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Abstract

An approach for the numerical simulation of the
aeroelastic behaviour of a multiblade helicopter rotor in
hover and forward flight is presented. To describe the
compressible, unsteady and transonic flow in forward
flight the 3-D Finite-Volume Euler CFD Code INROT
with a chimera overlapping embedded grid technique is
used. It is coupled with a structural dynamic model
which provides blade movement and deformation. The
solution of the coupled problem is found through a
staggered procedure in which the two fields are
integrated in time. After each time step, the positions and
velocities of the structural domain and the surface
pressure of the fluid domain are exchanged. An efficient
3-D dynamic grid algorithm as well as a geometric
conservative formulation of -the Euler Equations for

dynamic grids have been implemented. First results of

coupled calculations are shown for the 5-bladed Hughes-
.500 Rotor in hover and in 100 kt forward flight.

1_Introduction

A helicopter rotor in forward flight is a complex and
strongly coupled aerodynamic-dynamic system. The
interaction of airloads and rotor dynamics determines the
flight mechanics and stability of the helicopter. Blade
vortex interaction, the interaction of the blade with the
tip vortex system, and to a smaller extent, with the root
vortex system have a strong influence on vibration and
noise production under some critical flight conditions
like slow descent.

Future helicopters will have to meet higher requirements
in terms of vibration and noise level in ever shorter
development times. Therefore it is necessary to achieve a
deeper insight into the physical processes through
experimental investigation and numerical simulation. As
we are dealing with a strongly coupled interdisciplinary
problem, the simulation models for the fluid and struc-
tural domains must be sufficient accurate to reflect on the
one hand the relevant physical phenomena in each
domain. On the other hand, the coupled model must
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reflect the interaction of the surface-coupled problem
with sufficient accuracy. The first point demands a
modular design, allowing the use of the elaborate meth-
ods already developed for the fluid and structural
domains, where new experience and model refinements
may easily be incorporated in each of the two domains.
The second point calls for the use of a sufficiently tight
coupling scheme to meet the stability and accuracy
requirements of the coupled problem.

The flow field at the rotor is compressible, transonic,
3-D and highly unsteady. Within a few fractions of a
second, the blade will move from the advancing side
with small angles of attack, transonic flow and possible
shocks to the retreating side with low dynamic pressure,
high angles of attack and viscous-dominated flow with
possible dynamic stall. The CFD methods used to de-
scribe the flow field with different degrees of abstraction
are reaching from the blade-element theory over poten-
tial methods and the transonic small disturbance (TSD)
methods to the Euler and Navier-Stokes methods. The
dynamic behaviour of the rotor system is determined by
the elasticity properties of the blades as well as by the
design of the rotor hub. The multibody simulation meth-
odology appropriately represents this complex system
where muiltiple bodies are kinematically connected by
hinges. Different degrees of accuracy may be achieved
by using rigid bodies only, elastic beam elements with
bending and torsional degrees of freedom, a FEM beam
structure or a 3-D FEM-structure model for the blades.

Over the last 20 years, the coupling of CFD and struc-
tural mechanic techniques e.g. for the aeroelastic analysis
of profiles and later for wings and complete aircraft
configurations has been developed. Ballhaus and
Goorjian ) used the 2-D TSD-Code LTRAN2 and pre-
sented the harmonic analysis technique as well as the
time-marching technique for aeroelastic calculations in
1978. Rizetta ®, Guruswamy ' and Edwards  inves-
tigated the aeroelastic properties of wing profiles in
transonic flow using the TSD-equations. The Euler
equations for the aeroelastic analysis of a complete wing
were used by Guruswamy ? in 1988, the Navier-Stokes
equations in a “thin-layer” formulation were used for
wings in **??, In 1989, Batina ® published the unsteady
investigation of a complete F-16 Fighter configuration
using the TSD Code CAP-TSD, and in 1991 @ the in-
vestigation of a complete aircraft with the Euler equa-
tions. An overview of unsteady and aeroelastic methods
is given by Edwards and Malone ® and by Kutler *¥.
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Investigations and classifications concerning Euler and
Navier-Stokes methods on deforming grids, of the prop-
erties of staggered solution coupling schemes may be
found in ¢ 10.23.24.28.19) Investigations concerning the

geometric  conservation law may be found in
(217.5,29,31,21,17,19)

