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Abstract

A higher-order theory is proposed for fiber-
metal laminates that consist of alternating metal
(isotropic) and fiber-reinforced prepreg
(orthotropic) layers under generalized plane
stress conditions. In order to describe
interlaminar interactions, two conjugated
harmonic shear- stress potentials, p and q, are
employed, in addition to the in-plane stress
function, which exist by the requirement of
interfacial displacement compatibility. The
boundary-value problems under the generalized
plane stress conditions are formulated in
complex variables and its potential applications
in dealing with problems of stress concentration
in such laminates are briefly introduced.

1  Introduction
Laminates represent a wide class of material
innovation for today’s industrial applications,
particularly in aerospace. Examples are fiber-
metal laminates (FMLs), composite patching,
and multi-layer coatings, and the list may go on.
One advantage of such layer-structured
materials is that when one layer incurs some
damage, the load transfer mechanism via
interlaminar stresses will allow other layers to
compensate the loss of load-bearing capacity of
the damaged layer. In FML (also known as
ARALL or GLARE), which consists of
alternating layers of metal and fiber-reinforced
prepreg, the fiber reinforcement plays dual roles
of strengthening and “fiber-bridging” of
fatigue/impact damages. Thus, FMLs provide a
great advantage over monolithic aluminum
alloys, offering superior damage tolerance
properties [1,2], and they are being considered

as promising materials for the next generation
aircraft.

Facing with these material innovations, a great
challenge to mechanists is to describe the
mechanism and behavior of these materials for
better design and better use of these materials
on aircraft, but the theoretical development
seems to be lagging behind the actual
application of the material. First of all, the
classical composite laminate theory, e.g. [3,4],
which has been used to deal with composites for
the last half century, has difficulty in describing
the interlaminar interactions, because it treats
the multi-layer composite as a homogeneous
body, thus neglecting interlaminar stresses.
Some analytical treatments have been given to
the inter-laminar stresses along straight free
edges [5,6], but not applicable to curvilinear
edges such as circular or elliptical cutouts and
cracks (with a extremely sharp curvature). A
method of superposition of a hybrid and
displacement approximation has also been
developed for 3D stress analysis of composites
[7,8], which only seeks numerical solutions
based on variational principles. Therefore,
higher order theories are needed to include
interlaminar shear stresses into the formulation,
to deal with the quasi-3D stress states in FMLs.

Recently, a higher-order theory has been
developed for laminates consisting of isotropic
layers under the generalized plane-stress
conditions (σz = 0), based on the Taylor
expansions of displacements up to the second
order of z (z is the coordinate in the plate
normal direction) [9]. It has been shown that
interlaminar stresses exist by the requirement of
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interfacial strain compatibility in the laminates,
especially in places where strong stress
gradients exist. The higher-order theory
employs two conjugated harmonic stress
functions, p and q, in addition to the bi-
harmonic stress function Ψ (Airy function), to
satisfy all the 3D stress-equilibrium and strain-
compatibility conditions.

The present paper extends that higher-order
plane-stress theory to hybrid materials such as
FMLs. In this formulation, the interlaminar
stresses acting across the metal/prepreg
interfaces can be derived from the harmonic
potentials, p and q, which exist by the
requirement of displacement compatibility
across the layer. A complex-variable approach
is formulated for finding the stress/displacement
solution for each individual lamina of the hybrid
material.

2  The Lamination Theory for FML

We consider that a typical fiber-metal laminate
consists of alternating metal (isotropic) and
prepreg (orthotropic) layers, as shown in Fig. 1
(only three layers are drawn without intention to
lose generality) and assume that the thickness of
the laminate is small compared to the planar
dimensions of the plate. In addition, we assume
that body forces are absent in the laminate and
the stress normal to the x-y plane, σz, is zero.

