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Abstract

A fast Newton-Krylov algorithm is presented
for solvingthecompressibleNavier-Stokesequa-
tionson structuredmulti-block grids with appli-
cationto turbulentaerodynamicflows. Theone-
equationSpalart-Allmarasmodelis usedto pro-
vide theturbulentviscosity. Theoptimizationof
the algorithmis discussed.ILU(4) is suggested
for a preconditioner, operatingon a modifiedJa-
cobian matrix. An efficient startupmethodto
bring the systeminto the region of convergence
of Newton’smethodis given.Threetestcasesare
usedto demonstrateconvergencerates. Single-
elementcasesaresolvedin lessthan100seconds
onanengineeringworkstation,while thesolution
of a multi-elementcasecanbefoundin lessthan
25minutes.

1 Introduction

Recently, Newton-Krylov methods have been
shown to be very effective in reducing the time
required to compute numerical solutions to the
Navier-Stokes equations. Blanco and Zingg [4]
studied the solution of the Euler equations on
unstructured grids with a matrix-free Newton-
Krylov method. Geuzaine [7] used a simi-
lar method with the compressible Navier-Stokes
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equations, modeling turbulence with the Spalart-
Allmaras model. Barth and Linton [3] stud-
ied a parallel implemention of a Newton-Krylov
solver on unstructured grids for two- and three-
dimensional flows. Pueyo and Zingg [14] solved
the turbulent, compressible Navier-Stokes equa-
tions on structured grids. They have demon-
strated that this approach is competitive with
state of the art multigrid methods. However,
their work was limited to representing turbulence
with the algebraic Baldwin-Lomax model on sin-
gle block grids. Here we discuss the solution of
the Navier-Stokes equations on single- and multi-
element airfoils, using the one-equation Spalart-
Allmaras turbulence model [17].

2 Algorithm Description

2.1 Governing Equations

We study the solution of the steady compress-
ible thin-layer Navier-Stokes equations on struc-
tured grids. A generalized curvilinear coordinate
transformation is used to map the physical space
to a rectangular computational domain. The use
of multiple blocks allows for complex geome-
tries such as multi-element airfoils. A circula-
tion correction is used to reduce the effect of the
farfield boundary. The Spalart-Allmaras turbu-
lence model, including trip terms, is implemented
as described in [8], with a small change in the
calculation of the modified voriticity factor, first
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used by Ashford [1]

S̃= S fv3 +
ν̃T

κ2d2 fv2 (1)

fv2 =
(

1+
χ

cv2

)−3

(2)

fv3 =
(1+χ fv1)(1− fv2)

χ
(3)

with cv2 = 5.0. The original form, which al-
lowed S̃ to become negative, introduced a local
minimum quite close to the solution root at some
nodes at the edge of recirculation bubbles. This
would cause the residual to hang, despite the ma-
jority of the flow being converged. The new form
seems to avoid this problem.

2.2 Spatial Discretization

The spatial discretization follows that used by
Nelson, et al. [11]. Second-order centred differ-
ences are used to approximate derivatives. Both
Jameson’s [9] scalar and Swanson and Turkel’s
[18] matrix second- and fourth-difference dissi-
pation models can be used to stabilize the centred
difference scheme. A pressure switch is used to
control the activation of second-difference dissi-
pation. The matrix dissipation model uses two
switchesVl andVn to avoid the effect of overly
small eigenvalues in the flux Jacobian matrix. We
useVl = Vn = 0.1 for subsonic cases, andVl =
0.025 andVn = 0.25 for transonic cases. The tur-
bulent viscosity convection and diffusion terms
are discretized using first-order upwinding and
second-order centred differencing, respectively,
as suggested in [17], with two differences. The
turbulence equation is scaled byJ−1, the grid-
metric Jacobian, and the state variableν̃ is re-
placed withJ−1ν̃. These changes help keep the
entries in each block of the Jacobian of similar
magnitude. This improves the conditioning of the
system, making the Krylov solver more efficient.

Since a Newton solver is used to solve the
resulting nonlinear system, it is important that
all of the boundaries be handled fully implicitly.
This includes the interfaces between blocks. The
Navier-Stokes equations are solved on these in-
terfaces in the same manner as the interior nodes.

