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Abstract  
An analytical tool is presented to perform program-
level valuation of commercial aircraft designs.  The 
algorithm used expands upon traditional Net 
Present Value methods through the explicit 
consideration of market uncertainty and the ability 
of the firm to react to such uncertainty through real-
time decision-making throughout the course of the 
aircraft program.   
The algorithm links three separate analytical 
models—performance, cost, and revenue—into a 
system-level analysis by viewing the firm as a 
decision-making agent facing continuous choices 
between several different “operating modes.”   
An optimization problem is set up and solved using a 
dynamic programming approach to find a set of 
operating mode decisions that maximizes the firm’s 
expected value from the aircraft project.  The result 
is a quantification of value that can be used to make 
program-level design trades and to gain insight into 
the effects of uncertainty on a particular aircraft 
design. †‡ 

1  Introduction 
Numerous methods have been developed to 

contribute to the aircraft design process.  Many have 
focused on one or more technical disciplines, such as 
structures or aerodynamics, while others have 
addressed program-related parameters, such as cost, 
revenue, or schedule [1,2].  There have also been 
significant advances in the state-of-the-art for 
multidisciplinary technical analysis and optimization 
[3,4,5].  Few, however, have combined the technical 
and program-related analyses into a single design 
framework.  The purpose of such a framework 
would be to yield a design process that uses program 
value as its objective function.  Program value is 
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defined here as the amount a buyer would be willing 
to pay for the opportunity to invest in and build a 
particular aircraft design.  Because a commercial 
aircraft is ultimately designed to generate value for 
its manufacturer, it is reasonable, albeit perhaps 
idealistic, to design the aircraft and its program to 
maximize its value as opposed to minimizing its 
weight or cost, or maximizing its revenue.   

The purpose of this paper is to develop a 
framework that enables design for value.  The 
framework consists of a quantitative tool used to 
quantify the value of the entire program associated 
with a given aircraft design.  The tool relies on and 
links several analytical models that describe the 
performance, cost, and market-related characteristics 
of the aircraft in question.  While the models are not 
described in depth here, this paper focuses on the 
algorithm used to link them and find a measure of 
program value.   

The remainder of this paper is organized as 
follows.  Section 2 formulates the aircraft program 
design problem.  Section 3 introduces a stochastic 
dynamic programming (DP) approach, which is first 
described in general, theoretical terms, as applicable 
to a wide variety of problems, and then described in 
the context of a variation of DP, referred to as the 
“operating mode” framework.  Next, Section 4 
applies the DP approach specifically to the solution 
of the problem described in this introduction.  
Several variations and extensions are made to the 
basic DP approach, and a complete valuation 
algorithm is synthesized.  It should be noted that the 
algorithm depends critically upon a set of models 
constructed to characterize the behavior of the 
endogenous and exogenous variables described 
above—roughly speaking, performance, cost, and 
revenue.  These models are detailed in [6].  Finally, 
Section 5 uses a brief example to demonstrate the 
application of the algorithm, and Section 6 
concludes. 
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2  Problem Formulation 
The basic problem to be solved may be broken 

up into three parts:  endogenous variables—those 
that are internal to the aircraft development process 
and which may be controlled; exogenous 
variables—those that are external to the aircraft 
development process and may not be controlled; and 
a statement of the problem objective. 

2.1 Endogenous Variables 
The producing firm has a set (or “portfolio”) of 

aircraft designs, any of which it may choose to 
develop and bring to market.  To bring a concept to 
market, the firm must go through several phases:  
detail design, tooling and capital investment, testing, 
certification, and finally production.  Each phase 
entails some required expenditure of time and 
money, and the firm may decide, within reason, 
when to execute each phase.  As for the aircraft 
designs, each is defined by a set of component parts 
(e.g., inner wing, outer wing, fuselage bay, etc.).  
Some parts may be common across several aircraft.  
This commonality results in potential cost impacts in 
both development and production. 