Under the above conditions, the stress
equilibrium condition in each individual lamina
can be written as:
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For isotropic layers, it has been shown that the
3D stress equilibrium conditions and strain

compatibility can be met by the introduction of
the following stress potentials [9]:
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where p and q are conjugated harmonic
functions (∇2p = 0 and ∇2q = 0, by the Cauchy-
Riemann condition); and
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where Ψ is a bi-harmonic function (∇4Ψ = 0).

Fig. 1 Schematic of a three-layer FML.

Because FML has a symmetrical layout with
metal layers as the top and bottom surface
layers, the neutral plane (z = 0) of a surface
layer is always at the free surface and that for an
inner layer should coincide with the mid-plane
of the lamina. Thus, the entire laminate can be
viewed as a portion of periodical stacking of the
constituent lamina, where the surface layer
becomes an inner lamina but with twice of the
thickness. With this view in mind, the inter-
laminar shear stresses, can be generally
expressed as:
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where hi is the thickness of the i-th layer
(i=1,3,…) and the sign convention is observed
in Fig. 1.

For a prepreg layer between metal layers (i = 2,
4, 6…), the action of the interlaminar shear
stresses would produce an equivalent effect as
the in-plane body forces, as defined by
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where U is the equivalent body-force potential,
defined as
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Therefore, the equilibrium conditions for the
prepreg reduce to
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Then the in-plane stresses in a prepreg, by
satisfying the equilibrium conditions, can be
expressed as:
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where F is the stress potential of prepreg, which
should satisfy the compatibility condition for an
orthotropic material [10]:
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where aij are the compliance coefficients of the
prepreg.

Because the layout of an FML is symmetrical,
the anti-plane shear stresses in the top half of
the laminate do exactly counteract that in the
bottom half, so that the averages of τxz and τyz
over the entire thickness of the laminate are all
zero. Thus, the stress-state of an FML, as
defined by the stress functions Ψ, F, U, p and q,
falls into the category of the generalized plane
stress state.

In summary, the stresses in a metal (isotropic)
layer can be obtained from the stress function Ψ
and conjugated harmonic functions p and q; the
stresses in a prepreg (orthotropic) layer can be
obtained from the stress functions F and U.  The
inter-laminar stresses can be calculated using
Eq. (4).  These stress potentials, when satisfying
the necessary compatibility conditions, should
lead to a complete description of the stresses in
the laminate. By the theorem of unique solution,
they should represent the true stress-state of the
laminate under a given generalized plane-strain
condition.  The problem, then, reduces to
finding stress functions (or potentials) that meet
the boundary-value conditions of the particular
loading configuration. The mathematical
approach to seek such solutions is discussed
below.

3  The Complex Variable Representation

Muskhelishvili [11] Lekhnitskii [10] have
developed complex-variable formulations for
isotropic and anisotropic elastic bodies, which
have been some powerful methods for solving
problems of plane elasticity of homogeneous
bodies. Now that it is shown that the anti-plane
shear potentials, p and q, are needed take into
account the interlaminar shear stresses in
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laminated materials, it is sensible to re-
formulate the method to include these terms in
the complex variable formulation for laminates.
For the present purpose, we shall limit our
discussion to the first fundamental problem
(FFP), i.e., to find the state of elastic
equilibrium for given external stresses applied
to the boundary of the body.

 3.1  FFP of  an isotropic layer

For an isotropic material, the stress potential Ψ
is a bi-harmonic function, which can be
expressed in terms of complex functions, as:

2Ψ Ω Ω= + + +ξ ξ ω ξ ξ ξ ω ξ( ) ( ) ( ) ( ) (9)

where ξ = x +iy is the complex variable and ξ
denotes its conjugate, the same meaning also
applies to complex functions. We introduce a
new complex potential, χ(ξ), to express the anti-
plane shear stress potential p, as:

2p = +χ ξ χ ξ( ) ( )           (10)

By manipulating these complex functions, the
in-plane stresses can be obtained as:
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and the interlaminar shear stresses can be
derived as
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where h is the double thickness of the surface
layer and the thickness of the inner layer, the “-”
sign applies to the surface normal to the positive
z-direction and the “+” sign applies to the
surface normal to the negative z-direction.

