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Abstract

Future avionics architectures will be characterized by the
implementation of distributed processing at ever
increasing levels. A modular approach to design offers
the suitable physical structure to accommodate this trend,
and, at the same time, promises great improvements of
operational and mission performances. In particular, an
high tolerance to faults is expected, as most avionics
functions become software functions in the computing
core, competing for modular reconfigurable shared
resources to accomplish their tasks.

This paper origins from research activities carried out by
Alenia, at both European and National level, in the area
of integrated modular avionics architectures, and
develops the following subjects:

o Differentiation and definition of general fault-
preventing methods for avionics system: fault
avoidance, fault removal, fault tolerance.

e Definition of the mix of techniques which will co-
operate in providing the required degree of fault
tolerance.

e Identification of the categories of fault which have to
be addressed at distributed operating system level,
and characterization of the services which have to be
provided in support of the above mix of fault
tolerance techniques.

Finally, the paper outlines the physical architecture of a
general modular multiprocessing core and shows how the
application of proper mixes of fault tolerance techniques
allows recovering of different kinds of faults.

Introduction

Multiprocessing architectures have become a reality for
advanced avionics applications. Interésting, in particular,
are the dependability improvement obtainable with
distributed architectures, that is, the probability that the

quality of service required by a particular function will be
provided over a defined period of time. Quality of service
is a combination of a number of factors as reliability,
availability, safety, security, maintainability, testability,
accuracy, precision and latency. Important attributes of
distx('xi)buted processing architectures to these respects

are '’

Functional integration
Parallel high performance computation
Scaleability (the processing power grows virtually
transparently as processing nodes are added)

® Selective technology upgrade
Adjustable levels of functions reliability

¢ Graceful degradation of system capabilities in the
presence of faults

Nevertheless, at a closer look, things are not so straight,
since an obvious effect of adding more and more
components beyond a certain number is that the
possibility of single component fault grows @, with
negative consequences on system reliability. On the other
hand modular distributed systems are so flexible from the
point of view of fault tolerance techniques that the net
result is, when a correct approach to design is applied,
improved dependability with respect to centralized
systems. The allocation of proper fault management
techniques at software architecture level is key factor in
achieving the projected benefits © . ‘

Proposed Software Architecture

- International research programmes encompassing

integrated modular avionics, such as EUCLID (European
Co-operation for Long Term in Defence) CEPA 4
(Common European Priority Area 4 - Modular Avionics)
RTP (Research and Technology programme) 4.1, or
ASAAC (Allied Standard Avionic Architecture Council)
phase 1, have indicated a layered software architecture as
the means to fulfil important requirements, such as
software portability and reusability, and, in particular,
system fault tolerance, which is the main subject of this
paper. With reference to Fig. 1 ¥, the application layer
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consists of functional applications and system
applications. Functional applications cover the universe
of software applications required to fulfill the specific
mission requirements, such as those related to
functionality’s of Mission Management, Sensors
Management, Threat / Target Management, Navigation
Management, Crew Interface Management. System
applications are responsible for control and management
of the functional applications and the hardware resources,
supplying services as scheduling, communication
management, fault management and configuration /
reconfiguration management in compliance to what
required by a structured and real-time accessible system
description, realized off-line and embedded in a set of
“blueprints”.

Blueprints
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Fig 1 - Seftware Architecture Model

Three families of blueprints are identified ® :

¢ Application blueprints, describing the requirements of
the universe of applications
Resources blueprints, describing the physical system

e System blueprints, matching the virtual system
description given by application blueprints to the
physical system description given by resources
blueprints

Ref]5], focused on the blueprint concept, presents a
practical application case.

The operating system layer provides all applications with
a set of standardised services through a standardised
interface (APOS, Application to Operating System
interface). Each module hardware functionality must be
supported by software, called MSL (Module Support
Layer), providing the operating system with standardised
services through a standardised interface (MOS, Module
to Operating System interface). The MSL resides on
every module and is supplied by the module
manufacturer. The operating system resides on every
module also, at least the basic functionalities required to

control the particular module type. It is therefore a
Distributed Operating System (DOS).

