
ICAS2002 CONGRESS

OPTIMIZATIONS OF AIRFOIL AND WING USING GENETIC
ALGORITHM

F. Zhang, S. Chen and M. Khalid
Institute for Aerospace Research (IAR)

National Research Council (NRC)
Ottawa, K1A 0R6, Ontario, Canada

Steve.Zhang@nrc.ca

Keywords: genetic algorithm, aerodynamic optimization, CFD, airfoil, wing

Abstract

The present study demonstrates how the
Genetic Algorithm (GA), coupled with the CFD
solvers ARC2D for 2D and KTRAN for 3D
problems, can successfully be applied to the
airfoil and wing aerodynamic drag
minimization. The geometry of airfoil and wing
sections is represented by a B-spline curve. The
actual values of the coordinates of the control
nodes for the B-spline curve are designated as
the design variables. The NACA0012 airfoil is
optimized for a free stream Mach number
M∞=0.30, at which the drag coefficient is
reduced by 46.1% for a constant lift coefficient
of CL = 0.55. For the corresponding straight
wing, the Mach number is set at M∞=0.80. The
drag coefficient is reduced by 13.5% under the
constant lift coefficient of CL = 0.30. The
results demonstrates the powerful reliability
and robustness of this technique.

1 Introduction

Computational fluid dynamics (CFD) has
matured to a point where it can now be widely
used as a key tool for aerodynamic design.
Traditionally, most designers adopt a “trial and
error” approach when conceptualizing a design
and analyzing its performance based on
available experiment or empirical data.
Numerical optimization methods aim to shorten
and simplify this iterative process, while
significantly improving the design output.

Optimization techniques can be classified in
three different categories: local, global and
other methods. Local methods are gradient-
based algorithms, which only search one part of
the design space. Global methods are stochastic
methods which take into consideration the
entire design space. Genetic algorithm (GA),
simulated annealing, random search methods
are all considered as global methods. They also
have the advantage of operating on
discontinuous design space. Other methods are
one-shot or inverse methods [1].

Genetic algorithm is a search algorithm based
on the principles of natural selection and
natural genetics. It utilizes three operators:
reproduction, crossover and mutation.
Reproduction is a process in which individual
chromosomes in a population are copied
according to their objective function values.
Crossover refers to the exchange of genes
between the parent chromosomes. Mutation is a
gene change in a chromosome to prevent GA
falling into the local optima. The basis of
genetic algorithm can be found in reference [2].
It has been applied extensively for aerodynamic
design problems [3,4,5,6]

At IAR, optimization techniques have been
used to obtain the optimized airfoil shapes
[4,5,6]. These studies involved both inverse and
drag minimization problems. However, the
CFD solver used in these studies was based on
Euler equations. In the current work a CFD
code for 2D problems, ARC2D [7], which is
formatted to handle both Euler and Navier-
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Stokes equations, is coupled with the genetic
algorithm. Based on these studies, the Genetic
Algorithm for aerodynamic optimization is
extended towards 3D configurations. A
potential flow based CFD solver KTRAN [8],
which is suitable for transonic flows and
formatted to handle both isolated wing and
wing-fuselage configurations, is used to obtain
the aerodynamic loads.

2 Genetic Algorithm Operations

In this paragraph, an airfoil is taken as an
example to show the Genetic Algorithm
operations.

GA works on a coding of the design variables
subject to certain performance constraints. In
this study, a B-spline curve of the 6th order is
used to represent the airfoil geometry. The
actual values of the x and y coordinates of the
control nodes for the B-spline curve are
designated as the design variables (Figure 1).
There are 8 control points for each of the lower
and upper sides of the airfoil. Generally, we
consider a given initial shape, which is
precisely defined by the coordinates of the
shape points rather than the control points. The
first step is then to find the control points based
on the initial shape coordinates by using the
least square function method.

A certain number of airfoils (wings) consist of
a population. An airfoil (wing) is a
chromosome in the population.  As suggested
in reference [9], the small population size by
using Micro-Genetic Algorithm (µGA) can
facilitate fitness convergence, while frequent
regeneration of new population members
enhances the algorithm’s capability to void
local optima. In this study, this technique was
also used. The population size is set to 10. The
starting population is generated by mutation
from the original airfoil (wing) which is to be
optimized.

Fitness evaluation is the basis for GA search
and selection procedure. GA aims to reward
individuals (chromosomes) with high fitness
values and to select them as parents to
reproduce offspring. The purpose of
optimization in this study is to reduce the drag
of an airfoil or a wing for a given lift.
Therefore, the ratio of the lift and drag
coefficients is used as the fitness value
(objective function). Parents are chosen based
on the Roulette wheel method where the
probability of a parent being chosen is
proportional to its fitness value. Each pair of
parents produces one offspring (chromosome)
by crossover. Then mutation is applied to the
offspring. After a new population is produced,
the fitness of each member is compared to that
of the parent generation and the best members
(elitism) are assigned to be the new generation.

