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Abstract  
This paper presents a preliminary study of 
incompressible turbulent flow using a unilateral 
statistical average scheme.  As the ensemble 
average is taken on two groups of turbulence 
fluctuations separately, this average scheme is 
able to capture the first-order statistical 
information of the fluctuation field.  Continuity, 
momentum, and mechanical energy equations 
are derived for the fluctuation field based on 
this valuable information.  Concepts of 
orthotropic turbulence and momentum transfer 
chain are used to model correlation terms, and 
eventually lead to a complete set of equations of 
incompressible turbulence.  These equations 
preserve the nonlinearity of typical turbulence 
and contain no empirical coefficients and wall 
functions.   The mechanical energy equation, 
derived in the form of a series to reflect the 
typical multi-scale nonlinear phenomena, is 
able to describe statistical mean flow and 
coherent flow.  Four benchmark turbulent flows, 
namely, plan jet, round jet, flat plate flow with 
laminar-turbulent transition, and backward 
facing step flow, are simulated for both 
statistical mean flows and coherent structures to 
verify the adaptability of the rationally derived 
equations. 
 
_________________________ 
The two authors have made equal contribution to this work. 

1 Introduction  
The study of turbulence has two major 
movements: statistics and structure. Both 
movements have their own perplexing 
questions.  The coherent structures need primary 
theoretical explanation.  The statistical models, 
on the other hand, have to face the closure 
problem, which is introduced by the 
conventional Reynolds average, and must rely 
on empiricism to introduce extra equations and 
empirical coefficients.  Since there are no 
universal coefficients in any existing model to 
encounter the variety of flow cases, the closure 
problem has never been flawlessly solved.  

It is the authors’ belief that rational 
equations of turbulence can be obtained within 
the framework of Navier-Stokes equations and 
the main reason that turbulence remains 
unsolved for more than a century is lack of 
direct first-order statistical information of 
turbulence fluctuations.  The conventional 
Reynolds average scheme does not recognize 
this information, leaving researchers with no 
other choices than relying on higher order 
statistics.  The present approach introduces a 
unilateral average scheme for the purpose of 
effectively extracting this information.   In this 
approach, turbulent fluctuations are divided into 
two groups based upon a set criterion.   The 
obtained nonzero symmetric ensemble averages 
of individual group of fluctuations are used to 
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define the momentum transfer chain and 
orthotropic turbulence.  The former describes 
the momentum transfer from the mean flow to 
fluctuation flow, and then from fluctuation flow 
to molecular motions.  The latter reflects the 
physics that turbulent fluctuations constitute 
non-isotropic viscosity for the mean flow.  Both 
concepts direct the modeling of the correlation 
terms arising from the unilateral average and 
give rise to additional equations for the closure 
problem.  As the number of unknowns is equal 
to the number of derived equations, no any 
empirical coefficients or wall functions are 
needed in this approach.  Four benchmark 
flows, i.e., boundary layer flow (flat plate) and 
transition, free shear flow (plan/round jet), and 
separated flow (backward facing step) were 
simulated to verify the adaptability of the newly 
developed equations of turbulence.  The same 
set of equations used in all flow conditions has 
produced promising results regarding laminar-
turbulent transition, plan/round jet anomaly, and 
separation flow reattachment.  Meanwhile, 
using the same set of equations also simulates 
the coherent flow structures of the four-
benchmark flows. 

2  Unilateral average scheme 
In spite of its complexity, turbulent flow, in the 
minimum scale in which the concept of 
continuum mechanics is still valid, satisfies the 
Navier-Stokes equations.  In the case of a large 
Reynold's number, the strong nonlinearity of N-S 
equations usually leads to an infinite number of 
solutions for a set of given initial conditions.  Let 
ui be one of the random samples in the solution 
space.  The corresponding fluctuating velocity is 
defined as   

uuu ii −=′      (1) 

As a note, u, with or without sub-indexes, 
always denotes a velocity vector in the present 
analysis.  The mean velocity in the above 
equation is obtained from the following ensemble 
average    
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in which N is the number of possible solutions of 
Navier-Stokes equations.  Now, we divide the 
solutions into two groups according to a certain 
criterion.  The fluctuation components in the two 
groups are denoted by I

iu  and II
iu .  The ensemble 

average of the fluctuations of the first group  
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is called the first drift velocity, where NI  is the 
number of solutions in the first group.  Likewise, 
if NII is the number of solutions in the second 
group, the second drift velocity is defined as  
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As the ensemble average of all fluctuations   
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is zero,                                                          