Should System Applications disappear from the model,
the consequence would be attributing to the DOS not only
low-level services, but also capabilities of scheduling,
communication manager, configuration manager, fault
and reconfiguration manager.

Undesired Events

Undesired events in information processing systems can
be classified as follows:

e Faults, which we could subdivide in:

» Potential faults, due to:

* external disturbances

* components defects

* implementation mistakes
* specification mistakes

¢ Actual faults in the operational system

+ latent defects or supervened alteration of
hardware components
* latent defect of software components

¢ Errors: alteration of information units of any
extension, type or level (wrong sequences of bits in a
single data word, time based errors in transmitted
information as delays or fail to arrive, alteration of
massive data sets as images, etc.)

e TFailures: the effects of undesired events at user level

Potential faults can be avoided or removed. Those which
are neither avoided nor removed become actual faults in
the operational system. It is interesting to note (Fig. 2) the
cause-effect relationships between potential faults and
actual faults. Actual faults can be tolerated during normal
system operation. If not, they become errors in the
operational system, which, if not recovered, cause failures
at user level. For example, let us consider the simple case

. of a memory element which is part of a data processing

module executing route computation tasks.
Implementation mistakes on this element, if not avoided
or removed, transition as latent hardware faults to the
operational system. These, once that particular memory
element is involved in computation tasks, may cause
errors in the data words defining latitudes and longitudes
of the desired route. These errors may cause wrong
indications to be displayed to the pilot, that is, failure of
the steering function.
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Potential Faults Sources

Actual Faults
External Disturb. Supervened HW
faults
Component Defects

Implement. Mistakes HW faults
; : : Latent
Specific. Mistakes SW faults

Fig. 2 - Potential Faults and Actual Faults

Avoidance and removal of potential faults

Avoidance methods apply during the development
process, reducing:

¢ Specification and implementation mistakes, using
proper development process / methods / tools

 Components defects, by parts screening and
acceptance tests

o External disturbances, by shielding, protective
structures, dampers, etc.

Removal applies during testing phases, when faults are
discovered (due either to specification / implementation
mistakes, components defects or external disturbances)
which have been introduced in the system during the
development phase. Proper actions are then carried out in
order to remove the fault from the system, such as

e Modifications of equipment / software / system
specifications

¢ Modifications of hardware / software code / cabling
etc. (either because not compliant to specifications or
as a result of modifications of specifications)

¢ Substitution of faulty components
Introduction of additional precautions against external
disturbances.

Fault Tolerance

Tolerance applies to faults which have survived to the
testing phase, and become therefore actual faults for the
operational system.

As far as hardware components are concerned, faults are
often not present since the beginning ‘of the system
operation, arising from extended use in hostile
environment, and cannot therefore be identified by initial

testing or acceptance procedures. On the contrary,
software faults are present from the beginning, and, when
not detected by test phases, survive latent in the
processing system. As a matter of fact, testing is one of
the most critical and difficult activities undertaken during
software development and maintenance. Proving to a high
degree of reliability that complex software applications
will execute correctly for all possible inputs is
prohibitively expansive and, depending on the required
confidence level, may not even be feasible.

We use therefore the term “fault tolerance” to indicate the
ability of the system to continue operation in the presence
of hardware or software faults. Fault tolerance, opposite
to fault avoidance or removal, is strictly dependent on
software architecture and on the operative system,
relaying on functions as configuration / reconfiguration
management, fault management, communication
management, scheduling. In the software architecture
model presented, these functions pertain to the system
application layer, which will manage as examined in the
following all activities related to the accomplishment of
these functions in accordance to the dynamic system
description codified in blueprints. Should system
applications not be explicited, these functions would be
directly attributed to the operating system, which would
need direct access to blueprints.

Techniques for fault tolerant operation

The techniques used to obtain fault tolerant operation,
normally referenced as fault detection, identification and
recovery (FDIR) methodologies, are the primary means to
acquire increased reliability and availability of future
muitiprocessing modular avionics architectures. They are
mainly applied to the handling of hardware faults, being
software faults treated with other methods.

