
ICAS2002 CONGRESS

772.1

Abstract

In this paper we emphasize how a computer
science technology, namely the Object-Oriented
(OO) approach, is able to help modeling and
(in)validating large and complex systems such
as ATM systems, airport ATC…

Such models are the right basis for a deep
analysis of properties that current or future
systems should have. Systems can be modeled
from two points of view: static and dynamic.

We will focus our presentation on the
methodological aspects. First of all we have a
glance on our methodology, and the used
notations. We then will exhibit a small example
extracted from a current large project
conducted at ONERA.

Finally we will show how our models are a
firm basis from which fast prototypes can be
easily derived. These prototypes are the first
development steps for Decision Support Systems
(DSS) that can be developed and implemented
according to some strong requirements.

1 An OO methodology for mastering the
complexity of large and complex systems

Our methodology is largely derived from the
Fusion method [1] that is an OO method using
the UML [2] notations.

In our methodology, we apply a general
System Engineering process as this one
recommended by the standard IEEE 1220 [3]. In
other words we have adapted the Fusion method
to this standard. We are interested by the static

and dynamic properties the models we build
have or have not.

In the following we introduce our
methodology from the point of view of the
development. But it may be applied in the same
way for existing system.

1.1 Short review of the methodology
Our methodology takes care both of the above
characteristics of ATM systems and of the fact
that many ATM sub-systems do exist. Indeed
we do not suggest a methodology for building
only new systems, but rather a methodology for
representing both current and future systems,
regarded as improvement of existing systems.
Here is the main keyword of our methodology:
the ability of extending and improving existing
systems!

Our methodology is composed of four
main phases:
1. Representation, both from a static and

dynamic point of view, of existing systems
or of knowledge of the domain we are
considering: the by-products are UML
models.
Static and dynamic models allow giving
different and complementary points of view
about the system under consideration.
Indeed before any real development it is
mandatory well understanding the system
we are designing. This can be achieved by
means of complementary models as those
offered by the UML notations.

2. Validation of the UML models by real end-
users.

AN OBJECT-ORIENTED METHODOLOGY FOR
MANAGING THE COMPLEXITY OF ATM SYSTEMS

Michel LEMOINE and Pierre DARBON
ONERA Centre de Toulouse

2 avenue E. Belin
31055 Toulouse CEDEX

Michel.Lemoine@onera.fr

Keywords: object-oriented approach, static and dynamic descriptions, validation, DSS, CDM,
ATM systems

M. Lemoine & P. Darbon

772.2

After modeling a system, it is mandatory to
validate it in order to guarantee it meets its
requirements. This is done informally
according to an inspection as suggested by
[6]. For ATM systems end-users are Pilots,
Air Traffic Controllers subsidiary of Civil
Aviation Authorities, Airport Authorities...

3. Improvement of models, and again their
revalidation by end-users.
In our methodology each validation step is
followed by an improvement step, which
consists of redesigning the invalidated
models. These redesigned models are again
validated/invalidated until we arrive to a
full validation by end-users.

4. Derivation of Decision Support System
(DSS) and/or Collaborative Decision
Making (CDM).
In our methodology we are not considering
a complete development process. We stop
at the level where fast prototypes can be
easily derived from improved and validated
UML models. DSSs or CDMs we deliver
are only fast prototypes that can be installed
in real situation, but of course that are not
as accurate as a final system.
This four-phase methodology is based on

the Fusion method and UML notations. We
review the four phases in the following.

1.2 More details on our OO methodology

1.2.1 Phase 1: modeling existing systems
Model building of existing systems or the
knowledge we have about the domain derives
directly from the Fusion method.
We first of all introduce Use Cases that are

responsible for identifying: the actors of the
system, its functionality, and its boundary.
It is not our purpose to describe in details
how the Use Cases are used, nevertheless it
should be understood that using a strong
methodology is the only way of success for
large and complex systems. This first step
has to be validated by end-users in order to
guarantee that no important functionality
and none actor have been forgotten. It is as
well important to clearly identify the

boundary of the system, i.e. what
functionality belongs or not to the system.

2. We identify, from each Use Case, a set of
dialogs or scenarios describing all the
available interactions between the system
under consideration and its actors1. The
right identification of scenarios corresponds
to designing a robust2 system. Indeed
scenarios must encompass both nominal
and non-nominal actions.

3. We then translate some appropriate
scenarios into Sequence Diagrams, one of
the UML notations. This third step allows
introducing some potential objects offering
services. A service is nothing more than an
operation, i.e. function provided by an
object.

