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Abstract

The stability derivative concept is shown to have a
number of theoretical and practical failings, resulting
from its original purpose in permitting the linearisation
and decoupling of the six degree-of-freedom equations of
motion. In particular, the introduction of ‘acceleration
derivatives’ is shown to be mathematically incorrect, and
to entail an upper frequency limit on the input aircraft
motion. A number of experimental difficulties in the
application of the derivative model to the manoeuvring
aerodynamics of combat aircraft are presented and
discussed.

Introduction

The ‘stability derivative’ methodology for the
representation of air loads in the equations of motion of
aerospace vehicles is well-established, and has given
good results for conventional aircraft for almost 90 years.
. However, the concept has a number of fundamental flaws
which are becoming more and more significant for
combat aircraft due both to increasing manoeuvre
capabilities and to increasingly non-linear aerodynamic
characteristics. As an example, the enormous scatter in
lateral characteristics measured in flight presented in
Figure 1 [1] for a combat aircraft manoeuvring at higher
angles of attack graphically illustrates the shortcomings
of the stability derivative model in this flight regime.

Although well-known to specialists in the field of
manoeuvring aerodynamics, the problems in the stability
derivative model are not widely appreciated.  This is
perhaps due to the great age and acquired respectability
of the methodology, which is reinforced by the way in
which it is presented in the great majority of flight
dynamics text books.

In the author’s experience, most aerodynamicists who do
not have a strong background in flight dynamics (and
conversely, most flight dynamicists who do not have a
strong  background in aerodynamics) react with
astonishment and disbelief when the difficulties with
stability derivatives are pointed out to them. The concept
is such a basic element in experimental and simulation

studies of both manoeuvring aerodynamics and flight
dynamics that to attack it is almost unthinkable.

The purpose of this paper is to illustrate for non-
specialists the shortcomings in the stability derivative
concept, firstly through an examination of the flaws and
limitations in the basic mathematical development, and
secondly via a number of examples of wind tunnel
measurements of combat aircraft dynamic characteristics.
Of particular significance in the latter case is the
appearance of motion frequency effects on stability
derivatives measured in smail-amplitude oscillatory tests.

The Stability Derivative Model

Linearised equations of motion

The failings of the stability derivative formulation can be
best illustrated by examining the route by which it is
derived. At the risk therefore of repeating the obvious,
consider the conventional linearised equations of motion
for a rigid symmetric airframe having a uniform mass
distribution {2,3]:

AX =mAu+ g AB cosb

AY =mAv +yyAr — g Adp cosB

AZ =mAw-uyAq+ g ABsinb

AL =1 &p— A M
AM =1 ,Ag
AN = I.AF = I Ap
where
A = Ap+ArtanB,
A6 = Ag (2)

Ay = ArsecB

The reference flight conditions are denoted by a subscript
0 and the disturbances (or perturbation quantities) by a
prefix A. The reference condition is assumed to be
symmetric and with no angular velocity, so that v, = Po =
g9 = ry = ¢, = 0, whilst working in stability axes gives w,
=0.

- In order to solve these equations analytically it is

necessary to introduce expressions for the disturbance
forces and moments AX etc. Consider the equations of
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motion rearranged as a set of first-order differential
equations

x(t) = Ax(t) + Bn(r) (3)
where x is the state vector [Au,Av,...Ay], 1 the input or
control vector, A the state matrix and B the input matrix.
A and B have constant elements and are derived from
equations (4) and (5). However, in order to do this, the
expressions for the disturbance forces and moments must
be in a consistent form, that is as a further set of first-

order linear differential equations in the perturbation
variables.

It is this requirement that results in the application of the
stability derivative concept, but it is also at this point that
a basic flaw in the concept appears. Fundamentally,
equations (1) and (2) relate the response (the vehicle
motion) of a linear physical system (the linearised
equations of motion) to the impur (the applied
aerodynamic loads). On the other hand, in the case of the
vehicle aerodynamic characteristics the vehicle motion is
the input and the aerodynamic loads the response.

Quasi-steadv aerodynamic loads

The introduction of a consistent formulation for the
aerodynamic disturbance forces is handled very
differently by authors of flight dynamics textbooks. The
commonest approach is simply to state without
Justification that the aerodynamic forces behave linearly
with any perturbation quantity, thus for example [4,5,6,7]

AX=a—XAu+..+%\:Aw+a—/¥AW+..a—XAp+... “4)
Ou oa ow op
where the partial derivatives aX/du etc are constants
known as ‘stability’ or ‘aerodynamic’ derivatives. Note
the inclusion of ‘acceleration’ derivatives with respect to
the first derivatives of the perturbation variables.
Substitution of expressions of the form of (4) in
equations (1) then permits a straightforward algebraic
manipulation to give the state-variable form of equation

Q).