2.3 Newton-Krylov Algorithm

The Nonlinear System.After spatial discretiza-
tion, we have a system of the form

R(Q̂∗) = 0 (4)

where each block ofQ̂, the conservative state
variables with the turbulence variable, is

Q̂i = J−1
i Qi = J−1

i [ρi ,ρui ,ρvi ,ei , ν̃i ]T

To find Q̂∗ which satisfies Eq. 4, we apply
the implicit Euler method repeatedly until some
convergence criterion, typically‖R‖2 < 10−12, is
reached:

[
I

∆tn
− ∂Rn

∂Q̂n

]
∆Q̂n = Rn

Q̂n+1 = Q̂n +∆Q̂n

We call these theouter iterations. When the
time step is increased towards infinity, Newton’s
method is approached. If∆t is increased appro-
priately as‖R‖ decreases, the quadratic conver-
gence characteristic of Newton’s method can be
achieved, while dramatically increasing the re-
gion of convergence. Note that, in order for New-
ton’s method to converge quadratically,∂R

∂Q must
be accurate. This requires that the equations be
fully coupled.

The Linear System. In order for∆Q̂n to be
found, a linear system needs to be solved. This
system tends to be very large, so that direct so-
lution is prohibitive in both memory and time.
Fortunately, finding the exact∆Q̂ is not neces-
sary, and we may settle for finding an approxima-
tion. This is an inexact-Newton method. There
are a number of popular methods of finding the
approximate solution of the linear system. The
proper selection and use of this method is crucial
to the success of the overall solver [2]. The most
successful class are the Krylov iterative meth-
ods. Specifically, the preconditioned Generalized
Minimum Residual (GMRES)[16] has proven to
be effective for aerodynamic systems. We call
these linear iterations theinner iterations.

Over-solving the linear system needs to be
avoided for efficiency. A stopping criterion is
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needed for the inner iterations. There are two
considerations. First, we use a target reduction in
the inner residual. Pueyo [13] found a one order
of magnitude reduction ideal to balance outer and
inner iteration efficiency. This is appropriate in
the turbulent case during the final Newton stage,
but not in the startup. This will be discussed in
the next section. The second consideration is set-
ting the maximum number of iterations of GM-
RES. The amount of memory and CPU time in-
creases with each GMRES iteration, so a limit is
required. GMRES may be restarted, which keeps
the memory requirements lower, while allowing
further solution of the linear system. However,
this can significantly slow the linear system con-
vergence, due to the very poor conditioning seen
in these systems. Typically, we do not use restart-
ing for this reason.

The convergence rate of GMRES is very sen-
sitive to the condition number of the matrix.
Since the Jacobian of the equations being solved
is typically extremely ill-conditioned, a good pre-
conditioner is required to limit the number of in-
ner iterations. Pueyo and Zingg [14] have shown
that an incomplete LU preconditioner (ILU) [5]
with two levels of fill minimizes solution time.
They also found that a preconditioner based on
a first-order Jacobian is more efficient than the
exact Jacobian, both in saving memory and CPU
time. The first-order Jacobian is formed by using
only second-difference dissipation. This reduces
the number of entries per equation to five instead
of nine. It tends to give a better conditioned ma-
trix, which leads to a more stable LU factoriza-
tion. The coefficient of the second-difference dis-
sipation used in the Jacobian matrix is found by

εl
2 = εr

2 +σεr
4

whereσ is found empirically.
Pueyo and Zingg used scalar artificial dis-

sipation. The use of matrix dissipation signifi-
cantly worsens the conditioning of the precondi-
tioner, due to a reduction in diagonal dominance.
This requires further modifications. Two meth-
ods have been investigated. The most obvious
is to include a time step. In order to achieve
preconditioner stability, a sufficiently small time

step needs to be taken. This is due to the exis-
tence of negative entries on the diagonal. Large
time steps (with correspondingly small additions
to the diagonal) have the possibility of worsening
the condition of the matrix by reducing the diago-
nal. Small time steps are obviously not desirable,
as they dramatically slow outer residual conver-
gence. For this reason, we add the time step only
to the matrix used for the preconditioner.