A simple one-point crossover scheme is
applied. The crossover point is selected
randomly. Figure 2 shows how the crossover
operates. Some design variables (control nodes)
of the kid-airfoil are from dad-airfoil (squares)
and some from mom-airfoil (crosses). The
probability of the crossover is set at 80%, as the
use of smaller values was observed to
deteriorate the GA performance [5].

Mutation is carried out by randomly selecting a
gene (control node) and changing its value by
an arbitrary amount within a prescribed range
(1% chord) as illustrated in Figure 3. As this
change is applied to the selected node, its
neighboring nodes are also adjusted so that the
change in slope and curvature of the airfoil
profile will not be too abrupt. As discussed by
Mantel et. al [10], a high mutation rate of 80%
is chosen for better GA performance with real
number coding.

To obtain a realistic airfoil geometry
constraints, such as the minimum allowable
maximum thickness (>8% chord) and the
maximum allowed trailing edge angle (>5o,
<20o), are imposed. The penalty of the imposed
geometry constraints is a loss of a certain
amount of drag reduction.



OPTIMIZATIONS OF AIRFOIL AND WING USING GENETIC ALGORITHM

2111.3

Figure 4 shows the flowchart describing the
GA application to aerodynamic optimization
for an airfoil (or a wing). The CFD solver
(ARC2D or KTRAN) calculates the objective
function (Cl/Cd) and sends it to GA, which uses
it as a fitness value.

For the 3D wing configuration, a straight wing
with constant chord and thickness and an aspect
ratio of 1.5 is chosen (Figure 5). The GA
operations are applied to each section, defined
in the figure, in the same way as that for an
airfoil. The procedure only modifies the section
shapes.

Numerical experiments showed that the CPU
time spent for the GA operations is negligible
when compared to the CPU time of flow
solution.

3 Grid Generations and CFD Solvers

For the 2D problem, a hyperbolic, 2D grid
generator HYGRID was used to generate the
grids. A typical C-H grid on a NACA0012
airfoil is shown in Figure 6. The flow field
computation was performed out using ARC2D.
The code makes use of the implicit
pentadiagonal form of the approximate
factorization scheme due to Beam and
Warming [11]. The multi-step Runge-Kutta
scheme due to Jameson, et al. [12] based on the
cell-vertex control volume, is also available.
Second and fourth order artificial dissipations
were used. The corresponding dissipation
coefficients were set at 0.25 and 0.64 for a fast
convergence. The Baldwin-Lomax turbulence
model is available in this code to consider the
viscous effects.

For 3D problem, the CFD solver with self-grid
generation function, KTRAN, was used, which
is based on the modified form of the classical
transonic small perturbation equation given by
Boppe [13]. It can handle both isolated wing
and wing-fuselage configurations. The overall
crude grid spans the whole computational
domain. The fine grids are imbedded in the

global crude grid to model the aircraft
components such as wing and fuselage. The
purpose of the fine grids is to provide detailed
computation in regions where the flow field
gradients are large and other flow details are of
importance for numerical resolution, while the
global crude grid provides a link between the
fine grid solutions and the crude grid solutions.

4 Results and Discussions

4.1 2D Airfoil

The drag minimization study was carried out
for the airfoil NACA0012 by using GA coupled
with grid generator HYGRID and CFD solver
ARC2D discussed above. The more
challenging Navier-Stokes computation was
carried out to demonstrate the reliability and
robustness of GA and its successful coupling
with the CFD software. The free stream Mach
number was set at M∞=0.30. CL is set to be
0.55. The angle of attack is allowed to vary
during the course of the optimization process
[5].

The convergence history of the computation is
shown in Figure 7. It was noted after about 650
CFD calls, that the fitness value reaches its
converged value. It should be mentioned here
that the maximum fitness corresponds to the
best member in each generation and the
averaged fitness of the entire members in the
generation. The trend of the fitness in this
figure strongly shows that the optimum was
approaching from one generation to another,
demonstrating the reliability of the Genetic
Algorithm. Figure 8 displays the original
NACA0012 airfoil in comparison with the
optimized airfoil. Figure 9 shows the
corresponding pressure distributions on the
airfoil surfaces. The drag coefficient decreased
from 0.01484 for the original airfoil to 0.0080
for the optimized airfoil under the fixed lift
coefficient CL  = 0.90, which is about 46.1%
reduction. The required free stream angle of
attack for the original airfoil was computed to
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have a value of α = 5.49 degrees to create the
required lift coefficient, while it was 1.91
degrees to keep the same lift coefficient for the
optimized airfoil. Compared with the original
airfoil, the radius of leading edge of the
optimized airfoil is greatly reduced. Both
smaller angle of attack and leading edge radius
result in the decrease of the pressure peak value
on the suction surface. At the rearward part of
the airfoil, the curvature on the both lower and
upper surfaces is increased, which creates the
bigger pressure difference between the two
surfaces. This would then compensate the lift
lost at the forward part of the airfoil in order to
keep the lift coefficient constant. The Mach
number contours for both original and the
resulting optimized airfoils are displayed in
Figures 10 and 11, respectively. The maximum
local Mach number is reduced from 0.561 for
the original airfoil to 0.432 for the optimized
airfoil.