2.1 Exogenous Variables 
Given that an aircraft design is in production, 

the evolutions of sale price and quantity demanded 
per unit time are unaffected by any decisions made 
by the firm.  Sale price evolves according to a steady 
growth rate, while quantity demanded evolves as a 
stochastic process, characterized by parameters such 
as drift rate and volatility.  Each period that an 
aircraft design is in production, as many units are 
built and sold as are demanded, up to the maximum 
production capacity of the plant. 

2.3 Problem Objective 
  Given the above endogenous and exogenous 

variables, which describe the aircraft development 
process and the market for the aircraft, the objective 
is to find a set of optimal decision rules governing 
(1) which aircraft to design, (2) which aircraft to 
produce, and (3) when; as a function of the demand 
level and the aircraft built to date at any given time.  
Achieving this goal will necessarily yield the overall 
program value, because program value is the 
objective function used to find the optimal decision 
rules. 

 

3  Dynamic Programming (DP) 

3.1 General Theory 
A stochastic dynamic programming problem 

may, in general, be framed in five parts1: 
1. State variables continuously evolve and 

completely define the problem at any point in 
time.   

2. Control variables are set at any point in time by 
the decision-maker, and generally impact the 
evolution of the state variables.   

3. Randomness.  One or more of the state variables 
is subject to random movements, and as such, 
involves a stochastic process.   

4. Profit function.  The goal of the dynamic 
programming method is to maximize some 
objective function, in this case the program 
value.  The value is, in general, a function of  
certain “profits” incurred every period.  These 
profits are functions of the state variables. 

5. Dynamics represent the set of rules that govern 
the evolution of the state variables, including the 
effects of randomness, the effects of control 
variables, and any other relationships. 
 
The problem is further defined by a time horizon 

(which may generally be finite or infinite), and a 
sequence of time periods of length ∆t, which 
together comprise the time horizon.  The objective, 
then, is to find the optimal vector of control 
variables as a function of time and state, such that 
the total value at the initial time (beginning of the 
time horizon) is maximized.  Equivalently, the 
objective may be stated recursively, as an expression 
for the value at any time, t, as: 
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where Ft(st) is the value (objective function) at time t 
and state vector st; πt is the profit in time period t as 
a function of the state vector st and the control vector 
ut; r is some appropriate discount rate (addressed in 
Section 3.2 below); and Et is the expectation 
operator, providing in this case the expected value of 
F at time t+1, given the state st and control ut at time 
t.  Note that the expectation operation for next 
period is affected by the control decision and the 
state in this period. 

                                                 
1 This view of dynamic programming was suggested by 
D. Bertsimas, MIT Sloan School of Management. 
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The above is known as the Bellman equation, 
and is based on Bellman’s Principle of Optimality:  
“An optimal policy has the property that, whatever 
the initial action, the remaining choices constitute an 
optimal policy with respect to the subproblem 
starting at the state that results from the initial 
actions” [7].  In other words, given that the optimal 
value problem is solved for time t+1 and onward, 
the action (choice of u) maximizing the sum of this 
period’s profit flows and the expected future value is 
also the optimal action maximizing value for the 
entire problem for time t and onward.   

The Bellman equation can therefore be solved 
recursively or, for a finite time horizon, iteratively.  
For a time horizon of T, this is done by first 
considering the end of the horizon, at time tT.  At 
this point, there are no future states, and no future 
expected value of F.  Therefore, equation (1) 
reduces to  

{ }),(max)( TTTuTT ussF
T

π=  (2) 

The optimal control decisions, uT, given the final 
state, sT, are readily found.  This process is repeated 
for all possible final values of the state vector, sT.  
Next, it is possible to take one step backwards in 
time, to t = T - 1.  Now, equation (1) may be applied 
to find the optimal control decisions, uT-1, because 
the expectation term, E[…], is easily calculated as 
the probability-weighted average of the possible 
future values of FT.  Again, the optimal control 
values, uT-1, are found for each possible value of sT-1.  
At this point, the procedure is repeated by taking 
another backward timestep to T – 2, and continuing 
to iterate until the initial time, t = 0, is reached.  At 
this point, the value F0 is known for all possible 
initial values of the state, s0, and it is the optimal 
solution value.   