0=+ II
II

I
I uMuM      (6) 

in which MI =NI /N and MII =NII /N, and              

1=+ III MM      (7) 

MI and MII are slowly varying weighting 
functions of x and t.  The weighted average 

I
I

I uMu =~ and II
II

II uMu =~ , satisfy:                                  

0~~ =+ III uu      (8) 

As the weighted drift velocities are symmetric, 
the information of the fluctuation field can be 
effectively represented by Iu~ alone.  For 
convenience, the weighted drift flows are called 
drift flows in short. As the mean value of 
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pressure fluctuations pi' vanishes throughout the 
turbulent flow, the weighted pressures Ip~  and 

IIp~ are also symmetric, i.e.                           

0~~ =+ III pp     (9) 

3  Momentum Equations of drift flow 
We now write the N-S equation for the i-th 
solution ui as 
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The ensemble average of (10) for all the 
solutions is 
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Subtracting (11) from (10), we obtain the 
momentum equation for the i-th fluctuation 
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The weighted ensemble average of (13) for the 
fluctuations of the first group is  
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The weighted ensemble average of (13) for the 
fluctuations of the second group is likewise 
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The condition for (14) and (16) to be valid is 
that M1 and MII are slowly varying functions of 
x and t.  Such a condition should be met in the 
division of the fluctuation field. It can be   
proved  that the three correlation terms given in 
(12), (15), and (17) are related as 
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Substituting (18) into (14) and (16), respectively, 
we obtain 
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It is noted that the only difference between 
(19) and (20) is of the opposite signs of the last 
terms on the right of the equations.  It 
reconfirms that weighted drift flows Iu~  and IIu~  
are symmetric.   Only one drift flow, say Iu~ , is, 
therefore, needed in the present analysis. Due to 
the symmetric property of two drift flows, we 
drop the superscript I and II in the following 
discussion for convenience. 

4 Modeling 
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As usual, we model  uu ′∇⋅′ )(  as the divergence 
of the turbulence stress tensor, i.e. 

Tuu τ
ρ

⋅∇−=′∇⋅′ 1)(  (21) 

The momentum equation of the mean flow is, 
therefore, written as   

( )

TL u

puu
t
u

τ
ρ

µ
ρ

ρ∂
∂

⋅∇+∇

+∇−=∇⋅+

11

1

2

 

 

(22) 

  We now model 
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It is important to note that any type of divisions of 
the fluctuation field will lead to the same set of 
equations (19) and (20).  The division, however, 
becomes unique once the modeling equation (23) 
is introduced.  Substituting (23) into (19) gives  
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The above equations clearly demonstrate a 
momentum transfer chain that begins from the 
mean flow.  The momentum of the mean flow is 
first transferred to the drift flows through 
divergences of laminar and turbulence stresses 
of the mean flow.  The next level of the 
momentum chain is the transfer of the 
momentum of the drift flows, again through 
divergences of stresses of the drift flow, to 
molecular motion in a form of heat. 

5 Orthotropic constitutive relationship 

To determine the turbulence stress tensor, we first 
observe the constitutive relationship between 
stresses and strains. For a non-isotropic turbulent 
flow, 36 constitutive coefficients are independent. 
These coefficients vary with the change of 
coordinate system. Because of the symmetry of 
the two weighted drift flows, it is reasonable to 
assess that the drift flow field constitutes an 
orthotropic environment for the mean flow. The 
orthotropic coordinate system may be set in the 
three principal material axes n1, n2, and n3, where 
n1 is in the mean streamline direction, and n2 and 
n3 are on the normal plane to the streamline. Due 
to the symmetry of the orthotropic coordinates, 
the coefficient matrix is greatly simplified, in 
which there are only 12 non-zero coefficients [1]. 