4. We derive, from all Sequence Diagrams, a
Class Diagram. A Class Diagram represents
the static view of a system. We only
represent classes, seen as a set of objects
with the same properties, and relationships
between classes.

5. Finally from each class is built a State-
Transition diagram that allows considering
the dynamic behavior of any instance of the
class. During this step (part of) the
robustness of the system is established.
Indeed non-nominal actions are reintroduced
in the dynamic behavior of the class where
these non-nominal actions take place.

1.2.2 Phase 2: validation of static and dynamic
models
The second phase corresponds to a validation
phase, validation meaning: am I building the
right system? whereas verification means: am I
building the system right? as proposed by W.
Boehm in [7].

In other words, do the abstract models
represent what we expect? Each time we
produce a new set of information as described

1 An actor is either an end user (a pilot for instance) or an
external system with which the system is interacting (for
instance the forecast).
2 A system is considered as robust if, and only if, we can
guarantee every event that may occur during its life time
is considered and treated in such a way the system will
never be destroyed.

An OO methodology for managing the complexity of ATM systems

772.3

above, end-users must be asked to validate
them.

This is easier than with any other
methodology. Indeed the UML notations are
both: simple - the models presented below are,
hopefully, convincing, and meaningful - to
each used icon of UML notations corresponds a
clear semantics.

Validation is mandatory for each kind of
models. It allows not going on the development
process when a failure is discovered. It must be
noticed that we must trust end-users each time
they claim there is an error. But when they
claim there is no error, unfortunately we can’t
trust them. Thus the inspection approach leads
more often to invalidation than to the guarantee
that what has been designed is valid!

1.2.3 Phase 3: improvement of existing models
Having designed a set of application validated
OO models, we are able to attack the next phase
that will help improving existing systems.

This is possible because we can take
advantage of the easy-to-modify object-oriented
capability. In the OO approach, modifying the
design consists mainly of modifying and/or
updating the Class Diagram. Indeed errors
discovered by end-users correspond most of
time either to misinterpretation by the designers,
or discovering that some information, date, etc.
are missing.

For the former, updating the different
models is quite easy since most of the
supporting tools allow doing it in a very simple
way. Moreover, since the main interest of the
OO approach is to give responsibility to each
object, any update is local to a few objects, very
often one and its relationships with the others.

For the latter, again updating the different
models is quite easy since in general adding
new information consists of adding either new
classes, or adding new attributes/operations to a
class, or adding new relationships between
existing classes. In the latter each update does
not disturb diagrams since information is added,
without changing others.

In both cases we may add/remove
information without difficulty while preserving
almost existing and secure properties of the

modeled system. We present in the following a
rather convincing example.

1.2.4 Phase 4: designing and prototyping of
DSSs and CDMs
This final phase is a direct consequence of the
preceding one.

As soon as some improved models of an
existing system are available, we follow the
Fusion method in order to transform some of its
parts into either a fast prototype or an
operational system.

The latter is the classical way of
developing software with the OO approach. In
our methodology we recommend to set up this
step only when the former has been applied.

The former, which corresponds to a
prototyping step, has as main result a software
tool that can be carefully tested and checked by
the concerned end-users.

In the example presented below we have
restricted ourselves to fast prototyping of a
DSS.

2 Application of our methodology to an ATC
subsystem

2.1 An ATC airport subsystem: a few
characteristics
ATM and ATC systems have, among others, the
following characteristics:
• They are critical: they must respect very

hard safety constraints imposed by the
aviation authorities.

• They are real-time: they must respect strong
time constraints.

• They are inherently complex: the amount of
available information is very important.
They must take into account different kind
of information coming from different
sources:

- Information provided by the radar
system and other sensors: magnetic
loops for instance.

- Information pertinent to airlines:
payload, which corresponds to a
weight of aircraft, number of
passengers.

M. Lemoine & P. Darbon

772.4

- Information from the regulation
authorities: the Central Flow
Management Unit (CFMU) for all
the European flights gives the
available times.

- The weather conditions play a
significant role. They may evolve
quite frequently.

New procedures are very often imposed:
• By airline companies both from an airside

and landside point of view.
• By ATC authorities in order to improve

safety or to better control the environmental
impact.

• By aircraft constructors: new technologies
such as D-GPS, Data Link, are directly
implemented in aircraft.

2.2 An example based on an airport ATC
subsystem: the AdF project
In order to convince the reader of the usefulness
of our methodology, here is a small example
borrowed from the Aéroport du Futur project
[4] and [5].