In principle, we can distinguish a local level and a system
level FDIR @ . Local level FDIR applied to modular
avionics architectures could be implemented at module
level, in principle with low operating system
involvement. For instance, one of the n processors hosted
on a module could be left unloaded as a default
procedure, ready to substitute any local processor

" incurred into a fault. The FDIR mechanisms should be

embodied in the module by the supplier, and their
operation should tend to be transparent to the DOS.
From the system level viewpoint, therefore, we could
speak of fault masking, in the sense that virtually no
operating system involvement is required to tolerate the
fauit.

System level FDIR, on the contrary, is not system-
transparent (although it should tend to be user-
transparent), being carried out under the control of the
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DOS and/or the system applications. The FDIR treated in
the following is, as correctly stated, system level FDIR.
The FDIR concept revolves around the provision of a
pool of spare resources which can be used to replace
failed components of the same type anywhere in the
system within a permitted boundary, delimiting a so
called reconfiguration area. These resources are
dynamically allocated depending on the specific exigency
of the moment, that is, which fault has occurred, where,
and what is the current system state and health condition.
Once the fault has been detected and identified, an
intelligent recovery action has to take place,
reconfiguring hardware resources and functional
applications, in compliance to what required by the
structured dynamic system description given by
blueprints. In the following, the FDIR steps are
examined separately.

Fault Detection

Fault Detection requires active or passive monitoring to
be carried out. Active monitoring is assigned to Built-in-
Test (BIT) routines, which could be part of the operating
system or embodied in utilities associated to hardware
components. In the first case, the complexity of the DOS
is increased, as it must provide hardware-specific test
routines. In the second case the DOS, although simpler,
has to properly interface the MSL to schedule BIT
routines and to collect and store the tests results (fault
reporting). It should be noticed how the presence of a
standardized MOS should by itself solve these interface
problems, recommending the second solution, which, due
to a simpler DOS, would present advantages for DOS
portability.

Passive monitoring is typically represented by dedicated
logic incorporated in hardware devices, which reports the
supervened fault event to the DOS, usually by means of
simple interfaces such as interrupt lines. The DOS
provides for the recording of the fault and the resetting of
the hardware device. Another kind of passive monitoring,
less usual, is the one implemented controlling the input /
output of functional applications, in order to detect any
error in their execution, and therefore deduce the fault of
the processing component running that application. The
DOS is in charge of recording the fault for successive
fault handling steps.

Fault Identification (Diagnosis)

The identification of a fault requires the identification of
the faulty component and the classification of the fault.

The identification of the source of the fail can be a very
complex task to be carried out, depending on the

complexity of the system and on the multiplicity of the
symptoms detected. The operating system / system
applications (depending on whether or not the system
applications are explicited in the selected software
architecture), in order to carry out this task, must have
access to detailed information concerning the system
configuration and the description / classification of the
possible faults which can arise in the system. This
information is contained in blueprints.

The complete classification of a fault requires the
operating system / system applications to determine
whether the fault is likely to be permanent or temporary.
A temporary fault condition lasts a limited period of time
and then disappears, being its presence related to
temporary internal or external (environmental)
conditions. A permanent fault, once appeared, remains.
This determination can be done as follows: when a BIT
routine detects a fault, the operating system / systems
application, after having recorded the fault, continue to
schedule the same routine with a suitable temporal
distribution, and a decision is taken on the fault duration
after a proper number of cycles. Following this decision
the BIT routine can still run in background, to identify
possible restoration of a normal operational state.

el

Fault Recovery

After the fault has been detected and identified, proper
remedial actions are carried out, that is, recovery
operations commensurate with the system requirements
are initiated. For sake of precision, recovery must be
preceded by passivation, that is, replacement of the faulty
element. This replacement can be of two types: temporal
or spatial replacement. :

Temporal replacement is based on retries. This is the case
of most communication protocols, where detected
transmission mistakes, if not recovered by means of
corrector codes, require the same transmission to be
repeated. No use is made of redundant physical resources,
while time has to be redundant. The operating system is
in charge of initiating the first retry, and, if necessary and
possible, successive retries. The recovery following a
temporal replacement does not need any dedicated action

- of the operating system / system applications, being direct

consequence of the first successful retry.