Another method of increasing diagonal dom-
inance is to increase the value of the matrix dissi-
pation switches (Vn andVl ) used in the first-order
Jacobian matrix the factorization is based on.
These switches set the minimum level of dissipa-
tion, making them a natural choice for controlling
small diagonals. As they are increased toward
unity, scalar dissipation is approached. Note that
the switches in the residual evaluation remain the
same, so that the final solution is unaffected. The
switches in the Jacobian used for the outer iter-
ations are also unchanged, as inaccuracies there
can adversely affect convergence. There are two
conflicting effects that have to be balanced to op-
timize the preconditioner settings. The precondi-
tioner must be conditioned well enough to be sta-
ble, but remain close enough to the true Jacobian
to provide adequate clustering of the eigenval-
ues. A useful tool in evaluating a preconditioner
is its condition number estimate, as discussed by
Chow and Saad [5]. This is simply theL2 norm
of the solution toLU ·~c=~1. If a preconditioner is
performing poorly, and has a high condition num-
ber estimate of the order of 107 or greater, more
diagonal dominance is needed. It is usually better
to err on the side of being too well conditioned.
While this will slow convergence somewhat, the
linear solves are much more robust.

To help reduce the effect of entries dropped
from the preconditioner, reverse Cuthill-McKee
reordering is used [6]. Good reordering is espe-
cially important in the multiblock case, due to the
increased number of far off-diagonal entries re-
sulting from the block boundaries.

The GMRES algorithm only requires matrix-
vector multiplies, and does not explicitly require
the matrix, except in forming the preconditioner.
A Jacobian-free implementation of GMRES may
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be used, which has been found by Pueyo [13]
to be faster, as well as resulting in significant
memory savings. Unfortunately, the necessary
changes in the Jacobian during startup eliminate
this benefit when the Spalart-Allmaras turbulence
model is used.

Startup. Grid sequencing is used to help
rapidly eliminate initial transients. This involves
partially solving on one or more coarse grids,
each formed by removing every other grid line
in each direction from the next finer grid. The
solution is interpolated from the coarse grid to
the fine grid. This helps to bring the solution on
the fine grid closer to the region of convergence
of Newton’s method, allowing higher initial time
steps. Grid sequencing is also particularly help-
ful in initializing the turbulence quantities. The
model will tend to take a number of iterations
at a low time step before tripping occurs. These
iterations are very expensive to perform on the
fine grid, but can be rapidly done on a twice-
coarsened grid. It is important to ensure that the
flow on the coarsened grids are tripped before
passing to the fine grid. If a region is not prop-
erly tripped when the Newton’s stage is started,
divergence is likely. Raising the trip coefficient
ct1 in the turbulence model help encourage tran-
sition on the coarse grids.

Examination of the production and destruc-
tion terms of the turbulence model reveals that
these terms are unstable with negativeν̃. There-
fore, it is crucial to take steps to ensure thatν̃ re-
main positive. This is a particular problem during
the early iterations, when the solution is rapidly
changing. There are a number of strategies which
can be used to avoid negative values. Spalart and
Allmaras [17] recommend that a modified lin-
earization of the equations be used during startup.
This modifies the turbulence model Jacobian so
that it becomes anM matrix. The flow por-
tion of the matrix is unchanged. While this pre-
vents quadratic convergence, it was found that
this modification is only necessary during the im-
plicit Euler stages. This modification will be ef-
fective only if the linear system is solved suffi-
ciently well. If the same tolerance appropriate
for the laminar equations is used, large negative

turbulence viscosities show up very quickly, de-
spite using a small time step. Inner tolerances
of approximately 10−4 are necessary to see the
advantage of the modified turbulence model Ja-
cobian. This is not nearly as detrimental as it
would seem at first glance. The first few orders
of magnitude reduction of the linear residual hap-
pen much faster than in the laminar case, often in
only two or three iterations. This phenomenon
only seems to occur when the modified Jacobian
is used. Note that during startup, Jacobian-free
GMRES cannot be used, since non-negative tur-
bulent viscosities cannot be guaranteed.

Nemec and Zingg [12] used approximate
factorization with the modified Jacobian during
startup with good results. This is an inexpen-
sive approach to approximately solving the linear
system. The turbulence quantities are decoupled
from the mean flow equations, and the linear sys-
tem for each block is solved separately.

The approach followed by Geuzaine [7] was
to use a variable time step based on the switched
evolution relaxation method of Mulder and van
Leer [10]. The time step in the early iterations
is limited, so that the updates to the turbulence
quantity are well bounded.