To model the orthotropic turbulence 
viscosity, we introduce the displacement vector 
λ  of the drift flow field, and define eddy 
viscosity tensor as 

ijij u~λξ =  (26) 

The constitutive equation with symmetric 
property is written as 

ijkkKKijIJij δεµεµτ
3
22 −=

 

(27) 

where I, J, and K, taking the same values as i, j, 
and k, have no implication of summation, and  
  

jiijIJ ξξµ +=  
(28) 

Then, the strain-stress relationship in the xyz 
coordinates can be written as equation (29), in 
which [T] is a coordinate transformation matrix 
between the xyz and the principal material 
coordinate systems.  It is obvious that the 
orthotropic coefficient matrix is quite simple due 
to the symmetry of drift flows, but there are still 
36 nonzero non-isotropic viscosity coefficients 
after the coordinate transformation. The problem 
of anisotropy may be solved in this way. 
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6 Mechanical energy equation 
Vector λ  is defined as the averaged value of the 
particle displacements of the first group’s 
fluctuations.  Its direction is assumed to 
coincide with the direction of the maximum 
tensile stress of the mean flow.  Its magnitude 
can be determined from an independent 
mechanical energy equation that describes the 
relationship between the kinetic energy change 
of the mean flow due to the dragging effect of 
the drift flow and the work done by the drift 
flow.   As the absolute velocity of drift flow in a 
fixed coordinate system is uu ~+ , the difference 
of kinetic energy of the drift flow at x and 
x+ λ can be expanded into the following 
Taylor’s series  
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     The first term on the right hand side represents 
the mean flow kinetic energy change over 
displacement λ  due to its own variation.  
Likewise, the third term represents the drift flow 
kinetic energy change over displacement λ  due 
to its own variation.  The second term represents 
the kinetic energy change due to the interaction of 

mean flow and drift flow, in which we are only 
interested in the following term： 
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This term contains eddy viscosity tensor and 
mean velocity gradients, and stands for the mean 
flow kinetic energy change caused by the drag of 
drift flows. It is worthy to notice that the right 
hand side of the momentum equation of drift 
flow (25)， subtracting DtuD / , is the force 
applying to unit mass of the drift flow. The 
work done by this force over mean displacement 
λ  should be equal to the change of kinetic 
energy of the mean flow due to the drag of the 
drift flow, i.e. 

( ) ]~

)~(1)~(1

~1[~)(
!

1
1

Dt
uDuu

puu
n

TTLL

n

n

−∇⋅−

−⋅∇+−⋅∇

+∇−⋅=⋅∇⋅∑
∞

=

ττ
ρ

ττ
ρ

ρ
λλ

 

 

(31) 

The independent equation (31) signifies 
dynamic equilibrium of the mean flow kinetic 
energy change and work done by the drift flow.  
The series form on the left hand side of the above 
equation corresponds to numerous scales of 
turbulence coherent structures up to the n-th 
order. If n is infinity, we can obtain statistical 
mean flow in an absolute sense. But for 
engineering applications, n=1 usually leads to 
first-order coherent structure flow, n=2 gives 
approximate statistical mean solutions for 
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moderate turbulence and n=3 is suitable for ultra-
strong turbulent mean flows. Therefore, it is seen 
that statistical mean flow and coherent flow are 
controlled by the same equation (31) but 
characterized by different order n in the 
equation. When calculating statistical mean 
flow, one may start with the first order energy 
equation. If coherent behaviors appear, higher 
order n should be used. In the numerical 
computation, we also need to use the coefficient 
of substance Cs to express the effect of flow 
dimensions and boundary wall on the eddy 
viscosity tensor such as           

uC s
~λξ =  (32) 

Cs may be obtained analytically. For 3D flow Cs 
=1, for 2D flow Cs =2/3. For 2D wall boundary 
flow Cs =1/12, for 3D wall boundary flow 
Cs=1/8  [2].  Equations (22), (25), and (31) plus 
two continuity equations 

0=⋅∇ u  (33) 

                                                                                                         

0~ =⋅∇ u  (33) 

                                                     
constitute the governing equations of 
incompressible turbulent flow.  It is worthy to 
point out that these equations do not contain any 
empirical coefficients. Weighting coefficients 
M1 and M2 for the division of turbulence 
fluctuations into two groups are not explicitly 
appear, and thus need not to be determined. 