In other texts, an attempt is made to give a more formal
justification for equation (4), ranging from a simple
statement that it results from a Taylor series expansion in
the perturbation variables [8] to a more detailed
description of the expansion and subsequent truncation
[2,3,9,10]. For example, Reference 3 treats equation (4)
as the sum of a number of Taylor series expansions in the
perturbation quantities and their derivatives:

2 2
A
AX = ——aXAu+—a X( u) +
Ju auz 2!

2 2
+ %Av+§—X—(A—v)~+..A
v vt 2! (%)

2 N2
+ a—)_(AiHL X_(Au) +
ou o 2!

and so on, with additional series terms in the higher order
derivatives.

Since the motion variables are small, the series are
truncated to the first order terms only, whilst only the
first derivatives are retained. References 2 and 9 more
“correctly” use a multi-variable Taylor series, thus
introducing additional cross terms in the expansion which
are then neglected along with the rest of the higher order
terms later.

References 2 and 10 are unusual, in justifying the
inclusion of higher order derivatives in the series
expansion by means of an initial expansion in time rather
than in the perturbation variables. In this case, the
aerodynamic loads at time ¢ are expressed as a functional
of the entire past history of the state variables, so that for
example

-0 <1 <t (6)

X(6) = Xa(x)]

When o(t) can be expressed as a Taylor series

2.
a(c)=a(r)+(x _t)d(z)ﬁu(“_’;"@ﬁ.‘ )
then equation (6) becomes

X(0)= X(a(r), o (), i(e). .. (8)

from which a further series expansion of the right-hand
side yields equation (5). A similar procedure is followed
in Reference 10.

It must be emphasised at this point that the preceding
derivation of a mathematical model for the disturbance
air loads was undertaken for one reason, and for one
reason only - namely to linearise the equations of motion,
not the aerodynamic characteristics.

Limits of applicability

Unfortunately, equation (4) and subsequent expansions
contain a fundamental flaw, in the introduction of
additional partial derivatives with respect-to the rates of
change of perturbation quantities, ie %, v and w. This is
mathematically incorrect, since these are not independent
variables [11]. An alternative statement can be found in
Reference 10, in which it is noted that the expansion of
equation (8) is based on the assumption that in the
definition of (for example) the aerodynamic derivative

. AX
Xa = lim — (9)
Aa—0 A
the limit on the right-hand side exists - an assumption
which is then demonstrated to be untenable in at least one

simple case.

These ‘higher order’ terms were not present in Bryan’s
original formulation of the stability derivative concept
[12]; their subsequent inclusion was the result of ad-hoc
attempts to represent the influence of the motion time
history whilst maintaining a form consistent with the
linearised equations of motion, and as such was a
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reasonably successful approach for conventional aircraft
and conventional manoeuvres [2,13]. Unfortunately,
these  ‘acceleration’  derivatives have  acquired
respectability with age, and become entrenched to the
point where many flight dynamicists and aerodynamicists
are simply unaware of their limitations.

The question then arises: what are the limitations of the
stability derivative model?

There are a number of ways of looking at this, from the
empirical to the analytical. Empirically, a limit to the
applicability of the stability derivative formulation
appears when one measure aerodynamic characteristics
(in flight or in the wind tunnel) which cannot be
adequately represented by it. Figure 1 is an example of
such a case from the in-flight determination of lateral
derivatives; examples from wind tunnei experiments will
be examined later in this paper.

Analytically, one can compare the model with more
sophisticated methods - and in this case it turns out that
in order to demonstrate the limitations ‘more
sophisticated’ need be no more than a simple linear (not
‘linearised’) aerodynamic model {14].