3.2 Specific Application:  Operating Modes 
It is possible to extend the general DP 

framework presented above to a specific application 
useful for the valuation of projects.  The application 
is centered around the concept of “operating 
modes,” and has been demonstrated by several 
authors to be useful in modeling flexible 
manufacturing systems [8,9].  Much of this 
description is based upon their work. 

Consider a hypothetical factory, which at the 
beginning of any time period may choose to produce 
output A or output B.  Let the prices for which it can 
sell each of the outputs be different functions of a 
single random variable, x, so it may be more 
profitable in some situations to produce one output 

than the other.  However, each time the factory 
switches production from A to B, or vice versa, a 
switching cost is incurred.  Thus, it may not always 
be optimal to simply produce whichever output 
yields the higher profit flow in the current period.  If 
there is a high probability of a switch back to the 
other output in the future, it may be preferable to 
choose the output with the lower profit this period. 

This example lends itself well to the dynamic 
programming formulation.  In this case, the control 
variable ut is the choice of output, or “operating 
mode,” for the period beginning at time t:  A or B.  
The state vector, st, consists of two elements:  the 
random variable, x, and the operating mode from last 
period, mt.  The operating mode m will have one of 
two possible values, say 0 or 1, representing output 
A and B.  Depending on the value of mt, the control 
variable choice ut may result in payment of a 
switching cost.  Specifically, the Bellman equation 
may be re-written for this example as: 
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Note that the state vector s has been separated 
into its two components—the random variable x and 
last period’s operating mode m.  Here, the profit 
function term from equation (1) has been replaced 
by the difference between a profit flow and I(mt, 
ut)—the switching cost from mode m to mode u.  
This will equal zero if mt = ut and there is in fact no 
switch made, and will be nonzero otherwise.  Note 
also that the future value, Ft+1 (for which the 
expectation is found), is a function of the future 
random variable, xt+1, and of the current control 
decision, ut, because ut will become the “operating 
mode from last period,” mt+1, at time t+1.  In other 
words, mt+1 = ut, because as soon as the control 
decision (ut)  is made, the mode in which next period 
will be entered (mt+1) is set. 

As before, this equation can be solved iteratively 
by starting at the final time period and working 
backwards.  Thus, the value of the factory project is 
found at time t = 0 as a function of the initial value 
of x and the initial operating mode m0.  The value is 
arrived at by finding the optimal set of decisions ut 
for all times t (starting at t = T) as a function of 
random variable xt and “operating mode from last 
period,” mt. 

One additional point regarding equation (3) 
bears discussion:  the selection of an appropriate 
discount rate, r.  This is a nontrivial task; in fact, the 
selection of a discount rate is traditionally one of the 
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most difficult and sensitive steps in capital 
budgeting.  For an in-depth discussion of 
discounting as it applies to this valuation technique, 
refer to [10].   

While the factory example is very simplistic, the 
operating mode framework can be extended to any 
number of random variables and any number of 
modes.  Operating modes may be chosen to 
represent not only production modes, but other 
decisions, such as waiting (doing nothing), 
abandoning the project for a salvage value, or 
investing in capital equipment  to have the option of 
going into production at a later period.  Each of 
these possible modes would have its own profit 
function associated with it, and its own set of 
switching costs to and from all other possible modes. 

The operating mode framework forms the 
foundation for the approach outlined below, which 
applies dynamic programming to the aircraft 
program valuation problem. 

4  Applying DP to the Aircraft Design Problem  

4.1 Overview 
The dynamic programming approach described 

above is adapted here to solve the problem of 
optimal decision-making in managing an aircraft 
program.  As this problem is solved, the net value of 
the program is found—just as with any optimization 
problem, finding the value-maximizing independent 
variable(s) necessarily involves finding the 
associated maximum value.   

The approach is presented in several steps:  first, 
a connection is made to the general dynamic 
programming theory introduced in Section 3.1; 
second, a further connection is made to the specific 
application of dynamic programming to an 
“operating mode framework”; and finally, the entire 
algorithm is summarized. 

