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Abstract

Recorded radar data retrieved from air traffic

control facilities are often used in aviation accident
investigation and reconstruction for the purpose

of determining an aircraft’s flight path and
groundspeed. Simple averaging methods for
smoothing the flight path and extracting
groundspeed are shown to yield unsatisfactory
results. In this paper, improved methods are
presented which allow for a more accurate
determination of both the times of the radar
returns for long-range data, and more accurately
establish the flight paths for either long-range
radar data or terminal radar data. Least-squares
moving-arc methods are applied in order to 1)
adjust for azimuth and range errors that are

inherent in recorded radar data, and 2) to smooth
the flight path. Groundspeed and true course, as
computed from the adjusted and smoothed flight

path, are further smoothed by means of muiti-
point weighted averaging. Weighting functions
and end-point handling methods are suggested
that have proven successful at minimizing

anomalous end-point excursions. Sample sets of
actual recorded radar data are used to illustrate the

application of the above techniques. For the

example of terminal radar data, the groundspeed

and true course are compared with the recorded

output from the aircraft’s digital flight data recorder.

Introduction

Air Traffic Control (ATC) relies upon its radar
facilities and the associated ground-based

computer systems for the efficient and safe flow of
air traffic. The received radar information is digitally

recorded and can later be retrieved by means of
“extraction” software. Even though this

procedure was never intended for use as a means

of accident reconstruction and analysis, it has,
nevertheless, become, when available, an

important item in the accident reconstructionist's

tool chest.
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Enroute Air Route Traffic Contro! Centers
(ARTCC) and Terminal Radar Approach Control
(TRACON) facilities are able to extract aircraft
positions, times, and altitudes at a later time using
the National Track Analysis Program (NTAP) and
the Continuous Data Recording (CDR) Editor,
respectively. This paper discloses some novel
methods for calculating and smoothing the
aircraft’s flight path, groundspeed, and true
course from these extracted data. These
smoothed values, in combination with the
computation of atmospheric winds, temperatures,
and pressures, yield the aircraft’s true heading,
true airspeed, and the calibrated (indicated)
airspeed.

Determining the most probable flight path from the
recorded radar data requires more than
conventional least-squares smoothing or
regression analysis. Moreover, using simple or
weighted arithmetic averaging to determine the
groundspeed of the aircraft from the radar data is
unreliable because it tends to “smooth out” real
time variations in the aircraft's speed, and it skews
the results toward errantly high values, particularly
when the aircraft is relatively far from the radar
antenna.

For the most part, position and time inaccuracies in
the recorded and extracted radar data are not
stochastic, but are instead determiriistic. With this
in mind, techniques will be presented that are
effective in specifically determining the magnitude
and direction of the inaccuracies and adjusting the
recorded positions and times accordingly. One
technique is applied to yield more precise time
intervals between radar returns. Another
technique is used to more precisely determine the
aircraft locations along the flight path. The more
exact times and positions are then utilized in the

~ calculation of groundspeeds and true courses that

are, correspondingly, more accurate. Overall, the
ability to correct for deterministic errors that are
inherent in extracted radar data is a significant
advancement in our ability to deduce useful flight
path and groundspeed information from recorded
radar data .
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Time Corrections for Enroute Radar Data

(NTAP)

Extracted data from terminal radar approach
facilities usually includes return times that are quite
precise (listed to the nearest 0.001 second);
consequently, time intervals for groundspeed
calculations can reliably be based on the listed
times. NTAP radar data extractions, on the other
hand, only provide the time of each radar return to
the nearest second; as a resuit, the time interval
between consecutive radar returns typically does
not remain constant throughout the data listing,
but instead will change occasionally in increments
of one second. Hence, if the nominal radar sweep
interval is 10 seconds, one can expect variations
in the groundspeed calculation of about 10% (due
solely to the time interval variation) when the time
interval changes by one second. In spite of this
situation, a more precise radar sweep time interval
can, in fact, be calculated. More importantly, the
time interval of interest is not the radar antenna
rotation interval. Instead, the time interval
necessary for more accurate calculations of the
groundspeed is the time between radar returns.