2.2.1 Building a DSS able to identify conflicts
between taxiing aircraft
When aircraft run on taxiways many problems
may occur. Thus the ground air traffic
controller who is standing in the tower has the
responsibility of taking care of the aircraft
traffic. In other words he/she must consider the
situation – aircraft running on taxiways – and
send them the right orders. He/she can stop or
move aircraft, depending on their relative
distance whenever he/she is convinced there is
a potential danger.

We model the situation from a functional
point of view as shown in Figure 1. We have
identified:
1. Two actors: the Pilot and the Air Traffic

Controller (ATC).
2. One main functionality: the Conflict

Detection Use Case that will become a
DSS.

3. Three kinds of communication: one
between the Pilot and the ATC, one
between the Pilot and the Conflict
Detection system, one between the ATC
and the Conflict Detection system.
The communication between the two

actors corresponds to the current situation. It is
no longer part of our Conflict Detection
system.

The communications between any actor
and the Conflict Detection system are the only
ones we will consider because they correspond
to all the possible interactions between the
Conflict Detection system and the two actors.

Confl ic t De tect ion

ATC Pilot

Figure 1: Use Case of a DSS monitoring the aircraft movement

An OO methodology for managing the complexity of ATM systems

772.5

2.2.2 A simple take-off scenario
The interaction between an actor and a Use
Case must be described by informal scenarios,
and then by semi formal sequence diagrams.

In order to be able to design a robust
system, we have suggested considering two
kinds of scenarios: those that correspond to
nominal situations, and those that correspond to
non-nominal situations.

It is of first importance to identify clearly
theses two kinds of scenario, and to show that
they partition the space of possible scenarios.
This is the only way to guarantee that the
system to be designed is robust.

The following scenario describes a
conflicting scenario. It has been validated by
the ATC of the Blagnac Airport - Toulouse.

Informally when an plane (here the object
ABC618, instance of Plane class) will leave its
gate it must obey the following scenario, which
is subdivided into a non conflicting one,
followed by a conflicting one.
1. It3 asks for a start-up and departure

clearance before starting its engines.
2. This clearance is given by the object John, a

ground air traffic controller, who knows the
awaken flight plan4 of ABC618.

3. Then the object ABC618 asks for an
approval for the push back procedure.

4. John answers positively the plane, which
then transmits the push back approval to the
tow manager.

5. John asks the planning management (it can
be either an automatic system or John
himself) to add ABC618 into its planning.

6. A taxi clearance is given to the plane,
allowing it to taxi.

7. Now John activates the ABC618 flight plan
in order to inform the Flight Plan
Processing System of the airborne time.
Here ends the nominal scenario for

leaving the gate and taxiing. We continue the
scenario on the taxiway.
8. A sensor i.e. the surface radar monitors all

the planes on the platform.

3 It represents the plane!
4 The awaken flight plan corresponds to the initial data of
the flight plan.

9. It informs as well a conflict detection
system (which in classical ATC is the
John’s responsibility) of all the events -
mobile movements … - happening on the
platform.

10. Another object, plane DEF233, is detected
by the sensor.

11. The conflict detection system is able to
detect a potential conflict between ABC618
and DEF233.

12. John, informed by the conflict detection
system of this potential conflict, asks the
object DEF233 to stop taxi.

13. Once the conflict is solved, John asks the
DEF233 to resume taxi.

14. And so on.
This scenario is then translated into a

sequence diagram (see Figure 2) on which we
identify objects, and their communications. In
OO terminology, objects exchange messages.
In any communication there are two objects:
the emitter, and the receiver.

Here we have identified as objects:
- planes ABC618 and DEF233,
- some sensor (for instance a surface radar),
- the flight plan of ABC618,
- the planning which is a tool that helps the

ground ATC,
- the ground ATC who represents one of the

actor,
- the tow manager whose responsibility is to

initiate some operations,
- and finally the DSS, another tool that

detects conflicts.
It must be noticed that we have decided just to
design a DSS. But as it can be seen from these
scenarios and the corresponding sequence
diagram, it can be easily extended to a CDM
system, i.e. a conflict detection system able to
take some right decisions.
Having validated the sequence diagrams (we
have been obliged to consider all the other
known conflicts), we can move to the next step:
the construction of the Class Diagram.

M. Lemoine & P. Darbon

772.6

2.2.3 The Conflict Detection Class Diagram
The Class Diagram (see Figure 3) is part of the
Aéroport du Futur Class Diagram. We have
restricted it to the set of classes that appear in
the above scenario.