4.2 Connection to General Theory 
The aircraft program valuation algorithm is 

briefly overviewed here in the context of the five 
parts that frame a dynamic programming problem. 
1. State variables.  For each new aircraft design 

being simultaneously considered, two state 
variables exist:  quantity demanded, which 
evolves stochastically, and the “operating mode 
from last period” (as introduced above) for that 
aircraft.   

2. Control variables.  For each aircraft design, one 
control variable exists:  the choice of operating 
mode for the current period. 

3. Randomness.  For each aircraft design, one state 
variable exists with random characteristics:  the 
quantity demanded.  It evolves from a given 
initial value as a stochastic process. 

4. Profit function.  The profit function during each 
period is the sum of profits associated with the 
operating modes for each aircraft, less any 
switching costs incurred during that period.  For 
production operating modes, the profits are 
simply revenues less recurring costs; however, 
other modes exist for which the profit functions 
represent non-recurring costs.   

5. Dynamics.  There are two types of state 
variables in this formulation:  quantity 
demanded, which evolves as a stochastic 
process; and operating mode, which evolves as 
dictated by the control variables (operating 
mode decisions).   
 
The time horizon, as defined in this application, 

is 30 years, which is a typical valuation timeframe 
for an aircraft program.  For purposes of simplicity 
and computation time constraints, the time period 
length, ∆t, was selected to be 1 year.  For the same 
purposes, the maximum number of aircraft designs 
to be simultaneously considered by the algorithm 
was set to two.   

The objective of the problem, then, is to find the 
vector of optimal control variables (operating 
modes), as a function of time and state, that 
maximizes the value of the program at time t = 0.  
This value is consistent with the definition proposed 
in the introduction:  it is the price a potential buyer 
would be willing to pay for the opportunity to invest 
in the project defined by the aircraft design(s) and 
associated existing capital equipment.   

4.3 Connection to Operating Modes 
Whereas the operating modes introduced in 

Section 3.2 were simply modes of production, this 
formulation extends the operating mode framework 
to represent each phase of the lifecycle of an aircraft 
program.  The purpose of this extension is to model 
the significant time and investment required to 
develop an aircraft, before any sales are made.  
Therefore, the non-recurring development process, 
which may last as many as six years, is represented 
as a chain of “operating modes.”  Clearly, none of 
these modes entails a positive profit flow.  Rather, 
each has some negative “profit” associated with the 
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non-recurring investment for that particular phase of 
the aircraft development cycle.  The only incentive 
for the firm, and the optimizer, to enter one of these 
modes is the opportunity it creates to switch to the 
following development mode in the following 
period, and so on until the production mode is 
reached.  A graphical representation of the operating 
modes for a single aircraft design is shown in Figure 
1.  The diagram is similar in concept to a Markov 
chain, where the arrows represent possible 
transitions between modes.  In fact, the arrows 
connecting the modes represent switching costs that 
are finite—if two modes are not connected by an 
arrow, the associated switching cost is infinite. 

 
Figure 1.  Operating mode framework for a single aircraft 

Mode 0 represents the initial conditions:  the 
firm is waiting to invest.  Modes 1 through 3 
represent roughly the first half of the development 
effort, primarily detailed design.  Note that several 
operating modes are shaded.  The shading indicates 
an infinite cost not to switch to a different mode.  In 
other words, it is impossible to remain in a shaded 
mode for more than one period.  Thus, once the firm 
commits to a detail design effort, it is assumed 
impractical to stop halfway through.  However, it is 
possible to stop before the second half of 
development—here, mostly tooling and capital 
investment—begins.  Once this development stage is 
initiated, a capacity choice must be made:  a low, 
medium or high capacity production line.  This 
determines the maximum demand level that may be 
satisfied with sales every period.  Once the capacity 
choice is made, the firm must continue to switch 
modes annually until it reaches mode 6, 9, or 12, at 
which point it is ready to enter production.  Recall 
that each time period has a duration of 1 year—
therefore, if the firm does not wait midway through 
the development process, an aircraft design takes 6 

years to bring to market2.  The production modes are 
13, 14, and 15, corresponding to a low-, medium-, 
and high-capacity line.  Note that each mode will 
produce exactly as many units as demanded each 
period, up to a maximum that depends upon the 
mode.  The actual values for maximum capacity are 
parameters and easily changed.  While in production 
(or waiting to enter production), it is possible to 
invest in additional tooling and expand the capacity 
of the production line.  However, it is assumed 
impossible to reduce capacity—that is, the scrapping 
of tools has little to no salvage value, due to the high 
specificity of the tools to their product.  Finally, an 
abandonment mode exists to model any salvage 
value associated with permanently shutting down the 
program.  If the salvage value is positive, the 
switching costs to enter mode 16 will be negative.   