4.2 3D Straight Wing

The Genetic Algorithm optimizer was extended
to 3D problems based on the 2D problem
studies. The computation was performed using
CFD solver KTRAN. An interface was
established to couple the GA optimizer and the
CFD solver and transfer the data between them.

For the safety consideration, the drag
minimization was carried out for the
NACA0012-based straight wing to validate the
optimizer. The wing was represented by 6
sections (Figure 5) in the spanwise direction
where GA operations are applied. The
optimizations for the more challenging tapered
and swept back wings can be carried out in the
future from the confidence of successfully
investigating this kind of straight wing. For the
present study, the free stream Mach number
was set at M∞=0.80. CL is set to be 0.30. Once
again, the angle of attack is allowed to be
altered during the optimization process.

The convergence history of the computation is
shown in Figure 12, which shows that at least

500 CFD calls are needed to reach to the
convergence. Figure 13 displays the original
and optimized section shapes of the wing at 4
spanwise locations: η = 0.0, 0.40, 0.60 and 1.0.
It is noted that the section shape near the wing
root has been changed most, reflecting the
different flows in this region from other
regions. The most interesting thing is that the
shape at the wing root section is quite different
from the traditional airfoil shape. This could be
changed by optimizing wing-fuselage
configuration. Figure 14 gives the
corresponding pressure distributions on each
section. The computed results produce a shock
wave near the leading edge on the upper
surfaces of both original and optimized wings.
However, the strength of the shock waves for
the optimized wing was reduced, from their
original values. The location too moved closer
to the leading edge. This observation is also
substantiated by the Mach number distributions
for both original and the resulting optimized
wings in Figure 15. As is well known, one of
the main contributions to aerodynamic drag in
transonic flow is from shock waves. Therefore,
in the present study, the reduction of the shock
wave in both strength and size contribute to the
drag coefficient decrease from 0.03686 for the
original wing to 0.03190 for the optimized
wing, which represents 13.5% reduction under
the fixed lift coefficient CL  = 0.30. It is not
surprising that the drag reduction is smaller for
a wing than that for an airfoil. For a wing, each
wing section must satisfy the geometry
constraints, which is equal to imposing much
more constraints than those for an airfoil. The
more constraints imposed, the less benefits
obtained. Close to the trailing edge, the
increased curvature on both lower and upper
surfaces of the optimized wing creates a greater
loading. This would then compensate for the
lift lost at the forward part of the wing sections
due to the reduced expansion on the upper
surface in order to keep the lift coefficient
constant. It should be noted that the pressure
distribution on each wing section is subject to
both streamwise and spanwise (3D effects)
flow field influences. These dimensional
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aspects of the problem are comprehensively
accounted for in the computations.

It was noted that, for the original wing, the free
stream angle of attack was set at α = 4.31
degrees to provide a lift coefficient of CL  =
0.30. For the optimized wing, the angle of
attack was reduced to α = 3.40 degrees to
provide the same lift.

5 Conclusions

The Genetic Algorithm has been successfully
applied to the airfoil and wing aerodynamic
drag minimization. The results demonstrated
the powerful reliability and robustness of the
genetic algorithms.

Numerical experiment showed that the CPU
time spent for GA operations is negligible
when compared to the CPU time of flow
solution during the optimization.

The genetic algorithm is independent of the
CFD solvers used. This means that the ability
of the optimization, to deal accurately and
efficiently with subsonic, transonic or
supersonic flows, or potential, Euler or Navier-
Stokes solutions, strongly depends on the CFD
solver.

The optimized airfoil has smaller leading edge
radius and angle of attack compared with the
original one, leading to the smaller suction
peak value on the upper surface.

The optimized 3D wing has weaker shock
waves on the upper surface, leading to the
smaller drag coefficient.

Both the optimized airfoil and wing have a
greater aft loading to compensate for the lift
lost at the forward part in order to keep the lift
coefficient constant.
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Figure 8.  Original NACA0012 and its optimized airfoils,
N.S. solution

Figure 9.   Pressure distributions on the original
NACA0012 and its optimized airfoils, N.S. solution

Figure 10.  Mach number contours around the original
NACA0012 airfoil, N.S. solution

Figure 11. Mach number contours around the optimized
airfoil, N.S. solution
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Figure 12.  Fitness convergence history for wing
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Figure 13.  Original wing sections and their optimized
sections
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