Any class i.e. the set of objects it
represents, has attributes or internal data that
are not shown here. It offers services that other
objects can require as soon as they are in its
scope. Moreover there are relationships

between classes, which represent strong links
that do exist at run time. For instance the object
Tow manager is linked with an object (here one
and only one instance of a Plane) with which it
is able to exchange information. The duration
of links depends on the context. For the Tow
manager and the Plane, this link is limited to
the push back procedure.

FPL_ABC618 :
Flight plan

ABC618 :
Plane

John : Ground
ATC

 : Sensor : Tow manager : Planning : DSSDEF223 :
Plane

give_start_up_&_departure_clearance()

give_taxi_clearance()

give_planning()

add_plane()

compute_planning()

taxi_monitoring()

stop()

give_approval()

init_pushback()

taxi()

start_engines()

conflict_detection()

taxi_monitoring()

active_FPL()

Figure 2: The sequence diagram associated to the scenario of §2.2.2

An OO methodology for managing the complexity of ATM systems

772.7

It must be noticed that a Class Diagram
does not show how the services offered by
Classes are used. This is represented in other
Diagrams such as State Diagrams and Activity
Diagrams. Here the relationships translate the
fact that for a while an object such as Tow
manager is in Relation with an Object such as
Plane. From the Class Diagram point of view,
an object Tow manager is created each time a
plane pushes from its gate. It dies as soon as its
activity is off. On the other hand any plane is in
relationship with 0 or 1 object Tow manager.
And so on.

One main interest of such a Class Diagram
is that only static information is modeled.
Moreover it is obvious that we have reused
without changing them other classes still
existing in other Class Diagrams. This is
clearly part of the interest of the OO approach.
We are designing a new system – here the
Conflict Detection system – based on previous
class diagrams that model other part of the
airport air traffic control.

2.2.4 Dynamic aspects: a state-transition
diagram
Having modeled static aspects, it is time to
model behavioral aspects. For this purpose we
describe state-transition diagrams, their
notations having been borrowed from D. Harel
[8].

In a state-transition diagram we described
the complete behavior that all the class
instances follow. For instance, let us
considering the behavior of a plane as this one
represented in Figure 4.

Starting from an initial state, the plane
arrives in an intermediate state (Interm1) where
it does wait for the first clearance it has asked.
It must be noticed that even the emitter is the
plane, the corresponding event is not part of the
plane state-transition diagram but part of the
ground ATC sate-transition diagram. Indeed in
a state-transition diagram, we represent only
the events received by the instance of the class
under consideration. Thus being in the state
Interm1, the plane is waiting for the clearance

Radar

...

Magnetic
loop

...

Clock

...

Tow manager

...

init_pushback()
Flight plan

...

active_FPL()

Planning

...

compute_planning()
add_plane()
update()

Ground ATC

...

give_start_up_&_departure_clearance()
give_planning()
give_approval()
give_taxi_clearance()

1

1

1

1

uses

0..n

1

0..n

1

knows

Plane

...

taxi()
stop()
start_engines()

1

0..n

1

0..n

manages

0..1

1

0..1

1

monitors

1

1

1

1

belongs to

DSS

...

taxi_monitoring()
conflict_detection()
give_information()

11 11

uses

1

1

1

1

uses

1

0..n

1

0..n

knows

Sensor

...

1

1..n

1

1..n

linked...

Figure 3: Class Diagram

M. Lemoine & P. Darbon

772.8

corresponding to the service
give_start_up_&_departure_clearance offered
by the ground ATC.

As soon as the answer is positive, the
plane state becomes Start Engines in which it
can start its engines.

Then it moves to the Interm2 state in
which it is waiting for the push back clearance.
When it arrives it moves in the Interme3 state
in which it is waiting for the taxiing clearance.
When it arrives the plane state becomes
Taxiing in which the plane is running on
taxiways.

During taxiing the plane can either be
stopped or arriving to its final state. In the
former it will take off, and its state becomes
undefined. In the latter its state becomes Wait
until a new clearance is given. As soon as the
clearance arrives the plane restarts taxiing. And
so on!

It must be noticed that at any stage a few
problems may arrived. Some of them have been
stored as [problem = TRUE]. In other words
any time a problem arrives the state plan
becomes undefined.

2.2.5 Building a prototype for the Conflict
Detection system
As described in our methodology the next step
consists of deriving fast prototypes from the
designed models.

Part of the work is easy. Indeed most of
the commercial OO tools do support an
automatic translation of the Class Diagram. In
other words we can derive automatically an
implementation of the set of classes that
constitue the Class Diagram.