The concept of time corrections to recorded radar
as presented herein is similar to that proposed by
Vermij et. al.™' . We assume first that the aircraft
has a groundspeed component in the direction of
rotation of the antenna, in which case the time
between consecutive radar returns will be greater
than the antenna rotation time. Similarly, if the
direction of flight is opposite the direction of
antenna rotation, the time interval will be less than
the antenna rotation time.
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FIGURE 1 - Radar sweep time interval.

Figure 1 depicts a set of NTAP radar returns. If the
antenna rotation time interval is T, then the total

elapsed time 7 from radar return 1 to radar return N

e, -9
T=t, —t =(N—1)r+[i27-[_—1jr (1)

where £, and ¢, are the listed radar times (to the
nearest second) for the first and last returns in the
data set, respectively. When the net flight path
between the first and last radar returns is clockwise
around the antenna, 0, is greater than 6, , and
the second term in equation (1) is positive.
Conversely, when the net flight path between the
first and last radar returns is counterclockwise
around the antenna, 6, is less than 8,, and the
second term in equation (1) is negative. Solving
equation (1) for 7,

= N1 @

_—(N—l)+(9—Nz7_r—elj

Equation (2) is a satisfactory estimator for the
antenna sweep time interval. As illustrated in

figure 1, the time interval, (A?);, between

consecutive radar returns j and j+1 can now be
written as

(AG)J' :|7,' @)

t);=
(Ar); {1 + 7
The time interval determined by equation (3) can
be expected to vary along the flight path as the
direction of flight, the airspeed, and.the distance
from the antenna change. As with the overall flight
path, ( AG)J- can be either positive or negative.

Using the listed time at point 1 as a reference time,
a smoother, more precise sequence of times for
the radar returns can be established by the

cumulative addition of each (Ar); .

Range-Azimuth Convergence and
Least-Squares Moving-Arc Smoothing

The application of polynomial least-squares
moving-arc techniques to discrete data sets is a
classical, conventional method for data
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smoothing®. Recorded radar data typically
represent this type of discrete data. Wingrove and
Bach® have used this procedure with recorded
radar data to provide smoothed time histories of
aircraft position and speed. However, the analysis
presented herein differs from previous work in that
the least-squares moving-arc procedure is applied
independently to the range and azimuth values for
the radar returns of a given data set’. Asa result,
the range and azimuth of the data are “converged”
on to a smoother flight path that is more
representative of the manner in which an aircraft
would normally travel; hence the term “range-
azimuth convergence” T . After convergence,
least-squares moving-arc smoothing is again
applied to the converged flight path in order to
establish the aircraft's most probabile flight path.
An explanation of these procedures is best
presented by example.
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Figure 2 - Flight path based on extracted
long-range radar data.

Figure 2 contains an actual set of extracted long-
range radar data. Here, an airplane is flying almost
radially away from the radar antenna, with

positional irregularities in the flight path becoming
more pronounced as distance from the antenna
increases. Generally, the azimuth of the target can
be expected to be more irregular than the range of

’ Conceptually “range-azimuth convergence” has
some commonality with the “tolerance box” method
suggested by Vermij .

t A quadratic (second order) moving arc has been
adopted for the work reported herein.

the target. The adjusted flight path that results in
order from range-azimuth convergence followed
by least-squares moving-arc smoothing is
illustrated in figure 2 for a short segment of the
flight path.

The groundspeed of the aircraft is calculated
using the distance traveled return-to-return
divided by the elapsed time between those
returns; this is termed “point-pair” analysis. The
result of simple point-pair computations of the
groundspeed from the “raw” extracted radar data
is presented in figure 3. The large and rapid
variations in the groundspeed are unrealistic, and
they plainly demonstrate the need for smoothing.
The conventional approach has been to apply
simple multipoint averaging in an attempt to
smooth the groundspeed; however, a more
sophisticated approach, which is utilized here, is
multi-point weighted averaging. Nonetheless, as
illustrated in figure 3, even when multi-point
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Figure 3 - Groundspeed, altitude, and vertical

