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Abstract

Theoretical study of steady and unsteady transonic
flows about axisymmetric and 3D elongated bodies has
been carried out within the framework of non-linear small
disturbance theory. Flow unsteadiness can be caused by
disturbances of different nature: abrupt changes of flow
velocity, ongoing shock waves, etc.

To solve the problem the domain, where the
solution is sought, is divided into two regions: inner and
outer. By using numerical methods the solutions for
boundary value problems in both regions have been
obtained and procedure of their matching has been
applied.

Special attention has been paid to the problem of
wave drag.
‘axisymmetric and 3D bodies has been obtained. For this
to be done, the integral form of the momentum equation
has been employed. As a result, wave drag value is
obtained by integrating velocity jump along shocks
closing local supersonic zones. The formula for wave drag
is the generalization of the Cole-Murman’s one for steady
transonic flow about an airfoil and a wing.

Aerodynamic characteristics of sonie
axisymmetric, elongated bodies and a fuselage-swept
wing-tail configuration are analyzed. The results are
compared with experimental data.

Introduction

When transonic flows about slender bodies of
revolution, thin wings with moderate aspect ratio and
their combination. with fuselage, the maximum cross-
section size of which is small in comparison with its
length, are considered within the framework of small
disturbance theory, the significant problem simplification
can be achieved through the use of asymptotic matching
solutions technique . As it was shown in @ there are
two regions, flows in which are governed by different
boundary-value problems. In the inner (adjacent to body)
region the main term of the disturbed potential satisfies

A formula for calculating wave drag of .

Laplace equation in perpendicular to body planes. In the
outer region at large distance from the body the solution
has axisymmetric pattern and its main term coincides
with the solution for the equivalent body of revolution.

Thus, the solution for 3D flow problem can be
obtained by simultaneous solving two boundary-value
problems with unknown functions depending on two
spatial variables. Unfortunately, in this case one can not
obtain lift of a vehicle: because of axial symmetry of the
external flow it is equal to zero. As a result, this approach
is employed basically to determine pressure distribution
over the surface of the vehicles that have small 1ift @,

To simulate transonic flow about a vehicle having
lifting wing with high aspect ratio, the new problem
statement, which is free of aforementioned drawback, was
proposed in ®. Pursuant to ® the inner region, the flow in
which is governed by Laplace equation in perpendicular
to body planes, contains not the whole vehicle but the
fuselage with the tail and a part of the wing only. The rest
of the wing is placed in the outer region the disturbed
potential in which satisfies 3D Karman equation. When
using this approach, the integral aerodynamic
characteristics of a vehicle are determined by integrating
pressure distribution over the body surface in'both regions
and summarizing the results obtained.

One of the difficult problem of transonic
aerodynamics is determination of wave drag of bodies.
The point is that the usual method of pressure distribution
integration over the body surface is rather inaccurate and
can often lead even to negative values for the drag
coefficient when the problem is solved numerically within
the framework of small disturbance theory “*. In these

. papers another approach based on the integral form of the

momentum equation was proposed and transonic flows
about thin airfoils were considered. The method can be
readily modified for thin wings, but its immediate
reduction to slender bodies of revolution could not be
realized because of axisymmetric flow pattern and non-
linear relationship between pressure and velocity
components in the framework of small disturbance theory.
Therefore, in axisymmetric case the problem was resolved
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only recently ‘¢

. As a result, the possibility arose to
calculate wave drag of 3D configurations comprising wing
and fuselage on the basis of both transonic equivalence
rule and 3D transonic small disturbance theory. These
results are given in this paper. It is worth mentioning
where the efficient numerical approximate factorization
method to simulate 3D transonic flow about a wing in the
framework of small disturbance theory was proposed. In
this paper the numerical solution to 3D Karman equation
has been obtained by using the approximate factorization
method as well.

In ® the integral method was modified for
unsteady 2D transonic flow and integral aerodynamic
characteristics of an airfoil versus time were obtained‘in
the cases of gusts and moving shocks. The modification of
the method for unsteady transonic flow about slender
bodies of revolution is given below.