7 Numerical examples 
In order to verify the adaptability of the newly 
derived equations of incompressible turbulence, 
we compare computational results and 
experimental data for the following four 
benchmark flows.  Both mean flow and 
intermittent coherent flow are calculated for each 
flow field.  A standard SIMPLE scheme and 
staggered grid scheme are used for the finite 
difference formulations.  A second order central 
difference form is used throughout the 
computation to avoid possible numerical error 
contamination.  As a result, computational 

stability relies on physical viscosity rather than 
artificial viscosity.  All computations were 
performed on personal computers.   

7.1 Plan Jet  
Two-dimensional plane jet flow is a primary 
example to verify the spreading characteristic of 
typical free shearing flows. In the computation, 
the width of the jet nozzle is 2-cm wide and 
Re=3×104.  The computation zone is a 
symmetric half domain, with length 1.0 m and 
width 0.3 m, divided by the jet central axis.   
The mesh size is 40×40 and the coefficient of 
substance Cs=2/3.  Figure 1 shows the patterns 
of jet flow and its induced vortices obtained 
through the second-order energy equation (31) 
and smoothing scheme. The spreading rate is 
0.105, which fell into the range of 0.10-0.11 
measured in experiments  [3]. 
  

 
Figure 1.  Flow pattern of plane jet. (n=2) 

 
Figure2.  Streamlines of coherent structures in 
plane jet.(n=1) 

Figure 2 is one of the snaps of the 
computational results of first-order equation 
(31) without using the smooth scheme.  The 
mesh size is 200×150.  This set of results 
vividly displays the step by step formation 
process of entrainment vortices along the jet 
boundary.  The intermittent coherent patterns 
are very similar to experimental photos [4].  

7.2 Round Jet  
Motivated by the plan/round jet anomaly, we 
simulated a round jet flow, 

4103Re ×= . The 
computational symmetric half domain is 1-m 
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long and 0.2-m wide. A 41×61 mesh is used in 
the computational zone with uniform grid 
lengths in the direction of the central axis. Much 
denser grids are used near the central axis in the 
y direction to accommodate strong shear force 
and large velocity gradient. The coefficient of 
substance Cs=2(r-h)/3(r+h), where r is the 
radius of the center of the control volume, and h 
is the half width of control volume.  The 
simulated results show that the spreading rate 
for the round jet is 0.086, which again falls in 
the range 0.086 ~0.093 measured from 
experiments [3]. The plane jet/round jet 
anomaly has been successfully eliminated.    
Figure 3 gives the comparison of velocity 
profiles in the y-direction at various locations.   
Self-preservation is clearly evident.    

 
Figure 3.  Self-preservation of velocity profile 

in round jet (n=2)  

7.3 Boundary Layer and Transition on a flat-
plate  
The simulation of flat-plate boundary layer and 
transition is a real challenge to our newly 
developed equations of turbulence because they 
contain no empirical coefficients and no wall 
functions for possible adjustment.  

Now, we consider a two-dimensional flow 
over a 6-meter long flat plate.  The computational 
zone between the solid bottom and border of the 
top free flow is 3-meter wide.  An 81×61 mesh is 
applied with an exponential distribution along the 
y-direction and a dense uniform distribution 
around the transition zone in the x-direction. The 
nearest 3-4 grids to the solid wall are within the 
laminar sublayer.  Reynolds number is varying 
based on the length factor along the wall 

direction.  Within 10mm thick near-wall region, 
the velocity at entrance has a laminar profile of 
1/2 power, above which is a uniform velocity 
distribution with Re=1.0×105 at the entrance. The 
Reynolds number at the exit is Re=2.2×107.  The 
coefficient of Substance Cs=1/12.  Initial mean 
flow velocity is set to be 1 throughout the 
computation zone, while the initial drift flow is 
set to be zero.  Shown in Figure 4 is the evolving 
process of the calculated mean velocity profiles 
and the thickness of the boundary layer around 
the transition zone by employing the second-
order equation (31). The transition is shown 
around Re=8×105 area. To the authors' 
knowledge, all simulated details, such as the 
velocity profile, the thickness of boundary layer, 
friction coefficients, logarithmic velocity profile, 
form factor, and turbulence stresses, are in good 
agreement with experiments.       