2 Method Applied

In the present approach, the flow field is described by the
unsteady 3-D Finite-Volume Godunov-type Euler Code
INROT. A cell-centered method is used. The implicit
time discretization is second or optionally third order
time-accurate. An approximate Riemann solver follow-
ing Eberle © is used for the flux calculation. A UNO
(uniformly high order non-oscillatory) scheme is used for
the spatial discretization, where the spatial accuracy is of
third order, reduced to first order near discontinuities.
The code was extended by dynamic 3-D grids and a
geometric conservative ALE formulation of the flow
equations. For the structural model the multibody simu-
lation tool SIMPACK is used, where the dynamic system
is represented by rigid or flexible kinematically .con-
nected bodies. In the calculations presented, the rotor
blades are modelled as rotating flexible beams with
“modal bending and torsional degrees of freedom. The
solution of the coupled two-field-problem is found by a
time-marching staggered solution. Thanks to its modular
design, the whole model can switch to a FEM surface
discretization without any change in the aerodynamic
module or the interface.

2.1 Aerodynamic calculation

The Euler equations are used to model the flow field.
They are formulated in a hub-attached, non-inertial
rotating frame of reference with centrifugal and coriolis
forces included. Krimer “*'® showed that the use of

absolute variables ¥, e for velocity and energy avoids

the occurrence of systematic numerical errors even in the
steady rotating case. To calculate the flow around
deforming boundaries, a purely Eulerian description of
the flow domain is no longer sufficient, since grid points
at the boundary and in the interior of the fluid domain
are moving. To handle these grid movements and defor-

mations correctly, we use the Arbitrary-Lagrangian- --

Eulerian (ALE) formulation of the Euler equations which
takes the grid velocities v, into account %29 The final
differential form of the Euler equations for the rotating
moving-grid case in physical coordinates is:
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with the absolute velocity in the rotating system
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Integrating 2.1 over the cell volume leads to the integral
formulation of the Euler equations for one cell. As the
physical boundaries of the cell are time dependent, the
integration is carried out in the computational domain
over £, leading to

ja—(;i)’ d + [J VFdE = [JKdE

Here, the time derivative can be moved outside the
integral as it is taken at constant £, and the cell in

(2.6)

computational space is independent of t. Using 4z = J4&
and the divergence theorem of Gauss, we finally get:

3 (odi+ [ Fd§ = [Ka @7
oz ac b
The discretized implicit cell-centered finite volume

scheme with separate time-discretization of order k used
in the current scheme is:
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At m=n+1-k =]

1. order intime: a"™!' =1 ,a" =-1

2. order in time: a™ =2 ,a"=-2,4"" =L
2 2

3. order intime: ¢"* =H,a" =-3,4"" =-?1,a"'2 =—l
6 2 3

For the solution, the equations are formally transformed
from physical into computational space ©®. This
transformation is not necessary for a finite volume
scheme, since the surface and volume-integrals of the
integral conservation equations for each cell can be
approximated directly by using geometric surfaces and
volumes. The geometric identities of the cell, the normal
vectors of cellface triangles and the cell volume are
identically used as metrics and the Jacobis. This chosen
implementation of the transformation has a formal
character and ensures that the discretized integral
conservation equations per cell for mass, moment and
energy in the physical domain are fulfilled. For the
following considerations of geometric conservation, the
equations in the physical domain are used.