Spatial replacement is based on the physical substitution
of the faulty resource (module, microprocessor, link) with
a non-faulty resource, and requires successive recovery
actions to be carried out in order to restore correct system
operation. The non-faulty spare elements are to be
extracted from a pool of redundant resources within the
boundary of a certain reconfiguration area. The number
of spare redundant units to be allocated depends on the
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extension of the reconfiguration area, on
reliability/availability requirements and on the fault
probability associated to each resource. The basic types
of redundant resources, in modular avionics applications,
can be links, switching and networking elements,
microprocessors, modules (data, signal, graphic,
cryptographic processing modules, mass memory
modules).

Consequently to a spacial replacement, recovery
procedures have to take place, whose impact on operating
system / system application requirements depends on
which of three different configurations methods is used

for the spare resources 7 :

Hot spares: they execute, in parallel, the tasks being
executed by the primary elements, which, when faulty,
have to be substituted. Hot spares do not need any
initalisation to become primary elements, but provide a
quite static redundancy, as each hot spare is associated to
a specific primary element (committed resources). This
implies, for a complex system, a huge number of
overhead resources. The use of hot spares has the
minimum requirements on the operating system / system
applications, which have to keep trace of the new system
configuration, but, once replacement has been performed,
required recovery actions are minimized.

Cold spares: they do not execute tasks in parallel with
primary elements. When a fault takes place, they must be
completely initialized before becoming active. This
initialization is managed by the operating system / system
applications, together with the updating of
reconfiguration tables. The impact on the operating
system / system applications is greater with respect to hot
spares, but in this case the resources are uncommitted,
and the reconfiguration is dynamic. The problem is that
the initialization operations take time, and this is true in
particular if the applications to be executed are not stored
from the beginning in the local memory of the spare
microprocessor, but have to be loaded in real-time from
the global module memory or, even worse, from some
other module of the reconfiguration area. In any case, the
use of cold spares is likely to result in a loss of service
while the initialization process takes place, which is not
tolerable for real time critical applications, as avionics.

Warm spares: as cold spares, they are not statically
allocated to the active elements, and do not execute code
in parallel with them. Nevertheless, they do not need to
be completely re-initialized before use, as they are
constantly provided with periodical pictures of error-free
states reached by the active elements they could be
requested to substitute in case of fault. When required,
they have just to step back to the proper error free state,
procedure faster than a complete initialization. Warm
spares do not present, therefore, the shortcomings of hot

spares (static allocation of redundant resources) and cold
spares (temporary loss of service), but their adoption has
an higher impact on the recovery services which the
operating systems / system applications must provide.
The operating system / system applications should first
determine, for all applications running on all system
elements, when the picture of an error free state has to be
taken. This implies capabilities hard to be provided, so
the problem may be solved letting applications signal the
operating system when a significant state takes place. The
pictures (state variables, control variables, parameters of
all kinds related with the execution of the relevant
applications) need then to be stored at specific storage
points of the system, with additional requirements on the
communication management and file management
services. Finally, the recovering of a normal operational
state may require various error-free state pictures to be
consistently restored in the pertinent locations,
proportionally to the extension of the functional area
affected by the fault.

An extension of the use of spatial replacement is the
suppression (total or partial) of lower priority tasks on
active elements, in order to make available, on these
elements, enough processing power to execute higher
priority tasks previously allocated on elements which
have then become faulty. This procedure must be applied
when previous faults have already exhausted unloaded
spares, and a new fault has somehow to be tolerated. The
tolerance is in this case partial, while the system
performances gracefully degrade.