The above overview of the operating mode 
framework has made no mention of the process by 
which the actual switching costs are to be found.  
The determination of switching costs is based upon 
the adaptation of a development cost model and a 
manufacturing cost model (as described in [10]) to 
the operating mode framework. 

Development cost.  The development cost model 
generates a time profile of the non-recurring 
expenses associated with the development of a given 
new aircraft design.  The profile depends upon the 
aircraft’s characteristics, and also upon the existence 
of any of the aircraft’s component parts in other 
aircraft which have already been designed.  Because 
of the inclusion of two aircraft designs in the 
valuation  algorithm, the switching cost calculation 
proceeds as follows for each of the two aircraft 
designs.  The sequential switching costs from mode 
0 through mode 9 (medium production rate) are 
calculated by discretizing the non-recurring cost 
time profile into 1-year segments.  This 
discretization is done as a step function of the 
operating mode of the other (remaining) aircraft 
design:  if the other aircraft has not yet been fully 
developed (i.e., the other aircraft mode is less than 
13—production), the baseline non-recurring cost 
profile is used.  However, if the other aircraft has 
already been fully developed (i.e., the other aircraft 
mode is at least 13—production), the non-recurring 
cost profile is calculated with any commonality 
effects included.  Specifically, if the aircraft share 
any common components, the development cost and 
                                                 
2 In fact, the 6-year baseline duration may be altered, as 
discussed below, depending on previous design 
experience. 
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time are both reduced to reflect the savings resulting 
from a pre-existing design.  See [6] for details.  If 
the commonality effects are significant enough to 
result in a cost profile shorter than 6 years, one or 
more development modes are skipped (the candidate 
modes for skipping are 1, 2, 7, and 8).  Finally, once 
medium capacity development process switching 
costs have been defined (as a step function of the 
other aircraft’s mode), the switching costs 
corresponding to the tooling/capital investment part 
of the development process are scaled by a “low 
capacity” and a “high capacity” scaling factor to find 
the switching costs corresponding to the low and 
high capacity decisions (modes 4,5,6 and 10,11,12, 
respectively).   

Manufacturing cost.  As with development cost, 
to account for two aircraft designs present in the 
valuation, the switching costs associated with 
manufacturing are found for each aircraft as 
functions of the operating mode of the other aircraft.  
Switching costs associated with manufacturing have 
two components.  The first component is switching 
from a “ready to produce” mode (6, 9, or 12) into the 
corresponding production mode (13, 14, or 15, 
respectively).  The second component is switching 
from one production line capacity to another.  Both 
of these components are sometimes involved in a 
single switch (e.g., 6 to 14, or 6 to 15); however, 
they are calculated separately and simply added 
together as necessary.   

The costs of switching production line capacity 
are calculated as the product of a scaling factor3 and 
the cumulative difference in cash outflows between 
the two development processes associated with the 
production capacities in question.  For example, the 
cost to switch from low to medium capacity 
(involved in either a “6 to 14” switch or a “13 to 14” 
switch) equals the difference in total development 
cost between low capacity development (3,4,5,6) 
and medium capacity development (3,7,8,9).   