speed based on the data of figure 2, showing

the importance of range-azimuth convergence
prior to averaging.
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weighted averaging is applied, the resulting
smoothed groundspeeds are erroneously high.
Fundamentally, this is because, as shown in figure
2, the distances between the “raw” extracted radar
returns will generally be greater than the actual
distance that the aircraft has traveled during that
time interval. On the other hand, because the
convergence method “adjusts” the returns on to
an orderly, more likely flight path, the incorrect bias
toward higher values is minimized when the
groundspeed is calculated from the converged
flight path. Additionally, a comparison of the
upper and lower graphs in figure 3 demonstrates
that the convergence method provides a
groundspeed profile that is more in accord with
the variations in altitude and vertical speed as
computed from the aircraft's reported altitude.
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Figure 4 - Seven-point quadratic least-squares
moving-arc convergence applied independently
to the range and azimuth of the extracted data
from figure 2.

Figure 4 illustrates how the least-squares moving-
arc procedure is utilized in the analysis of discrete
radar data in order to reduce the irregularities

created by range and azimuth errors inherent in
the recorded data. In this application, the range or
azimuth change pulse (ACP)i is the dependent
variable, and sequential return number is the
independent variable. Notice that for both the
range and the azimuth of the extracted radar
returns, the absolute value of the adjustments are
less than about 2 increments; in other words, the
adjustments are less than 1/16th nm and about
0.18 degrees, respectively. These levels of
adjustment are typical, although they may
occasionally be larger, especially when the
underlying data set is of poor quality.

The converged flight path of the aircraft is
represented by X and Y coordinates (true E-W and
true N-S, respectively) that are calculated from the
converged range and azimuth values. A final
smoothing of the flight path is accomplished by
again applying quadratic least squares moving-arc
smoothing to the X and Y coordinates as
dependent variables and time as the independent
variable. Forlong-range (NTAP) radar data, the
time will be the corrected time, as developed
earlier; for terminal (ARTS) radar data, the time is
taken as the recorded time.

Multi-Point Weighted Averaging
for Groundspeed or True Course

Once the groundspeed and true course have
been computed from the converged and
smoothed flight path, it is advantageous to use
multi-point weighted averaging for additional
smoothing. Weighted averaging makes it possible
to benefit from trend information that is contained
in adjacent values. A pragmatic method for
generating weighting functions is to repeatedly
apply three-point unweighted averaging until the
necessary number of terms have been generated
for an m-point application, where m is an odd
number (e.g. 5,7, 9, 11, ....).

Consider a data set for groundspeed or true
course as depicted in figure 5. The ordinate
values are based on consecutive pairs of
converged and smoothed flight path locations.
The abscissa values are average or “central” times

. between locations, also known as “interval” times.

* The azimuth change pulse, ACP, refers to azimuth
angle of the radar return based on a 12-bit digitizer that
divides 360 degrees into 4096 divisions of 0.088
degrees each.
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Figure 5 - Generalized depiction of groundspeed

or true course values based on consecutive pairs

of converged and smoothed flight path locations
and corresponding times.

The 3-point average values at times t, ,, t,, and

t;,, are given by

S |
4=-§(x. +x.+x,.+l) 4)

In equation (4), the terms are equally weighted
with coefficients of (1,1,1), and the denominator
(the sum of the coefficients) is used to normalize
the coefficients. If three-point averaging is applied
again to the average values in equation (4), we get

%= 3B+ 5, +5)
é()ci_3 +2x,_, +3x,_, +2x, + xm)
= 1 f— p— ——
X; =§( T Xt i+l)
1 ®
= 5( i T 2xi—l + 3xi + 2xi+l + xi+2)
= T, _ _
Xy = g(xi Xt i+2)
lx  F2x, +3x,, +2x,,, +x,
9 i+l i+3

The average value )=c‘ is a five-point weighted
average with coefficients of (1, 2, 3, 2, 1). As

before, the denominator is the sum of and
normalizes the coefficients.

It can be shown that the above averaging
procedure, applied repeatedly, yields the
weighting coefficients listed in Table 1.