Discretizing the 5 conservation equations for mass,
‘moment and energy on a moving grid does not automati-
cally lead to a consistent approximation of the fluid flow,
because a further condition for the conservation of the
volume by the numerical scheme may not be fulfilled.
This additional condition is known as “geometric con-
servation law” (GCL). It can be derived by evaluating
the continuity equation of 2.7 for a uniform flow with
®=const, p=const. The ALE fluxes 2.5 can be split into
the part due to convection in Eulerian coordinates and
the part ®v, due to the grid motion. The integration of
the first constant part over a closed surface gives 0, only
the second part contributes to the following result:

%Jcﬁ+ngd§=0 29)
aC

This is a conservation equation for the volume, the time
rate of volume change has to be equal to the volume flux
due to the moving boundaries. Its discretized form
accordmg t0 2.8 is:

n+l
zamvm + ng JS;H»I = (2. 10)
m=n+1-k

For first order, the sum in the left expression in 2.10
represents the volume change from time step n to n+l.
For higher orders, it represents a left side approximation
of the volume change. With (AV) "=V "V " it can be
expressed as weighted average of volume changes of the
last time steps.

L vy +2vg 120 (2.11)
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Equation 2.11 is the GCL for the implicit, higher time
order Finite-Volume-scheme. A numerical scheme which
does not respect this condition will not conserve a uni-
form flow. It can already be seen that the form of the
GCL varies with different time discretizations. It will not
vary with different flux-approximation methods as long
as v, in the flux calculation is evaluated at the corre-
sponding cell-faces j. The variables in 2.11 are the cell-
volume changes in the current and, for higher time
orders, in some former time steps, the cellface normal
vectors at time n+/ due to the implicit formulation, and
the grid velocities of the 6 cell-faces. Since the cell-
volumes V and their changes as well as the surface
normal-vectors are well defined geometric values at
every time step, the grid velocity has to be chosen so as
to fulfil the GCL 2.11.

This allows a theoretically justified determination of cell-
face velocities based only on well known geometrical
data, the grid point positions at the actual and some for-
mer time steps. This is a very positive effect, since the
choice of the appropriate grid velocities without this
method is not really evident. It may be chosen at some
intermediate time level between n and n+/. When the
dynamic grid is modelled by a structural mechanic
model, e.g. a spring model, the equations of motion for
the grid points may also deliver gridpoint velocities at
every time-step. But the theoretical justification for the
choice of either of the said velocities would remain
unsolved.

It may also be noted that the grid velocities occur in the
above equations only in the scalar product with the
surface-normal-vector as rate of volume change for each
cellface, so it is sufficient to determine only the normal

- component of the cellface-velocity v,. A remaining -

problem is, that equation 2.11 does not directly permit a
non-ambiguous calculation of the cellface-normal
velocities in 3-D. First, we use Hexahedron volume
elements, their sides are not necessarily plane. This
problem is easily solved by partitioning the cell in 6
tetrahedrons with the Hexahedron volume as sum of the
tetrahedron volumes and the surface-normal vectors as
sum of two triangle-normal vectors. Second, 2.11 is only
one equation for 6 unknown normal velocities, the sum
of volume change by the sweeping cellsurfaces must be
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equal to a time-averaged volume change of the whole
cell, calculated by the first term of 2.11. A direct
calculation of v, based on local cell data and avoiding a
LGS over the whole computational domain requires a
consistent partitioning of the cell-volume change into 6
cellface-volume changes or 12 volume changes for the
surface-triangles of the Hexahedron.

One possibility to get consistent sweep volumes for a
surface triangle moving from position at timestep » to its
position at timestep n+] is given in ©"2. A
parametrization for the surface-points as function of 2
spatial parameters and an independent time parameter is
used. With this parametrization, the volume overswept
by the moving triangle may be integrated exactly. The
non-planar sides of the resulting volume are
characteristic for this approach, where all 3 corner points
of the triangle are moved simultaneously.

