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Abstract 
The present paper describes a design method 
for the automatic flight control system of  the 
lateral motion of the aircraft; this method is 
based on an optimal H∞ control technique 
which solution is obtained using the singular 
perturbations theory. In contrast with the 
suboptimal design, no ill-conditioned 
computations appear when a level of 
attenuation close to its minimal value is used. 
Moreover the optimal controller derived has a 
smaller order than the suboptimal one. The case 
study for the lateral flight control system of the 
VISTA F-16 aircraft illustrates the theoretical 
developments. 
 

1  Introduction 
One of the most demanding problems in the 
design of automatic flight control systems is to 
ensure a satisfactory aircraft dynamic response 
to the pilot commands. Since the modern 
aircrafts have highly coupled dynamics, 
strongly depending on the nominal flight 
conditions over a wide flight envelope, the 

conventional design methods mainly oriented 
towards single–input, single–output systems, are 
completely inadequate. One of the most 
powerful design methodologies developed in the 
last decade is based on the H∞ control theory. 
This theory has been intensively used during the 
last years (e.g. [1], [2], [10])  when automatic 
flight control systems has been designed both 
for the longitudinal and  lateral motion of the 
aircraft. In the mentioned papers, it is shown 
that the design objectives can be accomplished 
by solving an H∞ nonsingular control problem 
which state–space solution can be found for 
example in [3], [6], [8]. On the other hand, it is 
known that in many applications, when using 
these formulae for a level of attenuation close to 
its optimum, the numerical computations 
become ill–conditioned. This means that in most 
applications suboptimal solutions are in fact 
determined, rather than optimal ones. In order to 
avoid the ill-conditioning mentioned above, 
different methods has been proposed in the 
literature; among them we mention the ones 
described in  [4], [7].  

In the present paper the design problem of 
a flight control system for the lateral axis of a 
fighter is addressed. The design approach is 
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mainly inspired from [2] and [10] where it is 
shown that the design problem is equivalent 
with an ∞H control problem. In this paper an 
optimal solution of the ∞H control problem is 
used such that no ill-conditioned computations 
appear when the level of attenuation is closed to 
its minimal value. Moreover the order of the  
optimal ∞H controller is lower than in the 
suboptimal case. 

The paper is organized as follows: in 
Section 2 the design objectives for the lateral 
manual flight control system of the VISTA F-16 
aircraft are presented.  The transformation of the 
control problem in an H∞ control problem is 
given in Section 3. Numerical results illustrating 
the proposed method are presented and 
discussed in Section 4, where comparative 
results with the suboptimal H∞ design are also 
given. 

2  The Control  Problem 

According with the MIL-STD-1797 
specifications ([9]) the first order roll-mode 
approximation from the lateral stick input latδ to 
the stability axis roll rate µD  must have the 
transfer function: 

               ( )
( )

µT
s

sµτeµK

slatδ
sµ

1+

−

=
�

                       (1) 

where ααµ sincos rp +=� , and α  denotes the 
angle of attack. According with the same 
specifications, the Dutch roll approximation 
from the rudder pedal input pedδ  to the sideslip 
β  is: 
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For  level 1 of performance, sT 1≤µ , 
4.0≥Dξ and sradD /1≥ω ([9]). 

These flying quality requirements are 
accomplished by the automatic flight control 
system for the lateral dynamics. 

In the case study presented in this paper, 
the VISTA F-16 fighter lateral dynamics is 
considered. It includes the following state 
variables: β  -angle of sideslip, p-body axis roll 
rate and r-body axis yaw rate. The control 
variables are: tδ -differential horizontal tail 
deflection, fδ -differential flap deflection and 

rδ -rudder deflection. In fact there are only two 
independent control variables since the 
asymmetric flaps and the asymmetric horizontal 
tail are coupled in order to avoid the control 
saturations. The measured outputs are the roll 
and yaw rate and the sideslip angle. It is also 
assumed that the angle of attack α  is measured 
either directly or from inertial data; these data 
are necessary in the case of maneuvers with 
high angle of attack. In [2] a dynamic inversion 
method is used to linearize the lateral dynamics. 
Then the true control variables ft δ,δ  and rδ  

