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Abstract

A method for the computation and breakdown
of the aerodynamic drag into viscous and wave
components is here proposed. Relying on a
given numerical solution of the Reynolds Av-
eraged Navier-Stokes equations, the method
allows for the determination of the drag re-
lated to entropy variations in the flow. The
identification of a spurious contribution due to
the numerical dissipation of the flow solver al-
gorithm allows for drag computations weakly
dependent on mesh size. By this method ac-
curate drag calculations are possible even on
moderately sized grids. Results are presented
for transonic flows around an airfoil and a
wing-body configuration.

1 Introduction

The problem of drag extraction from CFD
calculations is still open today, and much re-
search has been devoted to this subject. The
interested reader can find an initial review
with fundamentals of physics in [1, 2], while
recently an extended and detailed overview of
the state of the art on drag prediction methods
has been given in [3].

The numerical computation of drag by sur-
face integration of stresses (near field method)
usually gives insufficiently accurate results

even if the flow solution is locally accurate
(in terms of pressure and velocity profiles for
instance). In particular for numerical solu-
tions of the Reynolds Averaged Navier-Stokes
(RANS) equations, which are discussed in this
work, the problem is mainly related to the
presence of the numerical artificial dissipa-
tion which produces an artificial or “spurious”
drag. This contribution becomes negligible
only for not feasible calculations with infinitely
dense grids.

A second problem concerns the fact that
the near field drag computation only allows
for a distinction between “pressure” and “fric-
tion” drag. Additional useful information
would be the breakdown into other physical
components, such as viscous drag (associated
with boundary layers), wave drag (associated
with possible shock waves in transonic and su-
personic flows) and lift induced or vortex drag
(associated with the free vortex system shed-
ding from 3D lifting bodies). This task is rel-
atively simple when drag has to be extracted
by classical viscous-inviscid interaction meth-
ods. On the contrary, in the case of analysis
performed by RANS methods such as in wind
tunnel experiments, the physical drag source
is not isolated and the breakdown into individ-
ual components becomes difficult. In practice,
for a real flow there is not a clear definition of
the different drag contributions.
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In the present work a solution to these
problems is proposed when the drag associated
with entropy production in a RANS solution
is considered. This “entropy drag” is made up
of viscous and wave components and it repre-
sents the total drag for 2D adiabatic flows.

The proposed method is based on a far field
approach in which the drag is determined from
the momentum integral balance by consider-
ing fluxes evaluated on a surface far from the
body.

Oswatitsch [4] derived a far field formula
of the entropy drag considering first order ef-
fects, in which the drag is expressed as the
flux of a function only dependent on entropy
variations. Lock [5] used the Oswatitsch’s for-
mula for computing the wave drag in invis-
cid flows in terms of entropy jumps across the
shocks. In [6] and [7] the Oswatitsch’s for-
mula is used for computing the entropy drag
in RANS solutions by limiting the far field
flux computation to a box enclosing the air-
craft. However this method does not elimi-
nate the error due to the spurious drag, which
is mostly concentrated near the configuration
(where larger flow gradients and grid metric
variations are present) and does not allow for
the breakdown into constituent drag compo-
nents. Indeed when fluxes are computed on
surfaces far from the configuration, it is diffi-
cult to distinguish between wave and viscous
contributions for streamlines crossing both the
inviscid shock and the boundary layer. This is
a major problem for the breakdown of drag by
far field methods as noted in [2].

In [8] a viscous and a wave drag contribu-
tion for a transonic airfoil flow has been com-
puted by separately applying the Oswatitsch’s
formula in the boundary layer wake and just
aft the shock wave. Nevertheless this method
seems difficult to extend to the analysis of
complex 3D flows and again, does not account
for spurious drag contributions.

An interesting idea was exploited in [9]
for inviscid Euler flows. Gauss’s theorem al-
lows for the replacement of the surface inte-
gral in the Oswatitsch’s formula with a vol-

ume integral; therefore the integrand can be
set to zero “a priori” in regions where it is
known that physical entropy variations should
be zero, thus removing spurious contributions
to drag.

