience in parallelizing the solution 
process and capability of finding global 
extremum. The main advantage of the genetic 
approach is that the gradients are not required 
in the search process. Hence, the method is not 
susceptible to the pitfalls of gradient-like 
techniques. The payment for these advantages 
of the GA is large computer time, which 
hinders the use of complex numerical models, 
thus making important all sorts of attempts to 
accelerate the computation process. The details 
of the algorithm and computational test 
examples are presented below. 
 
2  Problem formulation and description of 
the optimization algorithm 
 
 Let there be an N-dimensional space of 
the design variables xi, i=1,N, where an 
extremum of the objective function F(X) is 
being sought. We make no assumptions 
regarding the behavior of the objective function 
in particular it may be even discontinuous. It is 
assumed that there are two direct methods for 
computing the values of the objective function 
in the N-dimensional space: the accurate F(X) 
and approximate G(X) ones. Denote the 
difference between the objective function 
values F(X) and G(X) by ∆(X). The difference 
∆(X) is assumed to be a continuous and 
sufficiently smooth function. Let us take a 
piecewise linear approximation for ∆(X) 
representation: 
 

∆~ (X) =∆(Xk) +СT·(X-Xk)     (1) 
 

where Xk is the nearest point (“node”) where 
both the accurate F(Xk) and approximate G(Xk)  

values of the objective function are known; C is 
the sought vector of linear form coefficients. To 
determine the coefficients ci, we use the 
procedure of interpolation over the neighboring 
“nodes”. 
 

∆~ (Xj) =∆(Xk) +СT·(Xj-Xk),  j=1,2,…N    (2) 
 
For this system of linear algebraic equations to 
be well-conditioned, it is necessary that the 
system of vectors Xj-Xk  be linearly independent. 
Used in the present work is a genetic algorithm 
with a binary representation of the variables, that 
is, the space of design variables is discrete. With 
the space partition being discrete, the 
neighboring nodes often form a dependent vector 
system. Hence, to construct an independent 
system we use the well-known Gramm-Schmidt 
orthogonalization process. If in the process of the 
orthogonalization a certain vector Xj-Xk turns 
out to be a linear combination of the preceding 
ones (that is, the orthogonal projection 
approaches zero), then this node is excluded 
from consideration and the next one is taken. 
Notice, that the Gramm-Schmidt orthogo-
nalization process is equivalent to the reduction 
of a matrix to a lower triangular form and the 
linear form coefficients in a new orthogonal 
basis are determined immediately. For the 
verified values N≤100, the construction of the 
linear form presents no problems and takes less 
than 0.1 sec of the Pentium III 1000 CPU. For 
the problems of greater dimensionality it is likely 
best to use a genetic algorithm with the real 
representation of the variables. In the case of 
strongly oscillating function ∆(X) it seems to be 
reasonable to determine the linear coefficients by 
the least square method. 
 Similar to conventional genetic algorithm 
[8], basic operators of the hybrid GA are 
selection, crossover and mutation. The general 
optimization algorithm is as follows: 
• selection of the design variables xi, i=1,..,N 

and their variation ranges; 
• random formation of NINITB~4·N initial 

vectors (“nodes”) for which the value of F, G 
and ∆ are calculated; 
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• random formation of the initial population 
of  NPSIZE=2÷8·N vectors (individuals). 

Next, the following actions are executed 
for each of the generations: 

 
Selection step: 
1. Calculation of the approximate objective 

function G for every individual. 
2. Calculation of a linear interpolant ∆~  for 

every individual. 
3. Assignment of a fitness proportional to the 

value (G+ ∆~ )S  (where s=1÷4) to every 
individual. Selection of 
NADDB~0.1·NPSIZE additional nodes 
among best candidates for which the 
accurate values of the function F are 
calculated. 

 
Crossover step: 
1. The probability of access to crossover 

proportional to the fitness value is assigned 
for each individual. Such a selection is 
usually referred to as a “roulette” method. 