For the first fundamental problem, similar to
that described by Muskhelishvili (1957), the

boundary conditions of an isotropic laminae can
be written into:

Ω Ω( ) ( ) ( ) ( )ξ ξ ξ ω ξ ξ+ ′ + ′ = ± + − ∫i X iY pdn n
s

         (13)

where Xn and Yn are the resultant external
forces obtained by integration of the surface
traction along the boundary in the x- and y-
direction respectively, the “+” sign applies when
the boundary is an outer contour and the “−”
sign applies when the boundary is an inner
contour.

3.2  FFP of an orthotropic layer

For an orthotropic body, the general solution of
the stress potential F can be found by adding a
particular solution of the non-homogeneous
equation, Eq. (8) to the general solution of the
homogeneous system (with the removal of the
U-derivatives). Following Lekhnitskii [10], the
general solution of the homogeneous system can
be expressed in terms of two functions, F1(ξ1)
and F2(ξ2), of the complex variables ξ1 = x +
µ1y and ξ2 = x + µ2y, respectively, where µ1 and
µ2 are the roots of the following algebraic
(characteristic) equation:
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Eq. (14) has four roots, µ1 = α1 + iβ1 and µ2 =
α2 + iβ2 are the two roots having positive
imaginary part (β1 > 0, β2 > 0), the other two are
their conjugates.

To obtain a particular solution, we rearrange Eq.
(8) into the form of

D D D D F f4 3 2 1 0 0= ( )ξ         (15a)

where
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Re[f0(ξ)] is a harmonic function, and the
complex differential operator D takes the form
of

D
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By operating the above complex operators
consecutively on F0(ξ), we obtain the fourth-
order derivative of F0(ξ) as:
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F0(ξ) can be obtained through integration of Eq.
(16), once f0(ξ) is calculated from the equivalent
body-force potential, U.

Adding the new function, F0(ξ), to the general
solution, the complete solution of Eq. (8) can be
written as:

F F F F= + +2 0 1 1 2 2Re[ ( ) ( ) ( )]ξ ξ ξ          (17)

Using the stress potentials F and U, the in-plane
stresses in an orthotropic prepreg can be
obtained from Eq. (7), as:
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where Φk = F′k(ξk) is an complex function of ξk
for k = 0, 1, 2.

For the first fundamental problem of an
orthotropic layer in FML, the boundary
condition can be written as:

2 0 1 1 1 2 2 2Re[ ( ) ( ) ( )]i X Udyn
s

Φ Φ Φξ µ ξ µ ξ+ + = ± − ∫
(19a)

2 0 1 1 2 2Re[ ( ) ( ) ( )]Φ Φ Φξ ξ ξ+ + = − ∫mY Udxn
s

         (19b)

where the “+” sign applies when the boundary is
an outer contour and the “−” sign applies when
the boundary is an inner contour.

3.3 Examples

3.3.1  Patching of a circular cutout 

In this section, we will present the solution for a
practical problem patching a circular cutout
as an example of the boundary-value problem
formulation. We consider an infinite plate
containing a circular hole of diameter 2a, which
is patched with an intact plate, as shown in Fig.
2. We consider that both plates are isotropic
materials (the patching plate could be a
composite with cross ply of equal amount of
fibers such that its overall behavior is isotropic),
for simplicity, but they have different elastic
modulus (E1 ≠ E2) and the same Poisson’s ratio
(ν1 = ν2 = ν).  The two plates are immediately
bonded (or glued) such that anti-plane shear
stresses can transmit across the interface
everywhere in the bonded region (r>a). At
infinity, the straining of the two plates is
uniform and compatible, i.e.
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where S(1) and S(2) are the stresses at infinity in
the two plates respectively.