In the following sections a general far field
expression of drag by Taylor’s series expansion
with respect to entropy, pressure and total en-
thalpy variations is derived. In this way the
entropy contribution can be separated from
the drag due to lift. The first order term is
coincident with the Oswatitsch’s formula; it is
shown, by numerical experiments, that for vis-
cous flows this term is not sufficient for accu-
rate drag prediction and the additional second
order term is at least required.

The entropy drag is then expressed in
terms of a volume integral that can be eas-
ily computed. In such a way it is possible
to split drag into wave and viscous contribu-
tions once the shock wave and the boundary
layer/wake regions are properly identified. In
addition, following [9], the spurious term asso-
ciated with the volume integration in the re-
maining part of the flow can be eliminated,
allowing for accurate drag predictions with
medium sized grids.

This method has been used to derive the
lift versus drag curves of an airfoil. The results
obtained in the case of transonic flow are pre-
sented and compared with experiments. In ad-
dition the feasibility of the method to compute
and split drag for complex flows is shown by
presenting the breakdown of drag at different
lifts obtained for a wing-body configuration in
transonic flow conditions.

2 The far field drag definition

It is here considered a steady fluid flow with
free stream velocity V∞ around an unpowered
aircraft configuration, implying that the only
external force acting on the body is due to the
fluid. The integral formulation of the momen-
tum balance for a volume Ω surrounding the
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body leads to

∫

S
[(ρ~V ~V ) · ~n+ p~n − (~~τ · ~n)]dS = 0. (1)

ρ, ~V , p and ~~τ specify respectively the den-
sity, velocity vector, static pressure and the
viscous stress tensor. S is the surface bound-
ing the volume Ω and ~n is the unit normal
vector pointing outside the volume Ω. If the
surface S is decomposed as S = Sbody

⋃
Sfar

with Sbody specifying the body surface and Sfar
the external surface bounding the volume Ω,
it is possible to obtain the total force acting
on the body:

~Fbody =
∫

Sbody

[p~n− (~~τ · ~n)]dS

= −
∫

Sfar

[(ρ~V ~V ) · ~n+

p~n − (~~τ · ~n)]dS. (2)

This equation shows that the body force
can be evaluated through two different ap-
proaches:

1. by performing an integral of the acting
stress on the body surface (first integral
of the (2)): near field method;

2. by calculating the second integral of the
(2), i.e. by evaluating the net momen-
tum flux across the surface Sfar: far field
method.

With reference to a Cartesian system
(Oxyz) with the x-axis aligned with the free
stream velocity vector, the far field drag ex-
pression can be obtained by projecting the sec-
ond integral of equation (2) in the x-direction

Dfar = −
∫

Sfar
[pnx + ρu(~V · ~n)−

τxxnx − τxyny − τxznz]dS. (3)

If the surface Sfar is chosen infinitely far from
the body (Sfar,∞) it is possible to neglect the
viscous stress terms in the expression (3). Fur-
thermore it can be proved [10] that, in the case

of 2D flows, the far field drag expression can
be further simplified since, in this case, the
contribution of the pressure to the integral of
equation (3) vanishes, thus obtaining

Dfar = −
∫

Sfar,∞
ρV (~V · ~n)dS. (4)

By the definitions of total enthalpy and en-
tropy of a perfect gas it is possible to express
the module of the velocity in terms of vari-
ations of total enthalpy (∆H), entropy (∆s)
and static pressure (∆p) with respect to the
free stream values. If the total enthalpy vari-
ation is neglected (it is very small for a flow
with Prandtl number nearly equal to one)

Dfar = −V∞
∫

Sfar,∞
ρ(~V · ~n)

√
1− gdS, (5)

where

g =
2

(γ − 1)M2
∞
·

{[
(∆p+ 1) e

∆s
R

] (γ−1)
γ − 1

}
, (6)

withR and γ respectively the gas constant and
the specific heat ratio of air. In 2D flows the
drag formula (5) provides an “exact” expres-
sion in terms of the entropy variation in the
flow.