In this paper the consideration is given to the
problem of determination of integral aerodynamic
characteristics of slender bodies of revolution and vehicles
at transonic speeds. The approximate methods of their
calculation, based on application of non-linear small
disturbance theory, have been developed for axisymmetric
and 3D flows. The method used consists in dividing the
whole flow domain into two regions (inner and outer),
applying numerical methods in both regions and
matching the solutions obtained to each other. The
Murman-Cole’s formula to calculate inviscid drag of an
isolated wing has been modified for slender bodies of
revolution and fuselage-wing combinations. The data on
wave drag of slender bodies of revolution and
aerodynamic characteristics (inviscid drag, lift and
pitching moment) of the vehicle consisting of fuselage,
swept wing and tail have been obtained. Their comparison
with experimental ones has been fulfilled.

Wave drag of bodies of revolution

* Problem statement

In the framework of small disturbance theory the
axisymmetric unsteady transonic flow about a slender
body of revolution is governed by the following equation:

1
Me@n+2 ML @0, =(C+C0,) 0, ), + = (r(o,) (LD

where ¢, =1- ML, Cy=-(r+1 ML/2.

As boundary conditions at infinity for (1.1) the so-
called non-reflecting conditions, which can be derived
from the relation held‘on the characteristic surface, are
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applied. The equation for the characteristic surface has
the form:

M2 & +2MLEE =CE+E,
C=0C+2¢C, [
the solution to (1.2) can be written as follows:

g:m—ﬁt/(Mu/C‘*‘Mi)"
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Corresponding relation on the characteristic surface
assumes the form:

Xp, re Mix C+ M
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(1.2)

x2 /C+ r2 .
The asymptotic form of this expression as x — oo,
y —> o yields boundary conditions on the left-hand side,

right-hand side and upper boundaries respectively:

qu,—M.g(Mm+JC+M3,)¢,=0, X —> —0 (1.3)
C(/J,—M.,(Mw—\/C+Mi)¢,=0, X = (1.4)
Moo, +JCJC+ Mg =0 r—>w (1.5)

Unlike the 2D plane case, flow tangency condition can not
be assigned to the line r=0 because of singularity. To
avoid it, the solution is sought in two regions: inner
(0 <r<y., p.is rather small) and outer: (5.<r). The
solution in the inner region that satisfies flow tangency
condition on the surface of the slender body of revolution
described by equation #=R(x}, -0.5< x < 0.5 has the form
ro,=RR,. Thus, the boundary condition on the lower

boundary can be written as:
@, =8, 12m, r=p. (1.6)
here S(x) - the area of cross-section of the body.

To solve the problem in the outer region, the
alternating direction method with first-order accurate
monotone Engquist-Osher scheme @9

® is employed.

modified for
axisyminetric case

Determination of wave drag of bodies

The inviscid drag of a slender body of revolution
can be written in the form of the integral:

0.5
ca= Zﬂ'[chR;dx

-0.5

where ¢, = -2u -’
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In the inner region u=¢, =S, Inr/27+g,, g(x) - an

arbitrary function which can be obtained from the solution
in the outer region. Velocity and pressure on the body
surface are given by:

R
=u.+S—"ln—, cp=—2(u.+&ln£) —-R:
w ¥ 2 ¥

where subscript * means value at # = ..

Drag coefficient consists of two terms:
0.5

ca=catca, can=4% J. Ue Vet dx:
05

03
Car = —272'[(£1[1£+R§)RR_‘ dx 1.7

AN S

The first term can be recast by applying the integral
theorem of momentum to the combination of Karman
equation and no-vorticity equation written in the form of

conservation law:

2 3 2
(rC,%—+2rC2u?—rv?)x+(ruv),=0 (1.8)

Integrating (1.8) over the outer region Q (fig.1) and
applying Green'’s theorem yield a relation in the form of a
curvilinear integral along the boundary:

3 2

o u v)
HC—+2C,———||dr —ruvdx =0
H; (C 2 te3 TS

By applying a number of mathematical transformations
analogous to those in the case of 2D plane flow ), we
obtain:
_ay+1)
== .
Subscript sh means integration along shocks, square
brackets - jump of a value across a shock. Note that this
integral is always positive.

ca M f rlu} dr
sh

For the second term ¢,,, depending only on the
body shape. the integral can be calculated in general:
S‘ 0.8
= ~%;)— ln%_{_ .
For thin closed bodies ¢,, >0 as R—>0 at x=105; if
R#0 at x=0.5 this term differs from zero.