The other component of manufacturing-related 
switching costs is the initial switch into one of the 
three production modes (13, 14, or 15).  For any 
given aircraft, the unit cost will generally fall as 
production starts and continues due to the learning 
curve effect.  Eventually, it is reasonable to assume 
that unit cost approaches an asymptote and stabilizes 
at what is referred to here as “long-run marginal 
cost” (see Figure 2).  To exactly model the effect of 
                                                 
3 The scaling factor, set to a value greater than 1, is meant 
to represent the additional costs incurred due to disruption 
of a pre-existing production line. 

the learning curve with dynamic programming 
would be impossible, because knowledge of unit 
cost requires a knowledge of how many units have 
been built to date.  This information is not part of the 
state vector4.  Therefore, once in a production mode, 
all aircraft are produced at their long-run marginal 
cost.  Uncorrected, this assumption would introduce 
a significant error into the total cost incurred by the 
firm, of a magnitude approximated by area A in 
Figure 2.   

quantity built

un
it 

co
st

A
LRMC

Q*

 
Figure 2.  Learning curve effect and long-run marginal 

cost (LRMC). 

To account for this discrepancy, the switching cost 
to enter production is set equal to exactly the area 
A—that is, the total extra cost expected to be 
incurred during the production run of the aircraft 
over and above the long-run marginal cost.  Because 
this extra cost will be incurred gradually and with 
certainty over time, the risk-free rate is used to find 
the expected present value of these cash flows, 
assuming a production rate equal to baseline 
demand.  The switching cost is thus set to equal the 
present value of the cash flows represented by area 
A.   

The entire above process, for both development 
cost and manufacturing cost, is conducted for both 
aircraft designs, resulting in a set of switching costs 
for each that is a function of the operating mode of 
the other.  To use the symbology introduced in 
Section 3.2, the process finds the switching costs 
I(mi, ui | mj) for each aircraft i, where the “other” 
aircraft is j, for each prior operating mode mi and 
control variable decision ui.  Then, the switching 
cost from any operating mode vector [m1, m2] to [u1, 
                                                 
4 One possibility would be to include units built to date as 
an additional state variable, but computation time would 
suffer drastically as a result. 
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u2] is simply equal to the sum of I(m1, u1 | m2) and 
I(m2, u2 | m1).  This set of data is stored in the 
switching cost matrix. 

4.4 Stochastic Process Dynamics 
A crucial component of the algorithm is the 

model describing the nature of the unpredictable 
behavior of the stochastic process representing the 
development of the market for commercial aircraft.  
This model is explained in detail in [10].  For the 
purposes of this paper, it is sufficient to state that the 
annual quantity demanded is represented as a 
stochastic variable that evolves according to a 
random walk, modeled as a binomial tree process.  
Each time period, the variable may either increase or 
decrease by a specified amount with a certain 
associated probability.  Thus, if there are two such 
variables, representing the evolution of the market 
for two distinct aircraft, there are four possible 
outcomes each time period.  A transition probability 
matrix is constructed linking possible initial states to 
final states in this framework.  These transition 
probabilities are used to find the expected future 
value of the project as a probability-weighted 
average, expressed as the expectation term E[…] in 
equation (3). 

4.5 Algorithm Summary 
The dynamic programming algorithm presented 

here uses a backwards-iterative solution scheme to 
find the set of optimal decisions maximizing the net 
discounted (present) value of the cash flows from 
the program.  The decision-making facet of the 
approach is this algorithm’s way of modeling 
managerial flexibility:  the ability of the firm to 
control the program as it (and the market) evolves.  
Some specific decisions that were modeled include 
the decision to wait, to design, to invest in tooling at 
one of several capacity levels, to produce, and to 
abandon.  In addition, the inclusion in the 
framework of multiple aircraft (in this work, exactly 
two) models product flexibility as well—the 
decision to produce one design over another, if not 
both; and the associated timing.   

5  Example 
While a complete demonstration of the program 

valuation tool described above is beyond the scope 
of this paper, a brief example is presented here to 
illustrate the mechanics of the algorithm and to 
highlight its distinguishing features.  Although the 
algorithm has the capability to analyze two aircraft 

designs simultaneously, the example considers a 
single design for simplicity and conciseness.  

The notional vehicle used is based on a 250-seat 
Blended-Wing-Body (BWB) class aircraft [11], and 
the example relies on a set of assumptions listed in 
[10].  The discussion below presents two 
illustrations:  a simulation run to demonstrate the 
decision rules arrived at by the optimizer and a 
connection to the Net Present Value technique 
shown by a plot of program value as a function of 
the initial forecast of annual demand. 