3 Entropy drag and its breakdown

The 3D far field drag expression (4) can be ma-
nipulated [10] by considering the already cited
expression of the velocity module and perform-
ing a Taylor series expansion in terms of ∆s,
∆p and ∆H. Considering first and second or-
der terms associated with entropy variation,
the expression of the entropy drag coefficient
in a general 3D flow becomes (the drag coeffi-
cient CD is here used)

CD =
2

γM2∞

∫

Sfar

{
∆s

R
+

[
1 + (γ − 1)M2

∞
2γM2∞

] (
∆s

R

)2
}
·

ρ̂( ~̂V · ~n)dŜ. (7)
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The symbolˆspecifies non dimensional quanti-
ties, and vi is the x-component of the unit ver-
sor of V∞. The integral in the expression (7)
is connected with the entropy rise ∆s

R
on Sfar;

it is here defined as the entropy drag around
a 3D unpowered aircraft configuration. The
first order contribution of the entropy drag is
equal to the well known drag expression de-
rived by Oswatitsch [4] widely used especially
in the computation of the wave drag in inviscid
flows.

As stated in the introduction the drag
breakdown procedure is ambiguous for a real
flow. Another problem is related to the pres-
ence in the numerical solutions of artificial dis-
sipation terms (explicit or implicit) which add
a “spurious” or “numerical” contribution to
the computed drag despite its computation by
a near or far field method.

By the Gauss theorem the entropy drag in
equation (7) can be written in the form (on

the body surface ~V · ~n = 0)

CD =
2

γM2
∞

∫

Ω

~∇ · [f(
∆s

R
)ρ~V ] dΩ, (8)

where f(∆s
R

) is given by the term in braces in
the integral of (7).

The domain Ω can be decomposed as Ω =
Ωbl

⋃
Ωw

⋃
Ωs. Ωbl is the volume containing

the boundary layer and the viscous wake, Ωw

contains the shock wave, and Ωs specifies the
remaining part of the flow field. Hence by the
relation (8) the entropy drag can be expressed
as the sum of three contributions:

CD =
2

γM2
∞

{∫

Ωbl

~∇ · [f(
∆s

R
)ρ~V ] dΩ+

∫

Ωw

~∇ · [f(
∆s

R
)ρ~V ] dΩ+

∫

Ωs

~∇ · [f(
∆s

R
)ρ~V ] dΩ

}
. (9)

Each integral in the expression (9) is con-
nected with the entropy production in the cor-
responding volume Ωi. Thus by equation (9) it
is possible to write CD = CDbl+CDw+CDsp, re-
spectively the viscous, wave and spurious drag

coefficients. Since CDbl and CDw are also af-
fected by spurious contributions CDsp cannot
represent the total unphysical drag, although
hopefully its detection and elimination can re-
duce the dependency of the computed drag on
the grid density.

3.1 Algortithms for regions selection

It is clear that the proposed entropy drag
breakdown relies on a proper definition of the
boundary layer and shock region. For such
purpose a zone selection algorithm has been
developed, based on the physical features of
the flow field. The problem to be considered
is to establish whether a grid cell, for which
all thermofluidynamic information are known,
belongs to the boundary layer, to the shock
wave or to the remaining part of the flow do-
main. The selection algorithm becomes criti-
cal in shock wave - boundary layer interaction
zones because there it is not clear the distinc-
tion (both theoretical and practical) between
boundary layer and shock.

The automatic selection of the shock wave
region relies on a sensor based on the following
non dimensional function:

Fshock =
V · ∇p
a|∇p| , (10)

where a is the local sound speed. This sensor is
negative in expansion zones (where obviously
shock waves are not present) and positive in
compression regions. Thus, cells with negative
values of Fshock can be automatically excluded
from the shock wave region.

A further selection can be made because
this sensor gives a guess of the local Mach
number component in the direction of the
pressure gradient. Fshock > 1 in the compres-
sion zone, implies that the corresponding cell
is in the neighborhood (upwind) of a shock
wave. Furthermore by using the Rankine-
Hugoniot relations it is also possible to get an
estimation of the Mach number downstream
of the shock. This value can be used as a cut-
off (Fcw) for the shock function and allows to
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select cells both upstream and downstream of
the shock wave if the test Fshock > Fcw is sat-
isfied.