(where tδ  and fδ  are assumed coupled) have 
been transformed in the pseudo-commands 
sideslip acceleration ( cβDD ) and stability axis roll 
acceleration ( )cµDD . This transformation has been 
determined by the dynamic inversion procedure. 
The relationship between the pseudo-commands 
and the true control variables rft δδδ ,,  is given 
by: 
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where ( )αT  is a 2×3 matrix depending on the 
angle of attack and on the coupling ratio 
between tδ  and fδ (for more details see 
equations (4.2), (4.6)-(4.8), (4.16) in 
[2]).Considering the trim flight condition Mach 



LATERAL FLIGHT CONTROL SYSTEM USING  OPTIMAL 
∞H CONTROLLERS 

 

545.3 

 

0.2 and altitude 10,000 ft at high angle of attack 
( deg30=α ) the following linearized model is 
obtained  (based on equation (A4-14) in [2]):  

         uBxAx gg +=�                                (4) 
with : 
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where the state, the control variables and the 
outputs vector are [ ] Trpx β= ,  

[ ] T
ccu µβ CCCC=  and  [ ] Ty µβ C= , 

respectively. A method to accomplish the MIL-
specifications (1) and (2), consists in 
considering two ideal models which dynamics 
are close to (1) and (2) and to compare their 
responses with the aircraft responses at the same 
commands. Then the automatic flight control 
system is designed to minimize the signal errors 
between the models and the aircraft responses. 

The control configuration based on the 
model matching procedure described above is 
given in Figure 1: 

Figure 1: Model matching control configuration 

 
where: 
· comcom µβ �,  denote the sideslip and stability axis 
roll rate commands; 
· βM  and µDM  are ideal models determined 
according with the MIL specifications and they 
have the following transfer functions:  
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respectively, where sradD /3=ω  denotes the 
desired Dutch roll frequency, 71.0=Dξ  is the 
Dutch roll damping and sTR 33.0=  denotes the 
desired roll mode time constant; 
· K is the required automatic flight control 
system; 
· G denotes the lateral linearized dynamics (3) 
of the aircraft; 
· βe  and µDe are error signals between the models 
and the aircraft responses; 
· βn  and µDn  are measurement noises; 
· pW and sW  denote dynamic weighting matrices 
chosen such that µβ D

ee ,  are minimized on their 
specific frequency domain. 

Then the control problem consists in 
determining K such that the following design 
objectives are accomplished: 

 
(DO1)  The resulting system in Figure 1 is 
stable; 
 (DO2)  sspp zzzz 2121 ,,,  are minimized (in 
norm); 
 (DO3)  The measurement noises effect is 
attenuated. 
 

The control problem formulated above 
can be transformed in the following H∞ control 
problem: 
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Figure 2: The equivalent H∞ control 

problem 
 
where: [ ] T

comcom nnu µβµβ
D

D=1 ,

[ ] T
ccu µβ DDDD=2 , [ ] T

sspp zzzzy 21211 = ,  

[ ]T
comcom nny µβ µβµβ

D
D ++=2  and T 

denotes the generalized system which includes 
the dynamics of ,,, µβ �

MMG pW  and sW  
together with the connections between them. 
With this transformation, the control problem 
reduces to the design of an ∞H  optimal 
controller K for the generalized system T. In 
contrast with the method used in [1] and [2] 
where suboptimal ∞H solutions are considered, 
in the following developments an optimal H∞ 
controller will be used, providing the minimum 
of 

∞11uyT , where 
11uyT denotes the transfer 

matrix of the resulting system in Figure 2. The 
design procedure of such  controller is described 
in the next section.  

3  An Optimal Solution to the H∞∞∞∞ Control 
Problem 

The interest for optimal solutions of the H∞ 
control problem has a practical motivation. 
Indeed, such solutions could provide the best 
level of attenuation which implies an 
improvement of the tracking and disturbances 
rejection performances. 