This translation is not complete since we
have not provided the operation semantics in
our models. We do that by translating the
informal semantics expressed in the do/
statement that appear in each state-transition
diagram. It must remeber that to each class is
attached a State-Transition Diagram that
describes the global behaviour of each instance
of the class. In the do/statement we just express
informally what is performed when arriving in
the state.

The language which seems the most
suitable for fast prototyping is Java [9]. It is

Init

do/ Init ialisation

[problem = TR U E]

Interm 1

do/ N OP

[c learance = False]

Start Enguines

do/ s tart_engines

[c learance = TR U E]

Interm 2

do/ N OP

[c learance = F ALSE]

Push Back

do/ push_back

[c learance = TR U E]

Interm 3

do/ N OP

[c lear ance = FALSE]

Taxiing

do/ tax iing

[c learance = TR U E]

W ait

do/ s top

[c learance = FALSE]

[problem = TR U E]

[c learance = TR U E]

s top

end_tax iing

[pro blem = TR U E}]

Figure 4: the state diagram associated to any plane

An OO methodology for managing the complexity of ATM systems

772.9

very simple to use. It supports all the safe
principals of OO. Moreover Java is platform
independant.

The main interest of any prototype is to
give access to another kind of validation.
Indeed end-users such pilots, ground ATC,
airport authorities, etc. are not familiar enough
with UML notations. Even it is possible to
educate some of them, the best way to validate
a system remains in using an operational model
of the system to be developed.

As far as the fast prototype performances
are good enough, and as far as it is a realistic
approximation, it is obvious that end-users may
interact with it and validate it.

3. Conclusions

Our methodology, briefly sketched above,
allows first of all managing the complexity of
large systems. In the Aéroport du Futur project
more than 200 classes and relationships have
been identified.

A second important point is that end-users
can both informally and formally validate all
the developed models, restricted to the
application level. In the case of the Aéroport du
Futur project, all the diagrams and their
contents have been validated by end-users,
mainly ATC and pilots.

A third point is relative to the easiness we
can improve existing models in order to take
into account for instance new procedures. In
the above we have suggested how introducing
one simple improvement about a Conflict
Detection system an ATC was aware of. He
established indeed the requirements. Of course
he also explained how the conflicts are
detected, and what actions must be taken when
such a situation arises. It must be noticed that
conflict detection is depending on the ATC
who is in charge of the air traffic management.
Indeed the notion of conflict is not formally set
up by the air traffic regulations. Consequently,
each time we, as computer scientists or
software engineers, design a DSS or a CDM
system we formally described a situation that is
in no way formally described in books or by
procedures. In other words we are faced with

some problems that are not necessarily
considered in the same way by other ATCs.
Their validation is then mandatory!

The example given above has been
developed in a few weeks. It was formally
validated by a set of ATCs. It then was
transformed into a Java application, taking
advantage of still existing Java classes.

The last and important advantage of our
methodology is that having developed a first
prototype, as above in Java, it can be easily
transformed into a Federe that is easily
integrated into a large HLA [10] Federation. It
is important to consider we have to develop
large simulations, integrating many small more
or less independent simulators, i.e. fast
prototypes, as suggested in [5].

References
[1] Coleman D. et al. The Fusion Method. Object-

Oriented Development. Prentice Hall International.
1994

[2] Booch G., Rumbaugh J., Jacobson I. The Unified
Modeling Language User Guide. Object Technology
Series, Addison-Wesley, 1999

[3] Standard for the Application and Management of the
Systems Engineering Process. IEEE 1220-1998

[4] Lemoine M. Managing the Airport Complexity: Role
and Design of an Information System. 22nd ICAS
Congress (International Council of the Aeronautical
Sciences), Harrogate, UK, August 2000

[5] Adelantado M. Experimenting the HLA framework
for the ONERA project “Airport of the Future”. Fall
Simulation Interoperability, SISO 1999, Workshop,
Orlando, USA, 1999

[6] Fagan M. E. Design and Code Inspection to Reduce
Errors in Program Development. I.B.M. Systems
Journal, Vol 15, n° 3, 1976

[7] Boehm W. Software Engineering. IEEE
Transactions on Computers, Vol. 25, p. 1226-1241,
December, 1976

[8] Harel D. Statecharts: A Visual Formalism for
Complex Systems. Sci. Comput. Programming, 1987

[9] Flanagan D. Java in a Nutshell, 4th Edition.
O’Reilly, 2002

[10] High Level Architecture, IEEE Standard P 1516,
2000