The identification of a proper automatic
sensor for the detection of the boundary layer
and wake required larger efforts. A first diffi-
culty is given by the requirement of a topol-
ogy independent selection criteria to allow for
an algorithm independent on the configura-
tion and also applicable to unstructured data.
Therefore a sensor based on the boundary
layer thickness (which on the other hand is
ambiguous and strongly dependent on a cutoff
value) cannot be used. Furthermore the sen-
sors cannot be based on variables related to
the entropy production, for instance the dissi-
pation of kinetic energy, because they tend to
also detect the spurious region. In the present
work it has been introduced a sensor properly
working for fully turbulent flows. In this case
the eddy viscosity is a reliable measure of the
relevance of the viscous effects. The adopted
sensor is:

Fv =
µl + µt
µl

, (11)

where µl and µt are respectively the dynamic
and eddy viscosity. The value of Fv is very
high in the boundary layer and wake while is
≈ 1 in the remaining part of the domain. The
viscous region is selected by checking if Fv >
1.1 · Fv∞, where Fv∞ the free stream value of
the boundary layer sensor.

4 Results

The flow simulations, which are the basis for
the drag analysis, have been obtained solving
on block structured grids the steady RANS
equations, by a standard technique based on
the well known central space discretization,
with self adaptive explicit second and fourth
order artificial dissipation [12]. Two turbu-
lence models have been used, the Baldwin-
Lomax [13] for the 2D test and the Spalart-
Allmaras [14] for the wing-body test.

4.1 2D airfoil

The polar curve (CL vs CD) of the NACA 0012
airfoil has been computed at free stream con-
ditions M∞ = 0.7, Re∞ = 9 · 106 (an exper-
imental data set can be found in [15]). The
mesh is a single-block C-type grid with four
grid levels, made up respectively of 80 x 32
(coarse), 160 x 64 (medium), 320 x 128 (fine),
and 640 x 256 (superfine) cells.

The surface pressure distributions on the
medium, fine and superfine grid are compared
with the experiments at CL = 0.5 in figure 1.
The agreement is satisfactory both in terms of
pressure peak and shock wave location.

x/c

C
p

0 0.25 0.5 0.75 1

-1

-0.5

0

0.5

1

Experiments
Medium Grid
Fine Grid
Superfine Grid

Fig. 1 NACA 0012, viscous test, surface pres-
sure distributions, M∞ = 0.7, Re∞ = 9 · 106,
CL = 0.5.

The viscous and wave drag computed by
using the formula (7), respectively with the
1st and the 2nd order entropy terms and by us-
ing the exact formula (5) have been compared.
The 2nd order approximation agrees with the
relation (5) for both viscous and wave drag.
On the contrary the 1st order approximation
underestimate viscous drag of 3%. This is
caused by the entropy variations in the bound-
ary layer which are larger than the variations
across shock waves. Therefore, in the follow-
ing, the far field CD is always computed by
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Fig. 2 NACA 0012, viscous test, far field CD
versus mesh size, M∞ = 0.7, Re∞ = 9 · 106, CL =
0.424.

retaining the 2nd order approximation.
The application of the breakdown algo-

rithm allows for the identification of a spu-
rious contribution that can be removed from
the drag computation, and the drag variation
with the mesh size is considerably reduced,
see figure 2 for the CL=0.424 case; In this
test the spurious drag (CDsp) ranges from 20
counts (h=4 grid) to 1 count (h=1 grid) and
CDv + CDw only differs 7 counts among tests
at h=4 and h=1. The viscous and shock wave
regions selected are plotted in figure 3.

In figures 4, 5 and 6 the drag polars com-
puted on the medium, fine and the superfine
grid are compared with the experimental data.
In the same figures it is also proposed the
breakdown in viscous and wave drag. The
analysis of figure 4 shows that, even for a grid
with only 128 cells around the airfoil, the iden-
tification of the spurious drag contribution (≈
16 counts in this case) allows for a satisfac-
tory prediction of CDv + CDw (the total drag)
on a wide range of lift coefficients (the test
at CL=0.6 is not reported because not fully
converged on the medium level). For the fine
level (see figure 5) the detected spurious drag
is ≈ 5 counts, and it reduces to ≈ 2 counts

Fig. 3 NACA 0012, viscous test, viscous region
selected in the fine grid test, M∞ = 0.7, Re∞ =
9 · 106, CL = 0.424.
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Fig. 4 NACA 0012, viscous test, comparison
of the drag polars, medium grid test, M∞ = 0.7,
Re∞ = 9 · 106.