Unfortunately in most applications, when 
approaching the optimum of the attenuation 
level, the usual formulae for the H∞ control 

problem become ill conditioned, as it has been 
remarked in several papers (see [4] and the 
references therein). In this section a method to 
determine an optimal solution of the H∞ control 
problem, which avoid the ill-conditioned 
computations mentioned above is briefly 
described. The complete proof is presented in 
[8].  

Consider the H∞ control problem 
associated with the generalized system: 
 

      2211 uBuBAxx ++=�                                

21211 uDxCy +=                         (7) 
                     12122 uDxCy +=  
 
where the following assumptions are fulfilled: 
(A1)  (A,B2,C2) is stabilizable and detectable; 
(A2) IDDT =1212  and IDD T =2121 ; 
(A3) (A,B1,C2,D21) and (A,B2,C1,D12) have no 
transmission zeros on the  jω-axis. 

According with the well- known results 
proved in [6], the H∞ control problem has a 
solution if and only if: 
(C1) The Riccati equations:  
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have stabilizing solutions ( ) 0≥γX  and 

( ) 0≥γY , respectively. 
(C2)   ( ) ( )( ) 2γγγρ <YX , where ( ).ρ  denotes 
the spectral radius of ( ). . 
 
Under the conditions above, an H∞ suboptimal 
controller can be determined using for example 
the explicit formulae derived in [6]. 

Denote by γ0 the optimum of γ which may 
be easily computed via a γ- procedure; in fact 
this procedure consists in decreasing γ until (C1) 

T

K
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or (C2) fails. If  (C1) fails before (C2) the 
formulae for the H∞ controller give reliable 
computations; by contrast, if (C2) fails before 
(C1), the computations become ill-conditioned 
due to the expression ( ) ( )( ) 12 −− γγγ XYI  
included in the controller formulae, which tends 
to be unbounded near γ0. Therefore we focus our 
attention only on the critical situation when (C2) 
fails before (C1). In fact, as mentioned in [3], 
this is the most frequent case appearing in 
applications. 

Thus we complete the assumptions (A1) - 
(A3) with the following one: 
(A4)   The optimal value γ0 of γ is a solution of 
the transcendental equation: 

( ) ( )( ) 02 =− γγργ YX .                 (10)                                                                
Let us remark that if the above equation has a 
solution, this is unique; this remark is based on 
the fact that the dependencies ( )γγ X→  and  

( )γγ Y→  are decreasing ([8]) and it allows to 
determine 0γ  with an assigned level of 
tolerance, using a bisection procedure. 

A key role in the construction of the 
optimal H∞ controller has the balanced 
realization of (7) with respect to the solutions of 
equations (8) and (9). This balanced realization 
uses a result of Glover given in [5] stating that 
for two matrices 0≥X  and 0≥Y  there exists a 
nonsingular transformation T such that: 

),( 2211 XXdiagTXT T =  
and 

        ( ) ( )2211
11 ,YYdiagYTT T =−−  

with ( )rr IIdiagYX σσ ,....,111111 == , where 
0.....1 >>> rσσ , δi are ni × ni matrices, 

i=1,…,r , 0,0 2222 ≥≥ YX  and 02222 =YX . 
Then a balanced realization of (7) is given by: 
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Therefore, without loosing the generality of the 
problem one can consider that (7) is written in 
balanced form. Based on assumption (A4), it 
follows that 01 γσ =  and therefore the solutions 

( )0γX  and ( )0γY  of the Riccati equations 
associated with the balanced realization of (7) 
have the form: 

( )2210
~, XIdiagX γ=  and ( )2210

~,YIdiagY γ=   
                                                     (11) 

respectively where, in order to simplify the 
notations we omitted to write explicit the 
dependence of 22