 
 

Figure 4. Velocity profiles in the transition 
zone of boundary layer (n=2) 

 
Figure 5.  Intermittent patterns in boundary   

layer (n=1) 
Figure 5 is a selected intermittent flow pattern 

of the boundary layer.  In the computation, the 
same mesh, Reynolds number, and first order 
energy equation are adopted without using the 
smoothing scheme.   Subtracting 0.8 Ue draws the 
intermittent patterns from the mean velocity at 
each grid point, where Ue is the free stream 
velocity. The two-dimensional results have 
clearly shown that the first-order energy equation  
(31) is the control equation for primary coherent 
structure.  



G.GAO , Y.YONG  

191.8 

The above results demonstrate that the present 
set of equations is able to calculate broad range of 
boundary layer flows from laminar to turbulent 
through transition.  

7.4 Separation Flow over Backward Facing 
Step  
The fourth example is a separation flow.  
According to case 0421 published in the 1980 
Stanford Turbulence Conference [5], we 
calculated a flow over a backward-facing step. 
The computational zone is 20-m long and 4-m 
wide and 

4105.4Re ×= .  The step itself is 4-
long and 2.5-m wide.  A uniform mesh 100x60 
covers the entire computational zone.  Such 
mesh does not consider the effect of the 
boundary layer because the first grid near the 
wall is much thicker than the boundary layer.  
Such treatment may lead to larger friction on the 
non-slip boundary.  However, it will not 
severely affect the shape of the recirculational 
vortex. When the first-order energy equation is 
used, the calculation demonstrates a complete 
process of vortex formation, growth, braking-
up, and shedding. Figure 6 shows two snaps of 
the vortex shedding process. 

 

 

 
Figure 6.  Vortex shedding behind a backward 
facing step (n=1) 

When the third-order energy equation (31) 
is adopted, the vortex shedding and oscillation 
completely disappear and a steady vortex of 
length 6.9 is obtained (Figure 7), which falls in 
the experimental length data 6.5-7.5. The above 
results clearly show that the first-order energy 
equation dominates primary coherent structures 
and, therefore, constitutes a large eddy model, 

and the higher-order equation constitutes a 
mean flow model. 

 
Figure 7. Mean flow pattern of backward-facing 
step flow obtained by higher-order energy 
equation. 

8 Discussions 
The objective of the present study is to present 
new equations of incompressible turbulence 
derived based on the physics of turbulence.  
These equations should be able to describe 
statistical mean flow and coherent flow 
simultaneously. As the Reynolds average 
completely loses the first-order statistical 
information of turbulence fluctuations, the second 
order information becomes the only tool to study 
the full influence of fluctuations upon the mean 
flow.  Such a practice inevitably encounters many 
difficulties.  Empirical coefficients have never 
been able to declare generality because they are 
lack of sound mathematical and physical bases.  
The research presented in this paper takes a very 
different path to study incompressible turbulence. 
The major methodology is as follows: 

1. The introduction of the unilateral 
average scheme provides the first-
order statistical information of the 
complex fluctuation field, based on 
which the useful momentum equation 
of drift flow and the independent 
mechanical energy equation are 
derived. 

2. The symmetry of the weighted drift 
velocities puts a solid ground for 
introducing orthotropic coordinates, 
which greatly simplify the viscosity 
coefficient matrix and solve the 
problem of anisotropy. The symmetric 
property of the two weighted drift 
flows clearly demonstrates that the 
universal symmetric law found in 
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nature also exists in such a highly 
random event as turbulence. 

3. The modeling of the correlation terms 
relies upon the phenomenological 
concept of the momentum transfer 
chain. The endless cascade down 
process of eddies and the decaying 
process of coherent structures from 
lower-order to higher-order are merely 
apparent disorder phenomena.  Behind 
these phenomena, the authors believe 
that there is a deterministic momentum 
transfer chain starting from the mean 
flow to the drift flow, and eventually 
to random molecular motion. This 
modeling consists with physical reality 
of turbulence and eliminates the 
reliance on empirical coefficients.   