Hancock [15] gives an elegant exposition which retains
the acceleration derivative but adds a residual error term,
by considering the response of a linear aerodynamic
system to a unit step input at time T, ie

a(t):H(t—r):O, (<1 (102)
=1, 121

The lift coefficient response is

CL(I) = aOfH(t—r)

where g, is the steady-state lift curve slope and f;,(¢) the
step (or indicial) response function. The significance of
the assumption of linearity is that the step response f;;(#-1)
is independent of the past motion history and of the step
size. For an arbitrary input ot starting from zero
incidence, the output is given by the convolution integral
[15,16] )

(10b)

CL(z)=a0f;fH(z—r)‘;—i‘dr an

which can be expanded [15] as
da !
CL([) = a()!icx(t)— ’E .].0 (l —'fH(I —T))CI’T

L do I(I—ff/(’—f))(l——i{i?(—T)]dr (12)

dt %o de (1)

The first integral is constant and a function of the step

response f;,. The second is a time-varying term which is
a function of the input motion a(z). Equation (12) can
therefore be rewritten as

C (l) =ay (x(l) - [ao kg +residual term(l)]d(l) (13)

which is equivalent to

oc, _ 4
Lo =% T 40
c.. _oc, 3
Lo = PO apiyy

Equations (13) and (14) gives rise to a number of
observations:

a) there are no “higher order” derivative terms.

b) the acceleration derivative is directly related to the
steady-state derivative, and generally of opposite
sign.

¢) the acceleration derivative would be more accurately
described as an ‘integral’ term.

d) the validity of the stability derivative formulation
depends on the magnitude of the residual error term,
which in turn depends on the form of the step
response and on the motion time history.

An alternative approach is given by Etkin [!17], who
considers the response of a linear system using the
Laplace Transform methodology from classical control
theory [18]. Again assuming for simplicity an input
starting from zero incidence, an ‘aerodynamic transfer
function’ (Figure 2a for example) is defined as

Crls) = Gra(s)a(s) (15)
where the over-bar indicates the Laplace Transform of
the function and s is the Laplace variable. The use of
stability derivatives implies an approximation to the
transfer function G,, in the form of a power series in s,
since

CL(I)= CLQCX(Z)+CLC‘( a(t)
is equivalent to

EL(S)Z[CL(X+CLd S]&(S) (16)
In order to assess the validity of this approximation, it is
noted that the step or indicial linear aerodynamic

response in lift can be adequately represented by a sum
of exponential terms [17,19], that is

fH(t) =ay+ a16(1) + azebz’ + a3eb7‘1 +

(17)

where the impulse term 8(2) represents the ‘added mass’
effect. The corresponding transfer function is

GLG(S)ZSfH(S)

s (18)
=agtaps+ap +(13 + ...

s—by s=b;

from which the overwhelming temptation is to expand
the exponential terms as power series of the form

-1 2
e () IR [P Rt
s—b b\ b b\ b p?

and then neglect higher order terms to give a transfer
function of the form of equation (16). Unfortunately, the
power series expansion diverges for |s/b] > 1, and hence
is valid only for values of s inside the circle of
convergence |s| = ||, Figure 3.
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To give physical significance to this limit, note that the
frequency response of a linear system transfer function
can be determined by substitution of iw for s [18], in
which case the range of validity for a power series
expansion of equation (18) becomes

B jnpur < bmin (20)
where b,;, is the lowest natural frequency in the
exponential response contributions to the step response
function in equation (17).

An immediate observation is that the frequency limit
precludes step or impulse input functions, since these
have a very wide frequency content (indeed, an infinitely
wide frequency content in the case of a pure impulse).
Unfortunately, in the form of control doublets these
motions are the theoretical and practical basis of in-flight
identification of aircraft stability characteristics!

Equation (20) indicates why the stability derivative
model has been so successful for conventional aircraft
and manoeuvres. Typical attached configuration flows
have non-dimensional time constants which are typically
less than 0.5 - 1, giving an upper limit on non-
dimensional motion frequency of 1-2. Such high values
translate into transient manoeuvre rates which have until
recently been beyond the capabilities of conventional
aircraft.

However, whilst combat aircraft manoeuvre capabilities
have been increasing steadily in recent years, we are also
seeing the signature-driven reappearance of highly swept
" planforms with high incidence aerodynamics dominated
by extensive areas of separated flows and by the
formation of leading-edge vortices. The non-dimensional
time constants associated with leading-edge vortices,
particularly in the presence of vortex bursting, can be
very large - typically between 5 and 25. The
corresponding upper input frequency bounds of 0.04 to
0.2 are well within current and future manoeuvre
envelopes and therefore result in severe difficulties with
the stability derivative model. It should also be noted
that even within the range of validity of the expansion, as
characteristic motion frequencies are increased the
additional errors introduced by the truncation to first
order will become large.