~X  and 22
~Y  upon 0γ . Further, 

perform the following partitions conformably 
with the structure of X and Y: 
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Then, according with[8], the optimal solution of 
the H∞ control problem is given by 
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where: 
[ ] XBFF 1

2
01211
−= γ                             

[ ] ( ) 22
1

222222221
~~~ YXYXBFF T −

+−=  
The proof of the fact that (13) is an optimal 
solution of the H∞ problem is based on the 
singular perturbations method ([8]). 
 
To summarize, the computation of the optimal 
solution to the H∞ control problem consists in 
the following steps: 
Step 1. Compute the unique solution γ0 of (10); 
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Step 2. Determine the balanced realization of (7) 
with respect to the solutions of (8) and (9) and 
denote by 
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this realization; 
Step 3. Perform the partitions (11) and (12); 
Step 4. Determine the optimal H∞ controller K0 
with the realization (13). 

4  The Aircraft Lateral Control System 

Before starting the design of the control system 
we analyzed the lateral dynamics properties of 
the aircraft when no control system is used. To 
this end we determined the sideslip and the 
stability axis roll rate responses at step inputs 

comβ  and comµD , respectively; these are illustrated 
in Figures 3 and 4, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Sideslip response to  step input 
(without controller)                     
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4: Stability axis roll rate to step input 
(without controller).  
 
One can see that these responses have an 
unbounded variation indicating an unstable 
behavior of the lateral dynamics of the aircraft 
at the considered nominal flight conditions. In 
fact this instability is also emphasized by the 
fact that the state matrix gA  given by (4) are: 
2.1377; -2.2453; -0.3693. 

As shown in Section 2, according to MIL-
STD-1797  specifications, ( )tβ  and ( )tµD  
must have a variation given by (5) and (6), 
respectively; their responses at step input are 
plotted in Figure 5 and 6, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5: Ideal model response of the sideslip at 
step input.               
 
 
 
 
 
 
 
 
 
                   
 
 
Figure 6: Ideal model response of the stability 
axis roll rate at step input.  

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m
iu
do
t(d
eg
/s
)

time(s)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time(s)

be
ta
(d
eg
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

3

3.5

4

be
ta
(d
eg
)

time(s)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-12

-10

-8

-6

-4

-2

0

2

time(s)

m
iu
do
t(s
/d
eg



LATERAL FLIGHT CONTROL SYSTEM USING  OPTIMAL 
∞H CONTROLLERS 

 

545.7 

 

                                                                            
As shown in Section 2, the design 

objectives for the manual lateral control system 
can be accomplished by solving the H∞ control 
problem illustrated in Figure 2. 

In the following  a realization of the 
generalized system corresponding to the H∞ 
control problem using the control structure in 
Figure 1 is determined. Denote by 

( )11111 ,,, mmmm DCBAM =  

( )22222 ,,, mmmm DCBAM =  
the realizations of the models (5) and (6), 
respectively, and let 

             ( )ppppp DCBAW ,,,=  
                      ( )sssss DCBAW ,,,=  
be the realizations of the weighting matrices pW  
and sW , respectively. Then, according with the 
control configuration illustrated in Figure 1, 
direct computations give the following 
realization of the generalized system (7): 
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where the zero and the identity matrices have 
appropriate dimensions. 

The numerical values for the equalized 
system G and for the ideal models βM  and µM  
are given in Section 2. The weightings pW  and 

sW  used are:  

 ( ) 203.0
11.0 I

s
ssWp +

+= , ( ) 2300000
100 I

s
ssWs +

+= . 

Using a bisection procedure the optimal level of 
attenuation 0γ verifying (10) has been 