We have found that a combination of these
methods works well. Starting with the modified
Jacobian allows larger time steps while maintain-
ing stability. Variable time steps progress the so-
lution rapidly. The method of adjusting the ref-
erence time step is somewhat different than SER,
though similar in spirit:

∆tre f = α
[

1
||R||2

]β
(5)

Choosingα = 10.0 andβ = 1.0 gives good re-
sults. The time step of the both the Navier-Stokes
and turbulence model equations also vary spa-
cially. The geometric time step following Pul-
liam [15] is used for the flow equations:

∆t =
∆tre f

1+
√

J
(6)

whereJ is the Jacobian of the metric of the curvi-
linear coordinate transformation. The turbulence
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model uses a time step based on the distance to
the closest wall:

∆t = ∆tre f · τ ·d2 (7)

This is inspired by the destruction term of the
model, which is proportional to the inverse of the
square of the distance. Virtually all instabilities
occur in the region close to the body, where the
destruction term is strong.τ allows us to set an
appropriate scaling for the turbulence model time
step. 10.0 gives good convergence while keeping
the model stable.

Even with these changes, negative values of
ν̃ are likely to be found, especially after interpo-
lation between grids. These values are clipped to
zero after each update. Experiments have been
carried out with other techniques including mod-
ifying the production and destruction terms for
negative values, with varying degrees of success.
Simple clipping seems to be the most robust, and
allows more aggressive time steps.

Matrix dissipation tends to be somewhat
more unstable than scalar, especially during
startup. Scalar dissipation is used on the coarse
grids for this reason. The interpolation error also
seems to eliminate any gains which could be had
by using matrix dissipation on the coarse grids.

3 Test Cases

Three test cases are presented. Two are single-
element, one subsonic, the other transonic. The
third case is an airfoil with a detached flap and
slat, at low Mach number and high angle of at-
tack. The flow conditions are shown in Table 1,
grid details in Table 2. Off-wall spacing is given
relative to chord length. Figure 1 shows the grid
around the multi-element airfoil.

The GMRES iterations for the single-element
cases are limited to thirty search directions, with
one restart. This is not sufficient for the larger,
multiblock case. Sixty search directions with no
restarts allow the linear solver to converge suffi-
ciently for this case.

Case Mach Alpha Re·106 Airfoil

1 0.3 6.0◦ 9.0 NACA0012
2 0.729 2.31◦ 6.5 RAE2822
3 0.197 20.18◦ 3.52 A2

Table 1 Flow conditions

Case Dimensions Nodes Offwall Spacing

1 305× 57 17385 10−6

2 257× 57 14619 2·10−6

3 – 71868 10−6

Table 2 Grids

Fig. 1 Case 3 grid
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Inner iterations
σ Case 1 Case 2

4 430 div
5 323 263
6 334 291
7 379 308
8 401 321
9 483 345

Table 3 Inner iterations vs.σ

4 Algorithm Optimization

Choosing a proper startup sequence is crucial
to obtaining maximum efficiency. The Newton
steps will zero the residual much more quickly
than the implicit Euler steps. We have had suc-
cess with the following. Use∆tre f = 50 on the
coarsest grid, until the turbulence model fully
trips. This is indicated by a peak in the turbu-
lent residual. While the maximum value varies
strongly by case, a minimum number of itera-
tions of 15 should ensure tripping. At this point,
the turbulence has stabilized enough to use a time
step of 500. When||R||2 < 0.01, the solution is
interpolated to the next grid. One iteration at a
time step of 50 is used to smooth the interpo-
lation error. After this∆tre f = 500 is used un-
til ||R||2 < 0.01, and the solution is interpolated
to the final grid. At this point, the variable time
step is used along with the modified Jacobian, un-
til ||R||2 < 0.01. The unmodified Jacobian and
variabled time step are used until convergence.
Note that the residual vector is comprised of both
the four mean flow equations and the turbulence
equation. The norm, and therefore the transition
between stages, is typically dominated by the tur-
bulence residual. This is appropriate, consider-
ing that the turbulence model is less stable than
the flow equations. This method seems to be rea-
sonably robust for the aerodynamic flows under
consideration. Further convergence of the coarse
grids does not appear to be beneficial. This seems
to result from the turbulent viscosity not interpo-
lating well. Three grids are used in all cases.

Table 3 shows the effect of varyingσ on the

total number of inner iterations needed to reach
‖R‖2 < 10−12 on the fine grid for cases 1 and
2. div indicates that the case diverged. Based
on these results,σ = 5 was chosen.

The transonic case is the best conditioned of
the tests. This is likely due to the higher Mach
number, increased dissipation, and relatively low
number of grid nodes. It is appropriate to sim-
ply apply a time step of 100.0 to the precon-
ditioner to stabilize the LU factorization when
solving transonic cases. Cases 1 and 3 demand
more attention, due to the low Mach numbers,
and in case 3, the large number of nodes. In these
cases a combination of modified switch values
and a time step is appropriate.Vl =Vn = 0.4 with
∆t = 100.0 is a good choice. Note that the switch
values in the residual and exact Jacobian remain
unchanged.