End-Point Weighting

Determining the weighted average near the
beginning or end of the data sequence requires a
slightly modified technique. Clearly, the above
distribution of weighting coefficients cannot be
applied because there will not be data beyond the
end points. By example, a general method can be
developed that allows multi-point weighting to be
applied near the end points.

Consider a nine-point (m=9) weighted average
near the beginning of the groundspeed or true
course data set as illustrated in figure 6.
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Figure 6 - Use of multi-point weighting functions
near the end points of a data set.

The point where the weighted average is to be
calculated is the third point where i =3, The

weighting coefficients w(j) are now a normalized
set such that -

j=11
3 w(ji)=1 (6)

Because there is no data forj = 1 to j = 3, only the
asymmetric weighting distribution from j =4 to j
=11 can be applied to the data. In this case, the
condition of equation (6) is not met, and the

* coefficients must be renormalized according to

j=11
"(N=w()) 6)]
w()=w ]Z‘;w_] (7)

j=3
= w(j)/ [1 - ZW(j)}
j=1
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# Pts Table 1
in Matrix of Normalized
Avg Weighting Coefficients
0 1 1 1 0
0 1 2 3 2 1 0
0 1 3 6 7 6 3 1 0
0 1 4 10 16 | 19 16 | 10 4 1 0
0 1 5 156 | 30 | 45 | 51 45 | 30 15 5 1 0
0 1 6 21 50 | 90 | 126 141 | 126 90 | 50 | 21 6 1 0
0 1 7 28 | 77 | 161] 266 | 357 | 393 | 357 | 266 | 161 77

Equation (7) can be generalized for an m-point
weighted average at the ith data point as

j:("';l )+1—i
D> w(j)

j=t

w((D=w()/ |1-

forl <j<(m+2)and 1 <i<[(m+1)2]. Similarly, for
data near the end of the time sequence, with a
total of N data points,

j=m+2

> w(j)

j=(——m;1)+2+N—i

w((N=w()/ [1- ©9)

for 1 <j<(m+2)and [N-(m+1)2+11 <i<N .

The m-point weighted average for either
groundspeed or true course at time t,, denoted
by X (i) , is now written as

m2 m+1
> w (j)X[j—(—-——)—lﬂ} (10)
. [ m+l . 2
j=(T)+2—l

forl<j<(m+2)and 1 <i<[(m+1)/2] ,

X, ()=

j=m+2

.Ym(i): 5 W(j)X[J'—(anll)"Hl} (a1

j=1

for1 5j_g(m+2) and [(m+1)2+1] <i < [N-(m+1)2] ,
and

jz(ﬂ;ﬂ)ﬂm—i

;w' (j)X[j—(ﬁ;—l)-m} (12)

forl <j<(m+2)and [N-(m+1)2+1] <i<N .

X, ()=

(8)

Terminal (ARTS Ill) Radar Example and
Digital Flight Data Recorder (DFDR)._Comparison

Figure 7 presents a plotting of CDR-extracted
beacon-reinforced target data for an aircraft during
its downwind, base, and final approach to landing.
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Figure 7 - Beacon-reinforced recorded radar
data from a terminal radar facility.

- To demonstrate the concepts presented above, it
is instructive o consider the two areas of radar
returns labeled as “radial fiight path” and
“‘tangential flight path” within which the aircraft is
traveling radially towards and tangentially around
the location of the radar antenna, respectively.
Figure 8 reveals the details of the “radial flight
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path” denoted in figure 7. The inherent azimuth
errors in the recorded data are clearly apparent,
and the extracted returns scatter normal to the
adjusted and smoothed flight path. Accordingly,
the range-azimuth convergence procedure
adjusts the locations of the extracted returns by
moving them primarily normal to the flight path. As
expected, the range corrections are smaller and
are in a direction along the flight path.
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Figure 8 - Details of the “radial flight path”

of figure 7.
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Figure 9 - Details of the “tangential flight path”
of figure 7.