For regular Hexahedron grids, it is also possible to
construct consistent sweep volumes geometrically using
a  hexahedron-partitioning into 6 tetrahedrons.
Constructing the cell and the swept-over volumes at the
cellfaces out of tetrahedrons and proving that all
consistency conditions are met would be tedious. But it
Js possible to use a special class of Hexahedron
partitioning both for the cell itself and for the volumes
overswept by each cell face. This allows the cell volume
and the per-side volume changes to be calculated
geometrically with the same formula, while applying
some corner-index changes to account for different
orientations of the Hexahedron symmetry axis. The
corner indices and the Hexahedron partitioning used are
shown in the following figure, the tetrahedron
connectivity list is {1248}, {1438}, {1378}, {5781},
{5861}, {1286}.

numeration and hexahedron

Corner

Figure 1:
partitioning

This type of partitioning has some characteristic
properties, which will allow a simple proof of the
consistency conditions. It has only one spatial diagonal
in the hexahedron from corner 1 to 8. Its direction (1, 1,
1) also defines the axis of rotational symmetry in
computational space for the partitioned hexahedron.
Because of this rotational symmetry, the direction of the
spatial axis is sufficient to determine the positions and
orientations of all tetrahedrons. The surface-diagonal

directions of the Hexahedron are found by projecting the
spatial diagonal in & 1, and { direction to the
corresponding front and rear surfaces. This implies
directly that the surface diagonal directions of two
opposite hexahedron surfaces have the same orientation.
When using only hexahedrons of this class with the same
symmetry axis orientation, this property ensures the same
representation of non-planar surfaces when viewed from
the left and right neighbouring cells.

In the moving grid case let us move the hexahedron
{1,2,3,4,5,6,7,8} with the spatial diagonal {1,8} to its
new position {1°,2°,3°,4°,5°,6’,7°,8’}. Consistent sweep
volumes per side may now be calculated using the
hexahedron-partitioning presented with spatial diagonals
according to the following table.

Surface Hexahedron corners | Spatial diagonal
&=0 {1,5.,3,7,1,53,7V {{1’,7}

=0 {1',2°,5°,6°,1,2,5,6} {{1',6}

=0 {1')3,2°.4,1,32,4} [ {1’ 4}

=1 {2,6°,4°,8°,2,648} |{2.8}
n=1 {33.4°,7°,8.3478} |{3.8}
=1 {5,7,6,8576,8 |{5.8)

Table 1: Consistent hexahedron partitioning of the
volumes swept over by moving cellfaces

Figure 2: Consistent partitioning of the volumes swept
over by moving cellfaces

- It is interesting to note that with the above construction,

one again has a case of rotational symmetry in
computational space, where point 1’ is the common
starting point for the spatial diagonals of the first 3
sweep-hexahedrons, and point 8 is the common point of
the last 3 sweep-hexahedrons.

The local consistency of the construction is given when
the old cell volume is exactly filled by the new cell and
the hexahedrons which represent the volume changes per
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side, in other words when the outer surfaces with their
diagonal orientation do not change and all inner surfaces
common to two hexahedrons in figure 2 have the same
diagonal direction when viewed from each of the
neighbouring hexahedrons. This can easily be verified,
all cellfaces with & n and { normal direction have
already globally common orientation of the surface
diagonals, so that only the 12 surfaces common to two
sweep-hexahedrons have to be controlled. Three of these
surfaces with the common point 1’ as well as the three
with the common point 8 match the condition
automatically, since the common point 1’ and 8 is also
the common starting point of the spatial diagonals of the
neighbouring outer hexahedrons and. with the surface
diagonals as projections of the spatial diagonal to the
surfaces, the common starting point for the surface
diagonals. The matching condition for the remaining 6
surfaces may now easily be verified manually.