5.1 Simulation Run 
Figure 3 presents a simulation run, made after 

the algorithm itself was executed and an optimal 
solution was found.  The simulation represents a 
sample path of demand through time—a 
hypothetical scenario constructed using a random 
number generator to approximate the stochastic 
behavior of demand.  The upper half of the figure 
plots the random evolution of annual quantity 
demanded over time:  this is a sample path of the 
underlying stochastic process.  On the same plot is 
the optimizer’s real-time strategy in response to the 
evolution of demand.  This strategy consists of an 
annual selection of operating mode, based on the 
current year and the current demand level.  Thus, at 
the beginning of the simulation, demand is at its 
baseline static forecast quantity, as calculated by the 
revenue model referenced above and described in 
[6].  This demand level, which happens to be 27.6 
units per year, is insufficient for the firm to commit 
to developing the BWB (according to the optimal 
strategy).  However, in year 3, demand increases as 
the result of a random fluctuation, and the choice is 
made to invest in non-recurring development for the 
aircraft.  The investment choice is made because the 
new level of demand is greater than the threshold 
level corresponding to the “design” decision at time 
t=3 in the optimizer’s solution.  Recall that once the 
initial “design” operating mode is entered, the firm 
is committed to the first phase of the development 
process, until halfway through development, 
immediately before tooling.  In this simulation run, 
demand falls immediately after design is started, but 
increases again when the halfway point is reached.  
Development is therefore continued, until time t=9, 
when the operating mode is 6 (end of development).  
At this point in time, demand is quite low, and the 
production decision is deferred. 

However, one year later, at time t=10, demand 
increases past the threshold value for the “build” 
decision, and production is entered.  The bottom half  



Markish, Willcox  

 694.8 

  
 

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

time (years)

op
er

at
in

g 
m

od
e

0

20

40

60

80

100

120

qu
an

tit
y 

de
m

an
de

d 
pe

r y
ea

r

mode
demand

-4,000,000

-3,000,000

-2,000,000

-1,000,000

0

1,000,000

2,000,000

3,000,000

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

time (years)

ca
sh

 fl
ow

 ($
K

)

 
Figure 3.  Simulation run for BWB 

of the figure shows the cashflows associated 
with the decisions made each year.  Years 2 
through 8 demonstrate the familiar bell-curve 
shape of a typical development effort.  Year 10 
shows why the optimizer chooses to wait at all 
before going into production:  the switching cost 
to enter production is on the order of $4B.  This 
switching cost is the algorithm’s way of 
handling the learning curve effect:  the $4B 
switching cost here is the present value of all the 
projected future costs in excess of long-run 
marginal cost for BWB production. 

Once production is entered, after year 10, all 
units are produced at their long-run marginal cost5.   
The cash flows from production, in years 11 through 
30, continue to fluctuate as a function of demand, 
and gradually creep upward with inflation.  
Returning to the upper half of the figure, the 
optimizer can be observed to respond to demand 
spikes in year 13 and then 17 by making incremental 
                                                 
5 In reality, the $4B would be distributed over the entire 
production run, with more weight on the early years.   

investments in tooling to expand the capacity of the 
production line, first to a medium and then to a high 
level.  In this simulation run, the high production 
capacity was put to good use only in year 17, as 
demand never reached that level again.  However, 
the decision to enter high capacity production was 
optimal at that time, because the demand spike 
indicated a higher expected future demand. 

The above simulation run is just one of millions 
of possible paths that can be taken by demand 
through time, but it effectively illustrates the 
decision-making element of the solution to the 
program valuation problem. 