2. Crossover of the randomly selected pairs of 
individuals. Herein a standard one-point 
binary crossover is adopted. For this 
purpose first the normalized X values are 
transformed into a binary code and 
“chromosome” ribbons are formed for 
every individual. The ribbon length is 
proportional to the number of varying 
parameters and L being the number of bits 
adopted for each variable. The L is 
commonly equal to 4-8, that is, the range of 
parameters variation is divided into 2L-
1=15÷255 segments. Then, the breakpoint 
is determined in a random manner and the 
ribbon portions from the “parents” are 
pasted together in a crossover way. 

3. A portion of individuals 
(NELIT~0.1·NPSIZE) corresponding to the 
nodes which are the best at this point, find 
their way to the next generation without 
changes (elite strategy). 

 
Mutation step: 
1. The generation of “children” obtained as a 

result of the crossover is subjected to an 

additional mutation procedure with a 
probability of Pm~0.005. For this purpose 
“1” is changed to “0” or vice versa in some 
of randomly chosen cells. The mutation step 
is necessary to prevent the population from 
degeneration, that is, from the optimization 
process sticking in a local optimum. At initial 
optimization stages the probability of 
mutation is increased with the aim of 
checking the entire space for the presence of 
the regions with high values of the objective 
function. To curtail the search region the Pm 
is decreased as the global optimum is 
approached. 

Overall, the hybrid GA differs little from 
the conventional GA. In the next section their 
performance and required computer execution 
time will be compared on the basis of some test 
problems. 
 
3  Computational results 
 
 To assess the effectiveness of the hybrid 
optimization algorithm, we first consider a 
demonstration problem. The exact objective 
function is expressed in the following analytical 
form 
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The design variables change within limits 
0<xi<4π. For binary representation, the 8-bit 
subdivision is chosen, i.e., the entire range is 
divided into 255 intervals. Let us assume that the 
difference between the exact F and the 
approximate G solutions is the following long-
wave sinusoidal function: 
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The shapes of the function F and ∆ in the case of 
two variables are shown in fig.1. Let us set the 
population dimension to be NPSIZE=4·N, and 
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the number of nodes being added at each 
generation equal to NADDB=0.1·NPSIZE. The 
probability of mutation is taken to be constant: 
Pm=0.003. 
 

 
 
The test computations were performed for the 
cases N=10 and N=50. The conventional and 
hybrid GAs were compared with respect to 
convergence. Fig.2 shows the convergence 
histories for 100 different trials thus illustrating 
the statistical nature of the evolution algorithm. 
The horizontal line corresponds to the absolute 
maximum of the function F, obtained 
analytically. Considered further are values 
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Fig. 2   Single evolution histories

N=10, N realization=100
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already averaged. At N=10, the result of 100 
realizations were averaged; at N=50, the 

averaging was performed over 10 realizations. 
Figure 3 demonstrates convergence for the test 
cases. It can be seen that the hybrid GA is 
inferior to the conventional one with the equal 
sizes of population NPSIZE, but has the same 
effectiveness for doubled population. In last 
case, the number of computations using the exact 
model is less by a factor of five for the hybrid 
method, while the net gain in the computer times 
depends on the relative costs of the high- and 
low-fidelity calculations. 
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Fig. 3   Comparison of conventional
and hybrid GAs
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  Conventional GA,  NPSIZE=40
  Hybrid GA,             NPSIZE=40
  Hybrid GA,             NPSIZE=80

N=50F
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  Conventional GA,  NPSIZE=200
  Hybrid GA,             NPSIZE=200
  Hybrid GA,             NPSIZE=400