4. The concept of orthotropy is popular in 
mechanics of composite materials.  
There is obvious similarity between 
wood grains and water grains.  
Introduction of the orthotropic concept 
into the modeling of turbulence 
viscosity greatly simplifies the matrix 
of viscosity coefficients through 
reducing 36 coefficients of three-
dimensional non-isotropic matrix to 6.  
Multiplication of the drift velocity and 
the mean displacement length vector 
provides 9 tensor components, in 
which six shear stress coefficients 
compose three engineering shear stress 
coefficients plus three normal stress 
coefficients.  When the coordinates 
deflect from the orthotropic 
coordinates, 36 non-zero coefficients 
appear again like a usual non-isotropic 
case.  The eddy viscosity tensor and 
turbulence stresses obtained in this 
study are very different from the ones 
obtained based on the conventional 
isotropic eddy concept.  

5. The independent mechanical energy 
equation (31) gives raise the 
relationship between the mean flow 
energy and the drift flow energy.  It is 
known that the effect of the drift flow 
on the mean flow is to resist the mean 

flow motion.  The work done by the 
drift flow over a displacement should 
be equal to the loss of the kinetic 
energy of the mean flow over the same 
displacement.  This equation is unlike 
the conventional mechanical energy 
equation that is dependent on the 
momentum equation.  The present 
mechanical energy equation is a bridge 
connecting the mean flow and the drift 
flow. The more series terms of the 
energy equation are used, the more 
accurate statistical mean solutions are 
possible.   

6. The series form of the energy equation 
provides multiple discrete length-
scales to describe infinite layers of 
turbulence structures and eddies.  It is 
noticed that (31) is an algebraic 
equation for displacement vector.  Its 
solution λ  is discrete both in time and 
in space.   So are the eddy viscosity 
tensor and turbulence stresses.  In 
order to smooth turbulence mean 
stresses, we need to average the 
displacement vector at the end of 
computation.  If the average were 
performed at each iteration step, the 
computation would give rise incorrect 
results.  One of the examples is the 
simulated round jet flow, which failed 
to show the correct spreading rate.  
Apparently, the averaged solution of 
(31) is no longer the solution of the 
original nonlinear equation.  This 
phenomenon deserves further 
investigation in view of philosophy 
and methodology in the study of 
nonlinear science. 

The ability of simultaneously simulating mean 
flow and coherent flow of turbulence shows that 
newly developed turbulence equations have 
provided a hope to unite statistical and structure 
movements.  Since the calculation of coherent 
flows can be performed on meshes of 103 to 105 
grids, the original aim of large eddy simulation 
model is also realized.  Of cause, for coherent 
structures, detailed study of three-dimensional 
calculations is needed. 
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9 Conclusion 
The essential theme of the present approach is 
the application of the unilateral statistical 
average scheme to turbulent fluctuations.   As 
the first step toward solving the closure 
problem, the first order statistical information is 
extracted from the fluctuations to characterize 
orthotropic turbulence and the momentum 
transfer train.   It is assumed that the turbulence 
fluctuations constitute an orthotropic 
environment for the mean flow. The momentum 
transfer train is introduced based on the physics 
of the momentum transfer from mean flow to 
drift flow through viscosity and finally to 
molecular heat.  These physical descriptions 
enables one to model correlation terms arising 
from the unilateral average and remove the need 
of empirical coefficients and wall functions in 
the equations of turbulence.  The same set of 
equations is able to produce promising results in 
the numerical computation for quite different 
turbulent flow conditions, ranging from various 
mean flows to coherent flows.    

The calculations of four kinds of 
benchmark turbulent flows, i.e. free shearing 
flows, boundary transition flow and separation 
flow, have proved that the same set of equations 
may provide precise statistical mean results as 
well as vivid coherent structure flows on sparse 
meshes.  Since using the present equations has 
solved several difficult problems, such as 
transition, plane jet/round jet anomaly and 
vortex shedding phenomenon, the wide 
adaptability of the equations has obtained initial 
proof.  It is promising that the set of equations 
may be used for further theoretical and 
engineering study of turbulence. 

As turbulence is one of representative 
problems of nonlinear science, the methodology 
used in the present study of turbulence, such as 
unilateral average, the symmetry of the drift 
flows, orthotropic eddy viscosity, momentum 
transfer chain, the series form of independent 
mechanical energy equation and its discrete 
solution, may provide reference of 
mathematical-physical method for general 
nonlinear science.  
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