for the superfine level, see figure 6. In both
cases the agreement of CDv +CDw with the ex-
periments is excellent. The figures also show
a satisfactory agreement among the viscous
and wave drag contributions as computed on
the different grids. The wave drag only ap-
pears at higher lift conditions, when the up-
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per shock forms and, as expected, is strongly
dependent on lift. On the contrary the vis-
cous drag dependence on lift is weaker, and
significant variations of CDv only appear when
the shock boundary layer interaction becomes
strong.
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Fig. 5 NACA 0012, viscous test, comparison of
the drag polars, fine grid test, M∞ = 0.7, Re∞ =
9 · 106.
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Fig. 6 NACA 0012, viscous test, comparison of
the drag polars, superfine grid test, M∞ = 0.7,
Re∞ = 9 · 106.

4.2 Wing-Body, viscous flow

Some results obtained on a wing body tran-
sonic configuration are here presented. The
free stream flow conditions are M∞ = 0.75,
Re∞ = 4.3 ·106. Wind tunnel experiments are
presented in [16].

This test is interesting because shows the
feasibility of computing and decomposing the
entropy drag in the case of complex 3D flows.
Furthermore it illustrates that, in practical
applications (block structured grids, skewness
and stretching of the grid at block interfaces),
the identification of the spurious drag contri-
bution is even more important. The used mesh
is a 41 blocks grid (1600513 points on the finest
level), built by NLR (the Dutch Aerospace
Laboratory) in the frame of an European re-
search project [17].

In figures 7 the computed pressure distri-
butions are compared with the experiments for
two wing sections showing an excellent agree-
ment.

Finally in figure 8 the breakdown of the en-
tropy drag into viscous and wave components
is presented. In this case the far field drag can-
not be compared with the near field value be-
cause present method does not account for the
vortex drag. However, in the figure a vortex
drag (CDi) estimation by a different method is
also plotted. CDi has been computed by the
Maskell’s formula [6], [7], [11], in which the
drag due to lift is related to a vorticity inte-
gral in the Trefftz plane.

The experimental polar curve cannot be
considered as a reference for the validation of
the present breakdown of the total drag. This
is because the experiments were performed on
an half model which are not well suited for the
determination or the totale drag (the experi-
ments were devoted for the computation of the
engine installation drag). Furthermore a slight
variation of the “numerical” CDi with the po-
sition of the Trefftz plane has been verified,
indicating a small range of uncertainty for the
total computed drag (CDv + CDw + CDi).
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Fig. 7 Wing-Body, viscous test, surface pressure
distribution at wing section M∞ = 0.75, Re∞ =
4.3 · 106, CL =0.6. (a): y

b/2 = 0.62; (b): y
b/2 =

0.87.

5 Conclusions

A far field method for accurate calculations of
the entropy drag is here proposed, relying on
a given numerical solution of the RANS equa-
tions. The method allows for decomposition of
the drag in its viscous and wave contribution
once the boundary layer and the shock wave
regions are identified. for this purpose a ro-
bust algorithm has been introduced for the se-
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Fig. 8 Wing-Body viscous test, viscous, wave
and induced drag polars, M∞ = 0.75, Re∞ =
4.3 · 106.

lection of the boundary layer/wake and shock
wave zones.

The method has been tested by determin-
ing the polar curves for a transonic airfoil flow
with grids of different mesh size. It has been
shown that the classical Oswatitsch’s formula
is not accurate in viscous flows, but a second
order correction term, here proposed, is re-
quired. The far field drag calculation is equiv-
alent to the near field analysis, both meth-
ods converging as mesh size becomes infinitely
small. The agreement with experimental re-
sults is excellent as far as the numerical so-
lution is accurate. Moreover, once the the
boundary layer and the shock wave regions are
selected, it is possible, to compute and remove
a substantial part of the spurious drag intro-
duced by the numerical dissipation of the flow
solver. As consequence, the corrected drag re-
sulted only weakly dependent on grid size im-
plying an accurate drag calculations even on
medium sized grids.

At the end the algorithm has been tested
by studying a wing-body configuration in tran-
sonic flow showing the capability to analyze
more complex and realistic aircraft configura-
tions, although in this case the computation
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of the total drag also requires the calculation
of the vortex drag by a different method.
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