Similarly, figure 9 presents the details of the
“tangential flight path” denoted in figure 7. Now,
however, the dominant azimuthal errors in the
recorded radar returns resutt in scatter of the
extracted returns along the flight path rather than
normal to it. As before, the range-azimuth
convergence procedure is effective in its ability to
properly adjust the locations of the returns to
locations along a more probable flight path.

Calculation of the true course does not involve
using the time interval between flight path
locations. As a result, weighted averaging,
although typically applied, generally provides little
additional smoothing. For recorded data of the
quality of the ARTS Ill example presented here,
convergence alone is generally sufficient to
produce a fairly accurate description of the true
course profile, and little or no weighted averaging
is required (e.g., 3-, 5-pt weighted averaging).
When the data is of lesser quality, higher levels of
weighted averaging may be necessary.

Groundspeed analysis, on the other hand,
involves division of the distance between
converged, smoothed locations by the smoothed
time interval. Hence, significant levels of muiti-
point weighted averaging are oftentimes
necessary to produce an acceptable groundspeed
profile (e.g., 11-, 13-, or 15-pt weighted
averaging).

True Course (deg)
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- 3-pt weighted avg

150 o digital flight data
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ol ] I 1
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Figure 10 - Comparison of true course from
analysis of recorded radar data with true heading
from aircraft's digital flight data recorder.
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For the sample data set of figure 7, the true course
and groundspeed results can be compared with
the true heading and groundspeed as stored in
the aircraft’s digital flight data recorder. Figure 10
shows that the calculated groundspeed based

250 ™
A s sequential
“12%0 point-pairs
o% oy i _____ range-azimuth
200} Q3 converged
150+
i |____ converged and
100 15-pt wid avg Pl
digital flight data
recorder
50 | 1 i i | ‘

0128 0129 0130 0131 0132 0133
Coordinated Universal Time
Figure 11 - Comparison of groundspeed from
analysis of recorded radar data with groundspeed
from aircraft’s digital flight data recorder.

only on convergence and smoothing of the flight
path compares well with the DFDR data; clearly, in
this case, little additional smoothing of the true
course is realized from multi-point weighted
averaging.

Similarly, figure 11 presents the groundspeed
results and a comparison with the DFDR data. The
calculated groundspeed correlates well with the
DFDR data; in this case, however, it is evident that
a higher level of multi-point weighted averaging is
necessary to achieve an acceptable groundspeed
profile. It is also noteworthy that the groundspeed
is in agreement with the DFDR groundspeed at the

. beginning of the profile, but it differs as the end of
the profile is approached, an inevitable
consequence of the fact that there is obviously no
information on magnitude or trend beyond the
endpoints of the data set.

Summary and Conclusions

A technique has been presented that provides the
aviation accident investigator or reconstructionist
with the an improved method for utilizing recorded

ATC radar data to determine the true course and
groundspeed of an aircraft. With this method,
uncertainties in the true course profile can be
expected to be small because the computation
requires only the difference between two
smoothed flight path locations. However, relative
uncertainties in the groundspeed will generally be
larger due to the fact that groundspeed is
computed by taking the difference of two
smoothed flight path locations divided by the
difference of two time values. In view of this, the
correlation between the calculated groundspeed
profile and the DFDR profile that has been
presented in this paper suggests that this new
approach can provide a reliable tool for the analysis
of recorded radar data.

It should be emphasized that without an endpoint
handling procedure for the multipoint weighted
averaging, as presented above, endpoint
groundspeed results would likely not be well
behaved and could deviate substantially from the
aircraft's actual groundspeed. Hence, endpoint
groundspeeds are inherently more uncertain, with
accuracy improving as one moves toward
intermediate values. The weighting procedure
presented in this paper has proven to be
successful at moderating end point excursions so
that the end point uncertainties are minimized.

The need to smooth both the flight path and the
groundspeed when analyzing recorded radar data
has been demonstrated. Unfortunately, a
consequence of any averaging process is that
genuine groundspeed or true course changes
that take place within just a few radar sweeps may
not be clearly evident in the final results.
Nonetheless, given the erratic nature of point-pair
calculations of groundspeed and true course, it is
likely that those changes would oftentimes go
undetected even if averaging were not applied.
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