For the plate containing the cutout, the stress
potentials are [9]:

Fig. 2.  A three layer FML containing a circular
hole, remotely subjected to a uniform stress S.
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For the patching plate, within the region r<a,
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and within the region r>a,
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With the stress potentials as given in Eqs (21)-
(23), the displacement and stress continuity
within each plate is satisfied. Finally, the
displacement continuity conditions at the
interface set the equations to determine the
coefficients, cm, see reference [9] for details. A
distribution of antiplane shear stress, τrz around
the patched hole is shown in Fig.3. The
distribution of τθz is at a 45o shift relative to τrz.

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

τrz

_

+

Fig. 3.  Distribution of the inter laminar stress
τrz around the hole of a = 1. The abscissa is
parallel to the x-axis and the ordinate is parallel
to the y-axis. The maximum  interlaminar shear
stress is normalized to be unity.

3.3.2  Cracks in a FML

In this section, we consider a GLARE-3 (3/2)
panel containing a crack, a, which propagates in
the aluminum layer from an initial through-the-
thickness saw-cut, a0 , as shown in Fig. 4. The
prepreg layers are cross-plied with equal



483.7

A HIGHER-ORDER  THEORY FOR FML

amount of fibers such that their overall behavior
is isotropic within the plane.      

Using the Westergaard function as the stress
potential ψ for the aluminum layer containing a
crack can be expressed as:
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and the shear stress potential p can be expressed
as:
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Using these complex stress potentials, the
stresses and displacements can be derived as:

[ ]

( )ξχττ

ξτσσ

ξχξσσ

′=+

′−=+−

+=+

2

)(22

)()(Re2

hi

Zyii

Z

yzxz

xyxy

yx

m

         (26)

)(
1
1)()(Re)(

1
2)(2

~~
ξϕ

µ
µ

ξξξ
µ +

−
+−−

+
=+ ZiyZZivuG

We choose

a
B

a
AZ

−
=

−
=

ξ
ξχ

ξ

ξ
ξ )(  and  )(

22
     (27)

By imposing the condition that )2()1( vv =  at the
center of the crack, x=0, we can obtain a closed-
form solution for the stress and displacement
distribution around the crack and the stress
intensity factor at the crack tip is given by:
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where 21 / GG=λ ,

aAK π)1()1( =∞ , 0
)2()2( aAK π=∞

Fig. 5 shows the comparison of the effective
stress intensity factor of the crack in the FML

with that in bare aluminum. The above solution,
however, yields a significant displacement
discontinuity near the crack, which is inevitable.
Fig. 6 shows the difference of displacements in
the aluminum and the prepreg mapped on the
panel plane. It is noticed that the shape of the
bulged region (or the region of incompatibility)
corresponds well to the shape of the
delamination region observed during fatigue
crack growth tests.

 

 a2  02a  

Fig. 4.  A notched FML panel.

Fig. 5. Comparison of stress intensity factors in
bare metal and FML.
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Fig. 6. The in-plane displacement discontinuity
at the interface, which is believed to be the
cause of delamination.

Conclusion

1. A higher-order lamination theory is
developed for the elasticity of fiber-metal
laminates. This theory takes into account the
interlaminar stresses by employing two
harmonic stress potentials, p and q. It is
shown that these interlaminar interactions
not only play an important role in meeting
the interfacial strain compatibility condition
but also affect the in-plane stress
distributions in both aluminum and prepreg
layers.

2. A complex variable representation of the
first fundamental problems has been derived
for FMLs in general. The theory and its use
are demonstrated in the example of solving
the stress problem of ARALL–3 containing
a circular cutout under uniaxial tension.

3. The present stress analysis shows that the
stress concentration at a circular hole in the
metal layer(s) of a FML remains to be 3,
rather not increased by the overall
anisotropy of the laminate. This is attributed
to the presence of interlaminar shear
stresses. Experimental results by van Rijn
(1994) seem to support this conclusion.

4. From the point of view of overall laminate
stiffness, the classical theory may give a
reasonable description, but it will not be
very useful in descriptions for the mix-mode
damage processes in the laminate, because it
neglects interlaminar interactions.
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