Motion Frequency Effects

Typical experimental characteristics

Having demonstrated a range of theoretical objections to
the stability derivative formulations, some practical
manifestations will now be considered, first and foremost
of which is the appearance of motion frequency effects in
the experimental measurement of the derivatives using
small-amplitude oscillations.  As far as the stability
derivative model is concerned, the frequency should have
no effect on the derivatives; however, this is not always
the case as Figure 4 shows for a 60° delta wing (replotted
from Reference” 20). A strong motion frequency
dependency in both lateral and l(gngitudinal dynamic

derivatives is not uncommon, and has been reported on
many occasions.

The general behaviour of the rolling moment due to
sideslip derivatives in Figure 4 as frequency is reduced is
particularly significant, with the ‘in-phase’ static
derivative Cj; approaching the steady-state value whilst

the  ‘in-quadrature’  acceleration derivative CIB

approaches a large negative value. Similar trends have
been reported for dynamic yawing [21], rolling [22], and
pitching [23] derivatives of basic delta wings, and of
representative combat aircraft configurations [24,25].

In the past, common practice has been to ignore the
frequency effects (when measured) and to use data for an
oscillation frequency felt to be most representative of
practical aircraft manoeuvres. This has often resulted in
a number of different aerodynamic models being
developed for a given aircraft, each optimised for a
particular flight regime or manoeuvre.

Erequency effects for linear characteristics

Although incompatible with the simple stability
derivative model, the effects of motion frequency are
quite consistent with a linear system response [13].

For example, consider the measurement of the rolling
moment derivatives due to sideslip

aC; oC;

Cp=2L, Cp=—pd— @1
P a(Bb/ZU)
during small-amplitude sinusoidal lateral (swaying)
oscillations
e .
(3(1) ~ # = Bosm((ot)
B, (22)

/\:
~
N——

B(7)
The restriction to “small” amplitudes permits the

assumption that the rolling moment response is linear,
and hence can be written as

Ci(t) = Asin(wt) + Beos(wt)

Bow cos(cot)

12

|

(23)
The rolling moment derivatives are then determined from

the ‘in-phase’ and ‘in-quadrature’ components of the
rolling moment response

A
C[B =

Bo
] B B (24)

B~ Bof@b20) ~ Bl

- An alternative means of expressing the aerodynamic

response equation (22) is as
Ci(t) = (Cyp.0Bo) ARsin(wr +4)

or in terms of non-dimensional frequency and time
C/(x) = (Cpp.0Bo) ARsin(Qx +4)

where AR and ¢ are the frequency dependent amplitude
ratio and phase lag of the aerodynamic transfer function

(25)
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and Cg, the steady-state gain, Figure 2a. The amplitude
ratio and phase lag are

] 7
“- i

\/Cl ")2 +Cy © Q
AR( Q) _ B e
CIB,O (26)
Cn Q
o(Q)= tan_l(—[BLJ
Cpo
or conversely,
CIB,‘D = CIB,O ARCOS(CI))
C]B 0 ARsm(d)) (27)
Cpy = 7
Bw (9

A good model for the rolling moment response is

obtained by dividing it into two separate components

[14,26]:

a) an attached flow contribution with gain Cip.an » Which
has effectively zero time lag and

b) a separated flow contribution which for a simple
configuration is approximated by a first-order lag
with gain Cj ., and non-dimensional time constant

Top-

The resulting aerodynamic transfer function (Figure 2b)
in terms of the non-dimensional Laplace variable § is

CIB Sep

I+ @8

Cp(8) = Crpan +

~

sep S

From equation (28) the frequency dependent derivatives
are

C[B,m = Clﬁ,atl +CIB,sep P
1+(01,,,)
(29a)
Cp =C s
Beo — iB.sep
1+(Q‘t sep)
and therefore
C/Q,m = _Tsep(clﬁ,(o _C/B.att) (29b)
from which the steady-state derivatives are
C/B.O = ClB,att + ClB.sep
Co.=-1.,C (29¢)
B0~ sep™~13.0
Equation (29a) gives a good fit to the typical

experimental frequency characteristics shown in Figure
4, whilst equation (29b) suggests that a cross-plot of
acceleration vs static derivatives should give a straight
line with a slope of —Twp and an extrapolated x-axis
intercept at Cipoanr-

Figure 5 shows that for a simple delta wing this is indeed
the case, while Figure 6 shows that the extrapolated
‘attached flow’ gains Cy; ,, lie on the trend established by
the steady-state measurements at lower incidences. The
‘separated flow’ time constants T, derived from Figure
5 are negligible at low incidence, but start to increase
rapidly at around 12° incidence (as the vortex burst

comes on to the wing) up to a peak at around 32° (where
the vortex burst reaches the wing apex).