The volume changes (AV); "*! are now easy to calculate
using the same hexahedron-partitioning into six
tetrahedron as for the cell itself, adopting the spatial
diagonal orientation according to the rules above. The
normal cellface velocity fulfilling the GCL 2.11 is now
calculated by:

n+l AV ). "
1 2 bm ( )]
m=n+2-k Ar

(2.12)

2.2 Computational grids

To calculate the complete rotor configuration a chimera
embedded overlapping grid technique is used “®. The
grid configuration for a 5-bladed Hughes 500 is shown in
the following picture, 9 blocks for parallel calculation
are used, 5 single block rotor grids, which mesh in the
rotational symmetric basis grid composed of 4 blocks.

Figure 3: Chimera grid system for thhes 500 rotor

To account for elastically deforming boundaries,
dynamic grid blocks are introduced for the rotor grids.
An efficient and robust 3-D algebraic grid deformation
algorithm is used to update the positions of interior grid
points with given new positions of the inner boundary
points. The blade movement and elastic deformation is
broken down into different parts, to be treated
appropriately.

e The first part is a mean global translation and
rotation, represented by a blade-root attached
coordinate system {B,}.

e  The second part is a mean local translation, rotation
and linear deformation for each spanwise section,
represented by the translation vector u and the
deformation gradient F with x’=F x + u.

e  The third part is the remaining local deformation of
each surface point with translation.and rotation.

These 3 classes represent different deformation scales,
their treatment in the algorithm is described in detail as
follows:

The blade root attached secantial coordinate system {B,}
describes a mean rigid body movement of the blade. Its
y-axis is bound to the connection of the root and the tip
reference point of the deformed blade, the z-direction is
normal to the nose tail connection of the blade root. The
outer grid boundary points are fixed in {B,}, while the
inner surface boundary points still move due to the
elastic blade deformation. Without elastic deformation,
the arbitrary movement of the rotor blade would only
induce a corresponding movement of the rotor grid and
could be handled by the chimera technique alone.

For the remaining elastic deformation in {B;}, a mean
translation vector u and deformation. gradient F(y) for
each spanwise section is determined. Applying the linear
mapping x’=F x;, + u on the undeformed blade surface
coordinates x,, of the section leads to the virtual surface
x”in {Bs}, which now includes a mean global translation
and rotation as well as a mean translation rotation and
linear deformation of each profile segment. For the
mapping from x,, to x,’, the translation of each surface
point and the rotations of the surface normal are
calculated. They are used as translations and slope
changes of the {-grid lines normal to the body surface.
Parametric hermit splines on the {-grid lines are used to
calculate the relative translations of the interior grid
points on this line, based on the translation and slope
change of the body surface point as boundary condition.
The parameter g=g({) with g=0 at the body surface and
g=1 at the outer boundary is chosen to be a linear
function of the physical arc length along the grid line.
For OH grid topologies with their degenerated cells at
the tail, a special treatment of the first two or three grid
points near the body surface with {<{g has to be
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introduced to ensure a robust algorithm for larger
deformations. We have introduced an intermediate grid
layer £ = {g with a physical distance to the blade surface
in the nose region of about 0.166 chordiengths. The
translations and rotations of all grid points between the
body surface and this intermediate grid layer are
calculated by applying the linear mapping x’=F x, + u,
while the interpolation algorithm with parametric hermit
splines is applied to the grid region with {> {g. This
avoids strong distortions of the profile tail cells.

With the given coordinates x, of the deformed blade
surface, the translations of each surface point and
rotations of the surface normal are calculated for the
mapping from x,’ to x,. Once more an additional
translation component of the inner grid points along the
C-grid lines is calculated by using parametric hermit
interpolation splines on the grid lines in computational
space. This time for the interpolation of a local
deformation, the parameter g=g({) with g=0 at the body
surface and g=17 at the outer boundary is chosen to be a
linear function of the arc length in computational space.

The main idea of the algorithm is to break down the
whole deformation in parts of different characteristic
lengths. The smaller the characteristic length of the
surface deformation, the more locally it will be
propagated into the grid using the appropriate weighting
function g, small scale surface deformations will only
deform some grid cells in the close proximity. The
algorithm is very efficient and sufficiently robust to
handle the grid adaption for large deformations (see the
following figure).