 The second example is a practical 
aerodynamic design of the wing of an advanced 
short/medium-haul passenger aircraft (fig.4). As 
a high-fidelity model, the results obtained with 
the BLWF full-potential code [12] on a fine 
(third) mesh with regard to viscosity were used. 
The computer time for a single run for the wing-
body configuration is about 30 sec on a PC 
Pentium III-1000. As a low-fidelity model 
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computations were used with the same code on 
the second mesh (run time 7 sec). The original 
wing with a sweep angle of χ¼=250 was 
developed earlier using inverse and 
optimization methods [13] for lesser 
Mcruise=0.78. Comparison of pressure 
distributions over the original wing obtained on 
the different meshes is shown in fig.5. The 
solid and dashed lines correspond to viscous 
and inviscid calculations on the second mesh 
respectively, while the crosses present 
computational results for the third mesh with 
viscosity taken into account. It can be seen that 
all results are sufficiently close, i.e. the basic 
 

Fig. 4

 
 
assumption of the developed hybrid method 
holds. Note, however, that the computations on 
the third mesh are much more frequently 
interrupted as a result of the collapse of the 
iterative process of viscous-inviscid interaction. 
If the computation on the second mesh is 
performed successfully whereas the run on the 

third mesh is interrupted, the difference ∆ 
between the two values of the objective function 
is limited in magnitude by a specified bound ∆мах 
(this value can be estimated at the stage of 
selecting the initial set of nodes), while the value 
of the exact function F is taken to be equal to G-
∆мах. The introduction of the limiter ∆мах is also 
useful to exclude large errors of linear 
extrapolation, caused by the presence of 
numerical “noise”. The introduction of a limit on 
the minimum permitted distance between the 
neighboring nodes is made with the same 
purpose. 
 The problem to be solved was to redesign 
a wing for the regime Mcruise=0.80. In the course 
of optimization, 41 variables were used, of 
which 34 variables related to the geometrical 
characteristics of airfoil sections at five basic 
spanwise stations, 6 variables were responsible 
for the variation of the wing planform. Besides, 
the angle of attack was a design variable. As an 
objective function the following complex 
criterion was selected (see [13]): 
 

G
Gp1

D
L

F

0

∆
+

=  

 
where G0 is the takeoff weight,  is the wing 
weight increment, p is a free parameter which 
enables assigning higher priority to aerodynamic 
characteristics or weight (is taken to be p=2.2). 
By using penalty functions limitations were 
imposed on the internal volume of the wing, 
curvature of the wing spars, relative thickness of 
the outer wing. 

G∆
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Fig. 5

 
 
The results of some single realizations of the 
optimization procedure using the conventional 
and hybrid GAs are presented in fig. 6. It can 
be seen that the conclusions on the 
effectiveness of various versions of numerical 
schemes, made earlier on the basis of 
demonstration examples, are, as a whole, 
confirmed by the practical problem of 
aerodynamic design. In particular, computer 
time for the case of the hybrid GA with double 
population is less than that of the conventional 
GA approximately by a factor of 2.5.  The 
comparison of pressure distributions at cruise 
regime M=0.8, CL=0.575 for the original 
(F=19.4) and obtained (F=21.05) wings is 
presented in fig.7. 
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Fig. 6  Evolution histories for practical design problem
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Fig. 7

 Initial wing Optimized wing  
 
The gain in the objective function for the 
optimized wing is mainly caused by an increase 
in the lift-to-drag ratio due to the reduction in 
the calculated value of wave drag from 
CDW=0.00115 to CDW=0.00045. The wing 
sweep increased slightly from 250 to 25.80, the 
relative wing thickness decreased from 
t/c=0.124 to t/c=0.121, but the wing area 
decreased by 1.8% and, as a result, the wing’s 
weight remained practically unchanged. 
 
4  Conclusions 
 
 The presented examples are indicative 
of the applicability of the developed hybrid 
method to solving practical optimization 
problems when numerical methods of various 

levels of complexity are available, and 
particularly to aerodynamic design problems. 
The optimization program is structurally 
completely separated from the direct 
computation programs and can be used for other 
applications. Further increase in the effectiveness 
of the hybrid GA is in sight due to selection of 
other low-level models, for example, more fast 
inviscid computations on the second mesh (see 
fig.5 and [14]), or even such a universal 
approximator as the neural network [15].  
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