Comparing equation (29¢) with (14), it can be seen that
the response time constant —Twp 1S equivalent to
Hancock’s step response integral &, [15].

Motion Amplitude Effects

Another aspect of experimental dynamic wind tunnel
testing that causes problems with the stability derivative
formulation are the often significant effects of motion
amplitude. Although this is a non-linear effect, it can
occur when the basic steady-state characteristics appear
linear, and/or even when the motion amplitudes are so
small that linearity would seem to be assured.

For example, Figure 7 [27] shows a very strong effect of
yaw amplitude between y, = +2° and +4°, even though
the corresponding steady-state characteristics are
apparently reasonably linear in this range. Reference 28
shows similar effects for oscillation amplitudes down to
o = +0.76°. There are two factors which can contribute
to this behaviour - firstly that non-linearities in the
steady-state characteristics are highly localised, and
secondly that there are a number of contributors to the
characteristics with differing degrees of non-linearity
and dynamic response times.

The first is typical of highly swept delta wings, and also
of combat aircraft configurations with strong forebody
vortices (particularly when coupled with closely spaced
twin fins) - Figure 8. Such localised non-linearities can
lead to chaotic aircraft motion [29]. The second is
typical of lower sweep angle delta wings, where for
example the rolling moment response has three
components - a stabilising linear attached flow
contribution, a stabilising and reasonably linear leading-
edge vortex flow contribution and a destabilising and
highly non-linear vortex breakdown contribution. The
first two contributions have relatively short time-scales,
while the third is very slow to respond; in dynamic
testing, therefore, the balance between the three can
change very rapidly.

Amplitude effects of this nature are a particular problem
for translational motion tests (ie pure sideslip or heave),
where the mechanical motion amplitude is fixed and
hence from equation (22) aerodynamic amplitude
increases with oscillation frequency. The result can be a
discontinuity in the variation of the measured dynamic
derivatives with frequency as the motion amplitude
crosses a critical value (Figure 9), or simply an
uncertainty as to whether the trends observed are due to
changes in frequency or amplitude.

Acceleration Effects

Rotary acceleration derivatives

The previous discussions have centred on translational
motions for measurements of dynamic derivatives;
however, most oscillatory wind tunnel test mechanisms
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generate rotary motions which result in the measurement
of ‘combined’ derivatives, for example the in-phase and
in-quadrature pitching derivatives

s 2
Cza {04 -Q Czq (30)

In general, the rotary acceleration terms are ignored, on
the assumptions that (a) they’re likely to be small and (b)
the Q° factor makes their contribution to the combined
derivative small.

Unfortunately, once again this is no longer justifiable for
combat aircraft configurations in the manoeuvring flight
regime. Figure 10 illustrates this with results from small-
amplitude oscillatory tests of a generic combat aircraft
configuration at DERA Bedford. At high angles of
attack, the effect of the yawing acceleration term Cj;

can be seen to be large.

Direct measurements of pure angular derivatives are rare,
requiring a complex ‘snaking’ motion mechanism for
oscillations in body axes, or a rotling-flow tunnel. One
exception is an unusual experiment reported in Reference
22, in which a 60° delta wing was oscillated in roll about
the wind axis - ie oscillatory coning motion. Continuous
motion coning tests are commonly used to measure rate
derivatives - however to the author’s knowledge this is
the only reported instance of a ‘small-amplitude’
oscillatory coning experiment. (What is often referred to
in the literature as ‘oscillatory coning’ is in fact
" continuous rolling motion with the roll axis inclined to
the velocity vector). Figure 11 [22] shows similar
frequency effects on the in-phase and in-quadrature
derivatives to those described earlier for sideslipping
motion, indicating a similar form of time-dependent
response, with the rolling moment lagging the roll rate by
a frequency-dependent phase angle ¢.

Stability calculations also reported in Reference 22
showed a significant effect of inclusion of the roll
acceleration terms in the equations of motion, particularly
on the damping of the roll subsidence mode.