\Q\)“‘ﬂ

)
0y, ,I
2 e L

Figure 4: dynamic grid with algebraic algorithm

2.3 Structure calculation

The rotor system is modelled as a multibody system with
rigid and elastic bodies in modal description, represented
by their mass, damping and stiffness matrices. In the
SIMPACK multibody simulation system, the equations
of motion are solved by explicit time integration. For the
Hughes 500, each rotor blade is modelled as an elastic
beam in modal description with 4 elastic flap modes, 1
elastic bending mode and 4 elastic torsional modes.

2.4 Coupled scheme

The evolution of the fluid and structural domains is
coupled over their common physical boundary, the body
surface. The current highly unsteady fluid state defines,
with its surface pressure forces, the boundary conditions
of the structure dynamics, while the current structural
state with the positions and velocities of the surface
points determines the boundary conditions of the fluid
state. One attempt to simulate this coupled problem
numerically would be to solve at once one system of
equations containing the structural as well as the
aerodynamic degrees of freedom. Such an attempt may
be feasible in certain simple cases. Problems arise for
more complex configurations due to nonlinearities and
different stiffness properties in the two domains, the
problems may be unsolvable with existing experience
and computing power. A further problem is that the vast
experience in the numerical treatment of the fluid and
structural domains adapted to their characteristic
properties cannot be used.

A second attempt for the numerical solution of coupled
systems, already commonly used for aeroelastic
calculations, overcomes these shortcomings and allows a
high degree of modularity for the coupled system. A
time-marching staggered algorithm is used to solve the
surface-coupled 2-field problem, where the fluid and
structure domains are advanced from time n to n+l
independently by their own, well adapted numerical
integration scheme. Surely, each domain has to be
provided with the most current boundary information
from the other domain before the integration process, the
fluid domain has to be provided with boundary positions
and velocities, the structural domain with current forces
and moments.

Here some important choices can be made concerning
the time level of the boundary data provided. Providing
positions and velocities of time step n+1 to the fluid code
to integrate from n to n+1 leads to an implicit treatment
of this boundary data in the fluid integration scheme.
When an implicit scheme is used for the fluid
integration, this choice allows the consistent implicit
treatment of all terms. Providing “older” fluid
information of time step n leads to explicit treatment of

- the boundary terms. The same choice whether to use

aerodynamic loads in an implicit or explicit manner must
be made for the structural domain. Piperno > as well as
Lesoinne and Farhat "” showed that different schemes
for the treatment of the boundary data may determine the
stability limits and the accuracy of the coupled system. A
general classification of different boundary treatment
schemes for partitioned analysis can be found in 19,

An important criterion for the choice of the boundary
treatment scheme is the impact on implementation costs
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and software modularity. Explicit-explicit as well as the
mixed implicit-explicit or explicit-implicit boundary
treatments allow the integration of the coupled system by
two staggered integrations in appropriate sequence, the
calculation flow of each domain with one integration per
time step is linear and identical to that of the uncoupled
problem. Implicit-implicit boundary treatment may
necessitate an iterative integration procedure where the

fluid or the structure module has to perform more than

one integration process per time step, which negatively
affects modularity and computational costs. Here an
implicit-explicit boundary treatment is used, which
allows a simple and modular implementation consistent
with the implicit fluid and explicit time integration
scheme (Figure 5).

no_. n+1
F {4 me————p- F = COMMunication
'."“\_' ‘\. . . -
{ J R R el time integration
f s, F fluid state
: A [ structural state
\ 3

no n+t
Figure 5: The used implicit-explicit coupling scheme

2.5 Implementation

Two separate codes, one for the aerodynamic and the
other for the dynamic integration run on independent
computer platforms, exchanging data over a TCP/IP
socket connection. To get a high degree of modularity, a
general interface description has been defined. At each
time step, the fluid module must provide the
aerodynamic force and moment vectors at the coupling
control points. The structure module provides the
kinematic blade root description with position vector,
orientation matrix, velocity and angular velocity vector
as well as the kinematic description set for each control
point. This description set includes positions and
velocities. Here, the velocities are included for generality
reasons, they are not currently used in the aerodynamic
module due to the velocity calculation by the GCL.