Results of numerical simulation

Fig.2 presents steady wave drag versus free stream

Mach number for the body of revolution consisting of

elliptical forebody, cylindrical midbody and ogive aﬁbo&y.

The thickness ratio of the body 8 is equal to 0.1. The
curve denoted by number 1 corresponds to calculation in

@

Fig.1 Axisymmetric flow, inner and outer regions,
contour of integration.
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Fig.2 Wave drag of a body of revolution, 8=0.1. 1-
integration along shocks, 2-integration over the body
surface, 3-experiment (TsAGI) '

.accordance with (1.7), 2 - calculation by means of .

pressure distribution integration over the body surface, 3 -
experimental results obtained by K.P.Petrov at TsAGI. As
it is seen, pressure integration over the body surface leads
to negative values of wave drag.

Fig.3 shows steady wave drag versus free stream
Mach number for the body of revolution that corresponds
in the framework of transonic equivalence rule to a
schematic vehicle.
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Fig.3 Wave drag of a schematic vehicle, transonic
equivalence rule. l-integration along shocks, 2-
integration over the surface of the equivalent body of

revolution, 3-experiment (TsAGI).

Fig.4 demonstrates how wave drag of the body
shown in fig.2 changes in time at sudden entry into a
-horizontal gust. The initial Mach number Az, =093,
after the entry As.=0.98. Curve denoted by number 1
means integration along shocks, 2 - over the body surface
(note that the curve gives negative value for steady wave
drag).

The change of wave drag in time in the case of
shock wave reaching the body from behind is shown.in
fig.5, designatory numbers having the same meaning as
those in fig.4. Curve 1 (integration along shocks) exhibits
non-monotone behaviour, assumes negative values (the
shock pushes the body from behind) but eventually tends
to correct steady value (zero, since the flow about the body
_becomes sub-critical when the moving shock leaves the
body and goes upstream). Curve 2 eventually assumes
negative steady value i.e. - propulsion. Integration along
shocks has been done using the following formula ¢V

2
_wy+l) 3 S, R
ca(t) ——3—~—M¢,£r[u] ar —gln::{ﬁ
, dx
+47qu,er<u>[(o,+2u]dr+
h

+47 M- [[rutp, + 2u), dvdr - 4nTRR,(¢-).dx
Q

=05

where <-> means arithmetic mean across a shock.

Fig.4 Unsteady wave drag of a body of revolution at entry
into a gust. Af, =093, 6=0.1, AM = 0.05. 1-integration
along shocks, 2-integration over the body surface
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Fig.5 Unsteady wave drag in the case of shock wave
reaching the body from behind. As,=098, pressure
Jjump across moving shock Ac, = 0.21. l-integration along
shocks, 2-integration over the body surface.

Determination of acrodynamic characteristics of a
vehicle

Problem statement

Within the framework of transonic small
disturbance theory the normalized potential ¢ satisfies 3D
Karman equation, the unsteady analogue of which has the
form:

M Qu+ 2 M7 0= ((Cr + Co0J0de + @+ @ (2.1)
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Following ' we divide the entire flow domain into two
regions (fig. 6) the flow in each of which is governed by
different boundary value problems.

19

Meo

Fig.6 Three-dimensional flow, inner and outer regions.

In the inner, adjacent to body region, which has a form of
paralielogram P, the main term of asymptotic expansion
of y satisfies Laplace equation in'x = const planes.
Yt e = 0. 2.2)
Outside P the flow is three dimensional and is described
by' the potential ¢ which satisfies (2.1). To match inner
‘and outer solutions to each other the conditions of
continuity of the potential and its normal to P derivative
are satisfied at the parallelogram surface oP:
¢=vy, xyz e P, 2.3)
Pn = Yy, X,z € OP. 2.4)
On the body surface the potential should satisfy flow
tangency condition. For the part of the vehicle inside P:

W = (N, (XN))/JN: + NI, (2.5)

where N, and N, are Cartesian components of the normal
unit vector N, o - angle of attack. In the outer region on
the wing surface the following conditions hold:
@y = Fre-a V=V
Y = F’(x.z) are the equations describing the upper and
1s the chord
plane. The jump of the potential across vortex sheet is
given by:
?(x Yut0.2) — ox, yu0.2) = [p] = T'2) @7
where I'(z) - circulation around corresponding wing span
station. The vertical component of velocity v is continuous
across vortex sheet:
[e)J=0 at y=y,
Condition (2.7) is the boundary condition for Laplace
equation at Treffts plane. In the plane of symmetry z =0

lower wing surfaces respectively, y = y,

- Ny
Vo wfyey , hosoR

W: = ¢, = 0. Since the solution is advanced in time, one
can employ the same boundary conditions as in the
previous section. As a result we have:

C(pz'Mw(Mao-*-‘\/C'FMi)(pt: 0

as x —» —oo;
Mg, -JC 1 ML= 0 asy — —oo;
Mgy +3C \JC + M2 9= 0 asy — o;
Mo, +C e+ M2 9= 0 asz — .

When the problem is solved, pressure coefficient in the
inner region is determined by: ¢, = -2y, - y> -y’ in
the outer ¢, = 2¢,.

Without making intermediate transformations
based on the momentum theorem and analogous to those
described in ® for an isolated wing, we render final result
for inviscid drag of a vehicle (subscript tf means
integration over Treffts plane):

_y+l

Cuo == M. j ;[ [] dydz+ 2 J;j (* +w?)dydz.  (2.8)

The first term is not equal to zero only if there are shocks
in the flow. The second term accounts for induced drag
which differs from zero if there is lift.

Numerical method

For solving boundary value problem in the inner
region the use is made of panel method ®. Within the
framework of this method the contours of cross-sections of
the body and parallelepiped P by planes x=x; are
approximated by a set of panels - single layers each of
which has constant intensity. Vortex sheet stretching
downstream from the trailing edge of the part of the wing
that is inside P is approximated by a set of banels - lying
in the plane y = y, double layers with intenéity which,
according to (2.7), can be found as the jump of potential
at the trailing edge. To determine the intensity of single
layers boundary conditions are used. To obtain the
complete system of linear algebraic equations with dense
matrix in any cross-section x, =const, the boundary
conditions are satisfied in the center of each single layer.
Since the right-hand side vector in this case, according to

"(2.3) depends on the distribution of potential ¢, which, in

turn, is advanced in time, the systems of linear equations
in the inner region are to be solved many times. The most
burdensome stage in solving a system of linear algebraic
equations by Gaussian elimination is the transformation
of a matrix to upper triangular form. To avoid repeating
this stage and increase the solution accuracy, one should
resort to alternative method of LU-decomposition with
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pivoting the biggest matrix entries. In this case it suffices
to fulfil LU-decomposition only once.

Let us consider the numerical method applied for
solving boundary value problem in the outer region. Since
the solution is advanced in time, the unsteady terms in
(2.1) are retained. To approximate the non-linear part of
(2.1) the use is made of monotone first-order accurate
Engquist-Osher scheme %, linear differential operators
are approximated by conventional central-difference
expressions. The solution to the system of finite-difference
equations is obtained by means of approximate
factorization method. Within the framework of this
method a 3D finite-difference operator is approximated by
a product of three one-dimensional ones @,

Thus, to advance to the next time level, one should
solve one system of linear algebraic equations with 4-
diagonal matrix (x-sweep) and two systems with 3-
diagonal matrices (y and z-sweeps). For solving systems
of linear equations with matrices of such pattern when all
diagonals are close to the principal one the use is made-of
scalar sweep. For the scalar sweep to be stable it is

required that Ia,-il be > i'ayl j';ti for 1<i< N where
J=1

N denotes the number of equations to be solved. When
doing y and z-sweeps this inequality is satisfied
unconditionally. To ensure that the inequality is satisfied

in doing x-sweep, the term M2 ¢,., which is negligible

within the framework of small disturbance theory, is
retained in equation (2.1).

Results of numerical simulation

Consider the flow about the model of the passenger
aircraft shown in fig.7 over a Mach number range of 0.82

< M, < 0.98 at two angles of attack oo = 0 and 4 ° . The
wing lies in the center plane, has a leading edge sweep ¥

=37 ‘ , taper ratio n = 3.64, aspect ratio A = 7.58. Wing
sections are symmetrical IT-114c airfoils. The tail has
symmetrical airfoil NACAOO10M as well. The tailplane

is mounted at —3° to the center line of the fuselage the
cross-sections of which are circles.