determined; thus one obtained .5823.00 =γ  
Then, using the procedure described in the 
previous section, we determined the optimal 

∞H  controller, which provides this level of 
attenuation. This controller represents in fact the 
required lateral control system. 

Let us first notice that the resulting system 
with the configuration given in Figure 1 is 
stable. Indeed, the eigenvalues of the resulting 
system in Figure 1 obtained with the optimal 
controller (excepting the weights pW  and sW ) 
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are:   

.3639.0;0303.3;0303.3;1126.213.2
;2456.2;6054.9;006.10;35.13543.11
;04.100;87.11116.132;1126.213.2

−−−±−
−−−±−
−±−±−

i
i

ii

Notice that  no ill-conditioned computations 
appeared when determining the optimal solution 
of the ∞H  control problem, in contrast with the 
suboptimal design near the optimum. Moreover, 
as shown above, the order of this optimal 
controller is smaller than in the suboptimal case. 
Then the performances of the lateral control 
system have been evaluated. To this end the 
tracking errors between the true responses of the 
aircraft and the ideal models corresponding to 
the step commands comβ  and comµ>  have been 
determined. These responses are plotted in 
Figures 7 and 8 respectively, indicating that the 
aircraft responses are conformably with the 
MIL-STD-1797 specifications. 
 

 
Figure 7: Sideslip tracking error                             

 

 
Figure 8: Stability axis roll rate tracking error  

  
Remark. From the low-triangular structure of the 
state matrix A of the generalized system (14) it 
results that if  gA  is stable then the stabilizing 
solution of (9) is Y = 0 and in this case condition 
(C1) fails before (C2) (see Section 3). Then the 
optimal solution of the ∞H  control problem can be 
solved using the known formulae corresponding to 
the sub-optimal case. 

5 Conclusions 

In this paper it is shown that the problem of 
maneuverability qualities improvement of an 
aircraft can be addressed via a ∞H  technique. 
The optimal solution of this problem is obtained 
using a new result described in the paper, based 
on the singular perturbation method. It is shown 
that in contrast  with the results provided by the 
suboptimal ∞H  controller, the approach 
proposed in this paper leads to well-conditioned 
computations and it gives a controller which 
order is smaller than the order of the suboptimal 
solution. 
 
References 
 
[1]  Adams RJ and Banda SS. Robust Flight Control 

Design Using Dynamic Inversion and Structured 
Singular Value Synthesis. IEEE-Transactions on 
Control System Technology, 1, 2, pp 80-92, 1993. 

[2]  Adams R.J,  Buffington JM, Sparks AG and  Banda 
SS. Robust multivariable flight control, Springer-
Verlag, 1999. 

[3] Doyle J, Glover K,  Khargoneckar P and    Francis B. 
State-Space solutions to standard H2 and H∞ control 
problems. IEEE-Transactions on Automatic Control, 
34, pp 831-847, 1989 

[4]  Gahinet P.  Reliable computation of H∞ controllers 
near the optimum. Rapport de recherche, INRIA, no. 
1642, 1992. 

[5] Glover K. All optimal Hankel-norm approximations of 
linear multivariable systems and their L∞ -error 
bounds. International Journal of Control, 39, pp 
1115-1193, 1984. 



LATERAL FLIGHT CONTROL SYSTEM USING  OPTIMAL 
∞H CONTROLLERS 

 

545.9 

 

[6] Glover K. and  Doyle JC.  State-space formulae for all 
stabilizing controllers that satisfy an ∞H norm 
bound and relations to risk sensitivity.  Systems & 
Control Letters, 11, pp 167-172, 1988. 

[7] Glover K,  Limebeer DJN, Doyle JC, Kasenally EM 
and  Safonov MG. A caracterization of all solution to 
the four block general distance problem. SIAM J. 
Control Optim., 29, pp 283-324, 1991. 

[8] Ionescu V and Stoica A. Robust Stabilisation and 
∞H Problems. Kluwer Academic Publishers, 1999. 

[9] MIL-STD-1797 “Military Specifications-Flying    
Qualities of Piloted Vehicles “, March 1987. 

[10]  Osborne RC, Adams RJ, Hsu CS and  Banda SS.   
Reduced Order ∞H  Compensatory Design for an 
Aircraft Control Problem. Journal of Guidance, 
Control and Dynamics, 7, 2, pp 341-345, 1994. 

 

 
 
 
 

 
 