Error recovery

Errors have been defined as alteration of information
units within the operational system, which origine from
not recovered faults. Being the fault not recovered, the
error will continue to be present in the system,
nevertheless error masking methods are still applicable.
With masking, due to built-in mechanisms, the error
becomes transparent for the system, in principle without
the intervention of the operating system. Typical example
of masking mechanisms are error corrector codes such as
Hamming codes or BCH (Bose-Chouduri-Hocquenghem)
codes. At an higher level, masking is obtained by

" elements replication, that is, the traditional approach of

safety critical subsystems, where multiple channels are
cross-monitored and a voting system is employed to take
the best decision on the output. The identification of the
faulty channel can be local, the knowledge residing in a
comparator unit without needing to be spread across the
operating system. Of course, synchronization problems
among the concurrent processing elements must be
solved, being complicated by fluctuations of the sensors
data. The possible configurations of the replicated units
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are various, ranging from simple dual to triplex,
quadruplex, dual-dual.

Voting techniques can be used to tolerate errors
originating from software faults too. Software faults due
to design / development errors cannot of course be
tolerated by simple replication, which would replicate
errors as well. N-Version programming ® can be used,
which requires n processors to concurrently execute n
independent designed and developed software modules,
different realization of the same application. The results
are sent to a decision algorithm that delivers the optimum
decision. The very low probability of similar errors
makes N-version programming an effective method for
achieving software fault tolerance.

A physical hypothesis

Fig. 3 ® shows the generic reconfiguration area of the
integrated modular avionics architecture outlined by
EUCLID RTP4.1 research studies.
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C: Cryptographic LRM

D: Data Processing LRM

M: Mass Memory LRM

G: Graphic Processing LRM

P: Power Supply LRM

A: Array Processing LRM

S: General Signal Processing LRM

LRM: Line Replaceable Module
LCE: Link Control Element

Fig. 3 - Generic Section of Modular Core Architecture

While a detailed discussion of the subject is reported in
Ref[9], the following explanatory considerations are
herein sufficient:

* Different kinds of modular resources are present, such
as data, signal (general and array), graphic,
cryptographic processing modules, mass memory
modules, power supply modules. Any kind of
processing module contains in general a defined
number of processors, local memories, a global
memory and I/O ports.

The generic sensor block is connected to the modular
core processing resources by means of high band
point-to-point optical links, configurable by means of
switching elements (Link Control Elements - LCE).
The modules communicate among them by means of
the same kind of optical links, and of the same
switching elements too.

* A secondary network is present (the Control /
Message Bus) suitable to carry control / status
information and lower rate data transfers. In
particular, commands issued toward the LCE to
reconfigure the high band optical links are dispatched
by means of this secondary network.

In case the functional area supports safety critical
applications, the applied fault tolerant techniques could
be replication and voting. For example, the 4 data
processing modules perform the same tasks, and their
results are compared by a consensus algorithm delivering
an agreement / disagreement decision.

In case the functional area supports mission critical
applications, the technique applied to maximize reliability
and availability will be FDIR with use of temporal
replacement, plus spatial replacement of warm spares. Let
us suppose, for example, that DPM 1,2 and 3 are the
active modules, while DPM 4 is a warm spare. Local
level FDIR may be applied to any active module,
supposing for example that 1 of the n processors
contained on the module can be used to substitute any
faulty processor on that module. System level FDIR
applies, for example, when an entire module is faulty, and
all the steps above examined are carried out; fault

" detection, identification, passivation with spatial

replacement and recovery by means of warm spare DPM
4.

Should a second module be faulty, a redistribution of
high priority tasks, run on this module, has to take place
at the expenses of lower priority tasks run on non-faulty
modules (graceful degradation). In order to carry out all
these recovery steps, the operating system / system
applications must feature all the above capabilities.




Copyright © 1998, by the International Council of the Aeronautical Sciences (ICAS)
and the American Institute of Aeronautics and Astronautics, Inc.

Conclusions

The paper has presented a classification of fault handling
techniques which can be utilized in modular
multiprocessing avionics architecture in order to
maximize system reliability and availability. The
fundamental role of the operating system / system
applications in providing fault tolerant operation has been
highlighted. As a consequence, the operating system
reliability itself turns out to be a key issue. There is an
important rule to be observed to these aim: the realization
of a closed environment, in which each process has
exactly the capabilities and priorities requested to
perform its tasks, and no more. A well structured and
through error recording and reporting system, allowing
engineers an effective off-line analysis of faults events
and FDIR mechanisms, is a mandatory feature too.
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