For the dynamic beam model used, the control points are
located on the elastic axis of the blade with y-positions
matching the n=const. planes of the aerodynamic grid. In
addition to the.positions and velocities at the control
points, the orientation matrix and angular velocity are
provided. The interface routine of the aerodynamic
module instantly generates the new blade surface. The
following steps are identical for a dynamic beam or
surface model. They include the generation of the
deformed 3-D rotor grids, the implicit time integration,
the load calculation and the export of the aerodynamic
loads at the control points to the dynamic module.

3_Results

3.1 Prescribed elastic deformation of a test rotor

Some calculations with prescribed elastic deformation of
the rotor blade in hover and forward flight have been
made. Figure 6 shows the z-component of the absolute
aerodynamic blade lift over its azimuthal position for a
helicopter in hover. In case 1 without flap, lag or
elastically motion of the blade, a steady solution is
reached, case 2 uses the same rotor with an additional
Tip-Torsion of + 4° in the 5® harmonic while leaving the
blade root fixed. Case 3 uses the same rotor, instead of
the Tip-Torsion, we prescribe a variable Tip-Camber of
+3.5% in the 5 harmonic while leaving the camber of
the blade root fixed, a camber change that would lead to
the same lift amplitude as the 4° torsion for a Joukowsky
profile in incompressible flow. -

0 & 120 130 240 30 30
¥

Fig. 6/7: Total blade lift of a test rotor in hover and 100
kt. forward flight with prescribed elastic deformation.

3.2 Hughes 500

The coupled aerodynamic — dynamic response of the
Hughes 500 rotor configuration in Hover and 100 kt
forward flight has been calculated. 49 control points on
the elastic axis of each blade are used ‘for the fluid-
structure data exchange. Only the rigid flap mode and the
first 4 elastic flap bending modes were considered. The
two flight conditions considered are as follows:

Case hover .| 100kt
Blade radius [m] 4.05 4.05
Omega [1/5] 51.836 |51.836
Flight speed [kt] 0 100
Advance ratio 0 0.25
Flight Mach number 0 0.1511
Tip Mach number 0.6167} 0.6167
Shaft angle [°] 0 -4.0

Table 2: Hughes 500 flight parameters

The results calculated will be compared with flight test
data presented by Lindert ®®. There, the aerodynamic
loads were derived from the measured structural
response data by solving the inverse problem using a
reconstruction method.
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3.3 Trim calculation

For the two flight test cases, only rough collective pitch
and no cyclic pitch angles at all was mentioned in “?, so
a trim calculation with the coupled simulation model was
performed to get a flap-angle distribution according to
the flight test data. For the hover case, the collective
pitch was used as trim parameter to obtain the measured
mean flap angle. For the forward flight case, the
collective pitch, the cyclic pitch amplitude and the phase
angle of the cyclic pitch maximum were used as trim
parameters, while the measured flap angle distribution
was approximated by a harmonic distribution with the 3
parameters mean flap angle, flap angle amplitude and
phase angle of the flap maximum. The trim calculation
included the following steps: first, 3 revolutions with the
coupled system were calculated to generate a nearly
periodic dynamic and aerodynamic start solution. Then
further trim revolutions with variations of the trim
parameters were performed to determine the Jacobian
matrix between these parameters and the parameters of
the flap angle distribution and to reach the trimmed state
by a Newton iteration. The trimmed pitch distribution at
1/R=0.7 and the rough collective pitch values of the
flight. test are given in the following figure 8, the
,comparison between the calculated flap distribution and
the measured values is given in the figures 9/10.
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Table 3: Pitch angle parameters for the trimmed cases
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Figure 10: Calculated and measured flap angle in 100 kt
forward flight

For the hover case, the coupled calculation will
theoretically converge towards a constant flap angle due
to the rotational symmetry of the rotor configuration

_ where the fuselage and tail rotor influence is neglected.