The pressure coefficient ¢, distributions over the
wing surface at four span stations (a-d) have been
analyzed at o =0 and M,, = 0.95. The analysis of the
data shows that the pressure minimum point is located at
34.1; 38.3; 49.5; 52% of the local chord length from the

i
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Fig.7 Model of passenger aircraft, wing leading edge

sweep ¥, = 37 0 , taper ratio n = 3.64, aspect ratio A =
7.58.

trailing edge at a-d span stations respectively. Thus, at
root span stations the low pressure region moves toward
the trailing edge, at tip span stations - toward the leading
edge. As a result, at root span stations pressure forces
acting on forewing increase, on aftwing - decrease. Hence,
the drag coefficient at these stations assumes large
positive values. At tip span stations the displacement of
the low pressure region toward the leading edge accounts
for decrease of pressure forces acting on forewing and
increase of pressure forces acting on aftwing. Therefore,
drag coefficient at these stations decreases down to
negative values. At intermediate span stations local drag
coefficient varies from positive to negative values. The
described behaviour is observed in experiment too .
The computational and experimental data on ¢y, ¢,
versus M., at o = 0 are given in fig.8. Curve 1
accounts for cy, obtained by integration along shocks in
accordance with (2.8), curve 2 - experimental results,
calculated as full drag at a given Mach number minus full
~-drag at M, = 0.6 (subcritical regime), curve 3 - pressure -
distribution integration over the body surface. The
computational lift is given by curve 4. In this case lift is
produced mainly by tailplane and has small negative
value since the tailplane is mounted-at negative angle.
The comparison between the computed curve 4 and
experimental curve 5 shows that their correlation is rather
good except for Mach number range 0.87 < M,, < 0.92.

Cm
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The reported discrepancy is attributed, probably, to
viscous effects, which are neglected in this study.

Curves 6 and 7 in fig.8 present computational and
experimental pitching moment. In both cases pitching
moment is determined regarding the model’s mass center
the position of which is shown in fig.7 (x,, V.). Since the
fuselage is near-axisymmetric, the wing lies in the
centerplane and  y,, = y,, pitching moment is produced
mainly by aerodynamic forces acting upon the tail. The
comparison between computational and experimental
curves ¢,(M.,) makes it possible to draw conclusion that
the part of drag produced by viscous forces and not taken
into account in this study makes a significant contribution
to the resultant pitching moment. Note that the
computational curve gives lower values for c, because
viscous forces acting upon the tail produce moment of the
same sign as that produced by lift.
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Fig.8 Inviscid drag, lift and pitching moment versus M.,
at o = 0" l-integration over shocks, 2-experiment
(TsAGI), 3-integration over the body surface, 4.6-
calculation, integration over the body surface, 5,7-
experiment (TsAGI).

Computational and experimental aerodynamic
characteristics of the model within the system of wind

axes versus M, at o are given in fig9. The

Vot o, posna

(-4

numbers the curves are denoted by have the same
meaning as those in fig. 8.
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Fig.9 Inviscid drag, lift and pitching moment versus M.,
at o 4° l-integration over shocks, 2-experiment
(TsAGI), 3-integration over the body surface, 46-
calculation, integration over the body surface, 5,7-
experiment (TsAGI).

In this case the wing produces large lift (curves 4 and 3).
Hence, the contribution of induced drag to resultant drag
should be taken into account in determining experimental
values for inviscid drag. Therefore, as differs from the
previous case, the inviscid drag presented by curve 2 is
calculated as experimental drag' at a given Mach number
minus difference between resultant experimental and
induced drag at M, = 0.6. To obtain the latter by using
formula (2.8), subcritical flow about the model at M,, =

06 and o = 4° has been simulated in addition to
aforementioned Mach number range.

As a whole, comparison between experimental and
computational aerodynamic characteristics of the vehicle
makes it possible to infer that their correlation is
satisfactory. Note that inviscid drag can be calculated with
an adequate accuracy only by integrating along shocks.
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