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Abstract  
In this paper, a simplified linear model of a two-
engine bleed air system of an aircraft is 
developed based on the dynamics of system key 
components, then an active fault-tolerant 
controller is designed for this system using the 
pseudo-inverse method. Simulations based on 
the linear state-space model are conducted, and 
the results have shown that this design method 
can significantly improve system performance 
when faults occur on the pressure regulator of 
the bleed air control system. 

1 Introduction  
The environmental control system (ECS) of an 
aircraft provides favorable conditions for 
instruments and equipment to operate properly, 
for crew and passengers to work and travel in a 
safe and comfortable environment. For ECS, the 
main source of conditioning air is the engine 
bleed from high-pressure compressors. The 
bleed air pressure from each engine is controlled 
through pressure regulators. In practice, the 
pressure regulator dynamics may change slowly 
or abruptly due to various reasons. Owing to the 
fact that faults may occur, fault tolerance must 
be considered in the control system design. 

In the past two decades, a large number of 
fault-tolerant control (FTC) design techniques 
have been proposed, and some of them have 

even been put into application, many of them 
are in the area of aircraft control system design 
[1, 2, 3, 4]. The main task to be dealt with in 
achieving fault tolerance is the design of a 
controller with a suitable structure and well-
designed controller parameters to guarantee 
stability and satisfactory performance, not only 
when all of the control components are 
operational, but also when sensors, actuators or 
other system components malfunction. Among 
the proposed fault-tolerant control methods, the 
Pseudo-Inverse Method (PIM) is a widely used 
design approach [2, 5, 6, 7, 8] because of its 
simplicity in computation and implementation. 

In this paper, an active fault-tolerant 
control is designed for a two-engine bleed air 
system (BAS) of an aircraft. A linearized model 
of a two-engine bleed air system is developed 
based on the dynamics of the key components. 
The transfer function block diagram and state-
space representation are then derived. Based on 
the state-space model, a state feedback fault-
tolerant controller is designed using the PIM. 
This active fault-tolerant controller reconfigures 
the state feedback controller gain matrix k in the 
presence of a fault. The fault considered herein 
is the time constant change of one of the 
pressure regulators by a factor of 50% from its 
nominal value. 

Simulation results have shown that this 
active fault-tolerant control design can improve 
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system performance significantly compared 
with the conventional non-reconfigured state 
feedback controller when the fault under 
consideration occurs. 

2 Modeling of a Two-Engine Bleed Air 
System  

2.1 Two-engine bleed air system  

An illustrative diagram of a two-engine bleed 
air system under consideration is shown in 
Fig.1. The bleed with high-pressure from each 
channel, is controlled by a pressure regulator 
before it passes through a heat exchanger (HX). 
Each channel is instrumented with a pressure 
transducer and a temperature sensor 
downstream the HX. The bleed airflows with 
lower pressures and temperatures are merged 
into one stream to feed the downstream 
environmental control system. 
 

In Fig. 1, W, P and T denote flow rate in 
lb/min, absolute pressure in psia and 
temperature in degree Fahrenheit, respectively.  
R1, R2 and R5 are pressure regulators, RP1 and 
RP2 are the primary pressure valves designed 
mainly for decreasing bleed pressures. 

2.2 Linearized model of a two-engine bleed 
air system  

For the two-engine bleed air system under 
consideration, the transfer function block 
diagram is shown in Fig. 2. 

The system inputs u1 and u2 are the driving 
currents of pressure regulators R1 and R2.  The 
transfer functions in Fig. 2 have the following 
forms 

)1/()()( 12111 +== sksGsG Vτ                    (1) 

)1/()()( 22212 +== ssksGsG VV ττ              (2) 

sksGsG /)()( 32313 ==                            (3) 

)1/()( += sksG NNN τ                              (4) 

At P1=P2=90 psia, T1=T2=563.2˚F and mass 
flow rate of 150 lb/min for each channel, the 
coefficients in the above transfer functions are 
listed in Table 1.  

k1    5.2000 τV (sec)    0.1763 

k2    149.63   

k3    222.04     

kN    4.6900 τN (sec)    0.0260 

Table 1: Coefficients in the transfer functions 
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   Fig. 2: The transfer function diagram of a two-engine BAS 
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Fig.1: Illustrative diagram of a two-engine bleed air system 
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All the gains in the transfer function block 
diagram are shown in Table 2. 

K11, K21 0.00164 

K12, K22 5.62980 

K13, K23 1.43526 

K14, K24            -0.01817 

K15, K25            -0.03018 

K16, K26 1.63400 

K17, K27            -1.63400 

Table 2: Gains in the transfer function block diagram 

2.3 State-space representation 
By defining the following state variables: 

x1: channel#1 pressure P11 

x2: node pressure P5 

x3: channel#2 pressure P21 

x4: PR valve R1 pressure command signal 

x5: PR valve R2 pressure command signal 

x6: PR valve R1 angular displacement 

x7: PR valve R2 angular displacement 

The following state-space representation is 
obtained from the transfer function block 
diagram in Fig.2. 
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The state vector x , control input vector u 
and system output vector y are defined as 