The actual expected program value 
corresponding to this solution is computed as 
$2.26B.  However, the magnitude of this value is not 
as important as the dynamics and approach 
illustrated by the valuation process.  The number 
itself is strongly dependent upon the assumptions 
used in the underlying models, but the algorithm 
stands independently of the numerical results.   
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5.2 Connection to Net Present Value 
There is one primary conceptual difference 

between the dynamic programming approach used in 
this work and traditional project valuation approach 
of NPV:  dynamic programming takes into account 
managerial flexibility, i.e. decision-making in real 
time.  NPV analysis assumes a fixed schedule of 
actions and cash flows, and uncertainty regarding 
the magnitude of those cash flows is accounted for 
by appropriate selection of a discount rate.  
However, there is no uncertainty regarding which 
“operating mode” the firm using at any time—these 
decisions are made ex ante.  Therefore, if the ability 
to make decisions is removed from the tool, it 
should reduce to a traditional NPV analysis.  In 
other words, the switching costs between operating 
modes must be adjusted such that the optimizer has 
only one choice with a finite switching cost for any 
given operating mode.  Referring to Figure 1, the 
only finite-cost path through the modes is now set as 
0-1-2-3-10-11-12-15.  This assumes an irreversible 
commitment, as of time 0, to design, tooling, and 
high capacity production.   

Now, as the optimizer “solves” the problem, it is 
forced to make the same decisions regardless of the 
demand level.  As a result, it is possible to generate 
negative program values, just as is it routine to find 
that a project has a negative NPV.   

Figure 4 is a plot showing program value for 
the BWB as a function of the initial annual demand 
forecast.  As detailed in [6], this demand value is a 
strong function of the characteristics of the 
aircraft—specifically, the range and seat count—but 
is also dependent upon the current condition of the 
market, and the resulting expectations and needs of 
the airlines.  The plot thus considers the sensitivity 
of the program’s success to the current condition of 
the market.  Demand is expressed as the number of 
aircraft per year that are demanded, and thus 
potentially sold, in year 1 of the analysis.  This 
initial quantity is the starting point for the evolution 
of demand according to a stochastic over the time 
horizon of the problem.  The simulation shown in 
Figure 3 above presents one possible sample path for 
this evolution, with the initial demand estimated at 
28 aircraft per annum. 

Figure 4 shows 2 plots of value on the same set 
of axes:  “dynamic programming” and “Net Present 
Value”.  The former shows the output of the 
algorithm as it finds the value of the program using 
dynamic programming to account for managerial 
flexibility.  The latter is the NPV case described 

above, where flexibility is removed from the 
program. 
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Figure 4.  BWB program value. 

As the initial demand index increases, the 
assumed baseline quantity of aircraft demanded per 
year increases.  This quantity is the basis for the 
forecast of cash flows for the program.  As the 
forecast increases, expected program value 
increases.  If the forecast is very small, the value of 
the program with no-flexibility is negative—that is, 
the aircraft is developed, the non-recurring cost is 
incurred, but few if any units are sold.  However, the 
value with flexibility for low demand indexes is 
zero—if no sales are expected, no investment is 
made in developing the aircraft. 

Note that as the demand index increases, the no-
flexibility program value quickly approaches value 
with flexibility.  However, for small or marginal 
demand index numbers, there is a significant 
difference between the two valuations—one that 
may mean the difference between keeping a program 
and scrapping it.  At the baseline initial demand, 
which happens to be 28 aircraft per year, the value 
with flexibility, $2.26B, is almost seven times the 
value without flexibility, $325M. 

6  Conclusions 
This paper provided an overview of an aircraft 

program valuation tool developed to conduct value-
based trade studies and to gain insight into the value 
dynamics of aircraft design.  The tool combines a 
performance model; a cost model; a revenue model; 
and a dynamic programming algorithm to measure 
the value of a set of aircraft designs to a firm.  The 
value measurement is not based upon any technical 
characteristics per se, or any static forecast of cost 
and revenue, but on an analysis of an uncertain 
future, assuming that value-maximizing decisions 
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are made by the program’s management as time 
goes on and uncertainty is resolved.   

This approach captures the effect of flexibility, 
which has the potential of having a great impact on 
value.  Flexibility is modeled and addressed by the 
dynamic programming “operating modes” 
formulation, which is an explicit method of 
formalizing and discretizing the decision-making 
process that is continuously ongoing for any project 
at any firm.  The approach provides additional 
insight over traditional valuation techniques by its 
attempt to quantify the value created by flexibility. 

If used with the right analytical models, the 
framework presented here can form the basis for a 
powerful tool that focuses the design process on the 
value of the entire system being created. 
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