Convective time lags

Acceleration derivatives are generally assumed to result
from convective time lags - for example between wing
and tailplane. In this case it is conventionally stated that
the downwash at the tail is dependent primarily on the
wing trailing vortices in the vicinity of the tail and that
therefore a change in circulation at the wing will take a
time At = /,/U to reach the tail - Figure 12. With some

manipulation, the result is a constant acceleration
derivative, for example
de
S =2 =
C:o. =~ “VII C:(;.,u,'/ do (3])

where ¢ is the downwash angle at the tail. This is of
course a gross over-simplification, ignoring the effects
both of the spanwise ‘starting vortex’ shed from the
trailing-edge of the wing whengver the circulation
changes (shown as a dashed line in Figure 12), and of the

increased trailing vortex strength upstream of the tail.
Reference 15 is unusual in the text books available to the
author in acknowledging this fact.

The true lag effects at the tail will depend strongly on
both the motion frequency and the wing/tail geometry.
At low frequencies the effects of the trailing vortices
dominate and the conventional model gives a reasonable
approximation. At higher frequencies (of the order of the
inverse of the convective time lag), the influence of the
upwash from the shed ‘starting’ vortex begins to
dominate and the acceleration derivative changes sign
from positive to negative [15]. Increasing frequency still
further results in the acceleration derivative falling to
zero, as observed experimentally in Figure 13 (for a <
20°).

Virtual or ‘added’ inertias

However, there is another contribution which once again
is generally ignored, namely the potential flow ‘added
mass’ or "virtual inertia’ effect. In wind tunnel testing,
this effect is usually said to be small and is zeroed out as
part of the usual process of subtraction of ‘wind-off’
dynamic tares. It is possible to retain the virtual inertia
contribution by either doing wind-off zeros in a vacuum,
or with the model enclosed, but this is rarely done. As a
phenomenon associated with low-speed, incompressible
flows, the magnitude of the virtual inertia falls off rapidly
as Mach Number is increased [16] so that failure to
measure it is not generally a significant problem.

However, this is predicated on the assumption that the
virtual inertia does not vary between ‘wind-off’ and
‘wind-on’ conditions, which is the case for low-incidence
attached flows. However, there are indications that for
highly swept wings at higher incidences (with the onset
of flow separations and the formation of leading-edge
vortices), this is not the case.

First of all, an estimate of the magnitude of the virtual
inertia terms can be derived from a consideration of the
contribution to the lift response to heave motion. Data on
the virtual inertias of wing planforms is scarce, since the
effect is primarily seen in hydrodynamics. For a 2D flat-
plate aerofoil, the virtual inertia is that of a fluid cylinder
enclosing the aerofoil [30] and for a 3D ellipsoid roughly
half the inertia of the displaced fluid [31].

An indication of the magnitude of the virtual inertia for a
3D slender wing is given by

(32)

~8.4°
Myirtual = 3P4

for a circular disk [31], where m,;,,., is the virtual inertia
or acceleration response to motion normal to the surface,
and a is the disk radius. The normal force response
becomes

(33a)

_ L 8 3.
AZ = Myirnat W = 3 pa w

which when non-dimensionalised as equation (22) gives
a constant value (independent of motion frequency) for
the corresponding acceleration derivative of
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-8 (33b)
Aac/2U

A sphere would give a value of ©/2 for the derivative and

a 2D aerofoil a value of mt.

(CZd )virtual

This estimate can be compared with the measured heave
derivatives (with the virtual inertia zeroed-out) shown in
Figure 13a for a generic combat aircraft configuration.
In this case the estimated virtual inertia term is of a
similar magnitude to the lift-induced contribution at low
incidences, but much smaller at higher incidences -
certainly not negligible!

It should be emphasised that the magnitude of the virtual
inertia contribution to the acceleration derivative is
independent of relative fluid/model density - in other
words, the aerodynamic significance of virtual inertia
effects is as great in a wind tunnel experiment as it would
be in a water tunnel.

As an aside, Figure 13a shows another difficulty with
dynamic testing at high incidence, with a discontinuity in
the steady-state characteristics resulting in a hysteresis
loop in the dynamic characteristics.

Looking now at the motion frequency effects for the
same aircraft, Figure 13b shows that at low incidences
the acceleration derivative approaches zero as frequency
is increased, consistent with the linear system response of
equations (24) and (27). However, at higher incidences
the derivatives appear to approach a constant positive
,value, indicating the presence of a true (additional)
acceleration dependent component in the response.
Similar behaviour is shown by the acceleration
derivatives in sideslip for this configuration. One
possibility is that this is the result of a increase in the
virtual inertia contribution once the leading-edge vortex
structure forms.