[ ]Txxxxxxxx 7654321=  

[ ]Tuuu 21=  

TPPPy ][ 21511=  

3 Fault-Tolerant Control Design 

3.1 Pseudo-inverse method [8] 
Let the nominal system be the form of Equation 
(5). Assume that the nominal closed-loop 
system is designed by using the state feedback 

kxu −= , and the closed-loop system then 
becomes 





=
−=
Cxy

xBkAx )(&
                             (6) 

where k is the state feedback gain matrix. 
Suppose that a fault has occurred in the system, 
and the system becomes 





=
+=

xCy
uBxAx

f

ff&
                             (7) 

and a new feedback gain is synthesized and the 
new closed-loop system becomes 
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
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where kf is the new feedback gain matrix to be 
determined. In PIM, the objective is to find a kf 
so that the transition matrix in (8) approximates 
that in (6) in some sense. In this case, BkA −  is 
equated to fff kBA − . The approximate 
solution for kf is given by 

)( BkAABk fff +−= +                   (9) 

where +
fB  denotes the pseudo-inverse of Bf , 

defined by 

T
ff

T
ff BBBB 1)( −+ =                        (10) 

One of the key elements in fault-tolerant 
control design is the availability of the post-fault 
information of the system. In PIM, it is assumed 
that the process dynamics after the fault 
occurrence are available either from a priori 
information of the process or from an on-line 
fault detection and diagnosis scheme. It is noted 
that PIM does not guarantee the stability of the 
impaired system. 

3.2 Fault-tolerant controller design for a two-
engine bleed air system 
For the nominal system given in Section 2.3, a 
state feedback controller has been designed. The 
corresponding state feedback gain matrix k is 
obtained as 
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The eigenvalues of the closed-loop system 
are 
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The above controller is designed for 
nominal system. In fact, the characteristics of 
some system components may change. For the 
engine bleed air system, the time constant 
change of the pressure regulators is one of the 
most common faults that could happen in real 
system. In practice, the time constant τV of the 
pressure regulators may change by a factor of 
50-100% from its nominal value due to wear 
and tear or other mechanic reasons. From the 
fault-tolerant control point of view, this kind of 
faults belongs to the class of system dynamic 
faults. 

More precisely, the fault considered here is 
the time constant change of the pressure 
regulator R1 by 50% from its nominal value. 
The nominal value of the time constant τV of 
pressure regulator R1 is 0.1763 seconds. When 
the fault occurs, it becomes 0.2645 seconds. The 
performance of the closed-loop system can be 
affected significantly by the change in the time 
constants of the pressure regulators because of 
the fast engine bleed air system dynamics. 

After the fault occurrence, the state matrix 
and the input matrix of the system become 
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The fault makes the eigenvalues of the 
closed-loop system deviate to 
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Note that two of the eigenvalues of the 
closed-loop system have changed from negative 
to positive, and the closed-loop system becomes 
unstable. 

In order to stabilize the control system, a 
new controller needs to be reconfigured. Using 
the pseudo-inverse design method, the 
redesigned controller gain matrix kf can be 
calculated using Equations (9) and (10), which 
is obtained as 
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4.97    3.25    0.003    0.002    0.112-    0.46    0.102- 
 2.63    4.28    0.002    0.003    0.083-    0.38    0.093- 
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The eigenvalues of the new closed-loop 
system are 
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4 Simulation Results  
The simulation of the closed-loop system for the 
two-engine bleed air system has been conducted 

using step response tests. Since the two 
channels are symmetrical, step changes are only 
applied to the bleed on regulator R1 setpoint. 

Fig. 3 illustrates the system pressure 
responses of the normal closed-loop system. It 
can be seen that all system outputs reach the 
steady states within one second. 

For the faulty system whose parameters 
have changed to (Af, Bf, C), the system pressure 
responses with the original feedback gain matrix 
k are shown in Fig. 4. The results are 
unacceptable because the closed-loop system is 
unstable. 

Fig. 5 shows the pressure responses of the 
faulty system with the newly designed feedback 
gain matrix kf. The closed-loop system is stable 
but the performance is degraded. 
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Fig. 3: System pressure responses of the nominal closed-

loop system 
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Fig. 4: System pressure responses of the faulty system 

without controller reconfiguration 
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Fig. 5: System pressure responses of the faulty system 

with controller reconfiguration 

5 Concluding Remarks And Future Work 
In this paper, a simplified linearized model of a 
two-engine bleed air system of an aircraft is 
developed. Based on the model, a state feedback 
fault-tolerant controller is designed using the 
pseudo-inverse method. 

Simulation results have shown that the 
active fault-tolerant control design using 
pseudo-inverse method improves system 
performance significantly compared with a non-
reconfigured regular state feedback controller. 
A drawback of the PIM design method is that 
the stability of impaired system is not 
guaranteed and this may lead to unacceptable 
system behaviour. For a two-engine bleed air 
system, this means that the closed-loop system 
may become unstable if one of the time constant 
of the pressure regulators gets large enough. 

To validate the effectiveness of this design 
method, an engine bleed air system test rig is 
being developed in our laboratory. As future 
work, the proposed method will be investigated 
experimentally. 
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