In the measured flight test data, this influence is
evidenced in a slight asymmetric flap angle distribution.
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3.4 _Aerodynamic and elastic state of the hover case

The spanwise blade load distribution is shown in the
following figure 11.
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Figure 11: Spanwise load distribution in hover

The results calculated are shown for the 6. revolution
after the start from initial conditions of undisturbed flow.

Comparing the flight test load distribution with the cal-
culated distribution, we have to remember that the flight
test data was not measured directly by pressure meas-
urement. Instead, absolute forces at the control points
were reconstructed from measured structural deforma-
tions and an average load distribution was calculated
with the assumption of piecewise constant loads.
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Fig. 12: Spanwise elastic deformation in hover

The elastic blade bending deformations of the calculation
and the flight test, shown in figure 12, are in good
correspondence.

3.5 Aerodynamic and elastic state of the 100 kt case

For the 100 kt forward flight case, the vortex structure,
the load distributions and the elastic deformations are
given in the following figures 13-15.

Figure 13: Vortex structure for the 100 kt case
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Figure 16: Elastic deformation, 100 kt

A direct comparison of calculation and flight test data for
the 100 kt case should be undertaken with caution. On
one hand, not all necessary forward flight parameters of
the flight test were given in ®”. In fact, neither the shaft
angle, nor the pitch control angles were given. For the
shaft angle, a value of —4° was assumed, and the trim
procedure was performed to get the pitch angles. On the
other hand, our simulation model cannot account for the
influence of the fuselage and tail rotor, and the lag and
torsional degrees of freedom, which are important in the
forward flight case, are not yet activated in the calcula-
tion presented. Because of the unknown shaft angle and
the influence of the fuselage and tail rotor it is especially
difficult to compare the data sets in the 0° and 180° azi-
muthal positions, so the flight test comparison is only
shown for the deformations in lateral azimuthal blade
positions.

4 Conclusions

We have presented a simulation model for the aeroelastic
analysis of helicopter rotors. To solve the task of coupled
aeroelastic calculations for the given complex applica-
tion with multiple flexible rotor biades in relative motion
and a transonic, unsteady flow, a highly modular parti-
tioned procedures approach with a time-marching “stag-
gered solution” scheme was chosen. The fluid domain is
described by the Euler equations in an ALE formulation,
and a finite volume upwind flow solver with chimera
grid technique is used to solve the equations numerically.
The geometric conservation law for the implicit time
integration scheme of first, second or third order of time
accuracy was applied. An efficient and robust algebraic
3-D grid deformation algorithm for the structured blade
grids was developed. For the dynamic modelling, a
multibody simulation system was used, which allows the
representation of the rotor blades as elastic beam or FEM
model, the fluid and structural modules are coupled via a
subiteration free implicit-explicit staggered scheme,
allowing a highly modular design.

Calculations of the aeroelastic behaviour of the 5-bladed
Hughes 500 rotor in hover and 100 kt forward flight

were presented, with the flap motion and the first 4 flap
bending modes considered as dynamic degrees of free-
dom. In both cases, a trim calculation with the coupled
simulation system was performed and the aerodynamic
loads and structural deformations were determined.
While the flight test data available for the 100 kt case
allows only cautious qualitative comparison, a closer
comparison with measured load and deformation data is
possible for the hover case. This comparison shows good
qualitative and quantitative accordance between com-
puted and measured flight test data. The next calcula-
tions will include lag and torsional modes of freedom.
Further investigation should include different integration
schemes for the structural domain and different coupling
schemes with special focus on stability and accuracy.
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