As mentioned previously, GMRES does not
require the matrix to be explicitly formed. There
is a trade-off in speed between matrix-free and
matrix-explicit GMRES, which depends on the
number of linear iterations. The former requires
one residual evaluation per iteration. The lat-
ter requires a matrix construction when begin-
ning the linear solve, plus a matrix-vector mul-
tiply per iteration. Since the matrix-vector multi-
ply is cheaper than a residual evaluation, matrix-
free GMRES becomes less efficient with more
difficult systems. Figure 2 compares these two
methods. The matrix-free solver requires 25%
more time. This case, which has a particularly
ill-conditioned matrix, takes roughly 30 inner it-
erations for each Newton step. This makes the
matrix-explicit GMRES more attractive. Figure
3 shows a different situation for case 2, the tran-
sonic case. The matrix here is better conditioned,
and needs about 15 inner iterations per Newton
step. Due to the presence of the shock, the pres-
sure switch has activated second-difference dis-
sipation. Adding the linearization of the switch
and the dissipation coefficient requires signifi-
cant amounts of time, and slows the linear solves.
However, without these terms in the Jacobian ma-
trix, the convergence of the outer iterations is af-
fected. Figure 3 compares matrix-free GMRES
with matrix-explicit without the differentiation of
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Fig. 2 Case 1 matrix-free vs. matrix-explicit
GMRES

the switch and dissipation coefficient. Matrix-
free is clearly the best choice for transonic cases.

The choice of level of fill in the precondi-
tioner is important in balancing the memory use
and CPU time. There is an optimum level of
fill to minimize CPU time. Higher fills produce
more powerful preconditioners, which reduce the
number of inner iterations, but require signifi-
cantly more time to factorize and apply. Table 4
shows residual convergence times for cases 1 and
2. Both cases show that ILU(4) is a good choice
for minimizing CPU time. This adjustable pa-
rameter has the advantage of allowing a trade-off
between memory and speed. The matrix formed
when a finite time step is used is quite well condi-
tioned, so that a preconditioner with a fill of two
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Fig. 3 Case 2 matrix-free vs. matrix-explicit
GMRES

ILU fill Case 1 Case 2

2 168 129
3 94 112
4 89 92
5 93 143

Table 4 Convergence time (seconds) vs. ILU fill
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Fig. 4 Case 1 residual history

is sufficient during the startup phase.

5 Results

Figures 4, 5, and 6 compare the convergence
histories of the Newton-Krylov solver with an
approximately-factored solver. All cases used an
ILU(4) preconditioner, and were run on an Al-
pha 667MHz EV67 CPU. Cases 1 and 3 are much
faster than the approximate factored solver, while
case 2 shows only a marginal improvement. This
is due to the difficulties with the dissipation terms
in the Jacobian, and the resulting use of matrix-
free GMRES. Case 3 is not fully converged by
the approximately factored solver. There are re-
circulation bubbles behind the slat, the cove on
the main body, and at the trailing edge of the
flap. Difficulties arise at the edges of these bub-
bles with the highly nonlinear destruction term
of the turbulence model. Outside of these few
nodes, the model is converged.
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1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

100

10000

0 500 1000 1500 2000 2500 3000 3500 4000 4500

L2
 n

or
m

 o
f r

es
id

ua
l

�

CPU time - seconds

NK - density
NK - SA

AF - density
AF - SA
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6 Conclusions

An efficient Newton-Krylov solver has been pre-
sented for the steady compressible Navier-Stokes
equations governing turbulent flows over multi-
element airfoils. Proper optimization is essen-
tial. This includes using grid sequencing and the
implicit Euler method for startup. During this
phase, the Jacobian matrix must be modified to
ensure that the turbulent viscosity remains posi-
tive. Incomplete LU preconditioning is used. A
level of fill of four was found to be optimal with
respect to CPU time. The ILU factorization is ap-
plied to the first-order Jacobian matrix with mod-
ified second-difference dissipation. Time step
selection and modified dissipation switches are
important to stabilize the preconditioner. The
single-element test cases can be solved to ma-
chine zero in less than 100 seconds, while the
complex flow on the multi-element case can be
found in less than 25 minutes. The subsonic cases
converge three to five times faster than an approx-
imately factored algorithm.
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