In this case the ‘attached flow’ structure of Figure 14a
which led to equations (32) and hence (33) has been
replaced by the ‘separated flow structure’ of Figure 14b,
with two leading-edge vortices with associated feeding
shear layers above the wing. The virtual inertia for a 2D
flat plate can be determined from the potential jump
across the plate, since from the unsteady Bernoulli
equation the force per unit length due to an acceleration
normal to the plate is [32]

AL o] d ’ :
oF p_a_ AD CIfV - (“ mwrlual) (34)
Ax ot Ha dt

The potential jump A® is directly proportional to the
normal velocity component w, and so the virtual inertia
My 1S @ constant. The formation of a leading-edge
vortex pair will result in an increment in the potential
function jump across the surface, and hence in the virtual
inertia. The increment will depend on the strength of the
vortices and on their position relative to the wing [33].
Given the equivalence between the cross-flow virtual
inertia and wing lift curve slope for slender wings in
attached flows [32], it appears likely that the increment in
virtual inertia due to flow separation will behave in a

similar manner to the vortex lift increment on these
wings, increasing non-linearly with angle of attack and
sweep angle.

Direct measurements of virtual inertia effects at high
incidence are rare, but an indication of their magnitude
can be extracted from a phenomenon that has attracted
much experimental attention, namely limit cycle wing
rock of 80° delta wings. Reference [34] observes that the
widely varying oscillation frequencies observed in wind
tunnel investigations can be correlated with wing inertia
on the assumption of a constant quasi-linear aerodynamic
stiffness. The equation of motion in roll is

Ib+kp =0

where £ is the (aerodynamic) stiffness CiyqSb and [ is the
wing moment of inertia. The frequency of the motion is
thus given by

Jo ¢ |k
A= —= — [—
v Uvl/
(35)
JCr pShe?
= eI > = A'Nwing
8n lwing

where A is a constant and N.ing @ non-dimensional inertia
parameter. Using an experimentally measured value for
Cjs 0f 0.2, equation (35) was shown to fit a wide range of
published wing rock data for 80° delta wings at an
incidence of 30° (inertia parameters from 0.5 to 4). In
order to examine the behaviour of the correlation at
higher inertia parameters, a series of tests were then
undertaken in a water channel (giving values from 7 to
35).

However, as Figure 15 shows, the measured frequencies
diverge rapidly from the straight-line trend. Reference
34 speculated that this may be due to increasingly non-
linear aerodynamic characteristics as frequency increases,
or to the low Reynolds Numbers in the water tunnel
experiments. The latter is possible, but is generally not
thought to be significant for separated flows over highly
swept delta wings; the former is unlikely, since non-
linear effects would tend to reduce in significance as
frequency is increased (see Figure 4 for example). What
is more likely to be occurring is that the virtual inertia is
becoming more and more significant as the relative wing
inertia is reduced (and hence inertia parameter increased).

In the same way that the virtual inertias in translation are
proportional to the mass of the fluid volume swept by the
wing, the virtual inertia in roll is related to the moment of
inertia of the swept volume. For a delta wing of span b

- and root chord ¢, the virtual inertia will be

/ /

cone

n 4
= B—pb'c
160"
where B is a constant. Equation (36a) corresponds to a
constant inertia parameter for an 80° delta wing of

virtual %

(36a)
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: Eb 2 4 a radius, lift curve slope
Nyirtual =y poe. = 23l (36b) © coefficients in transfer fnction
Luirtuiat VB AB in-phase and in-quadrature response,

coefficients in wing rock correlation

A rough estimate for the inertja factor B for attached flow . . .
b wing span, natural frequencies in| tiansfer

can be derived from ‘a result|{in reference {30] for a 2D

flat-plite aerofoil pitching abgut its midchord ﬁ{n ction
P c wing chord
; B npa® VA frequency, Hz .
virfual = g™ g acceleration due to gravity

G(s) transfer function

whichiis equivalent to 4 .
9 Ha) unit step function

. 5 —— pbid ' 7 / moment of inertia
bt 64 P SR k aerodynamic stiffness
for a relling slender delta wing, and hence B,y = 0.25. LMN applied acrodynamic moments
n cra a

Subsitting (36) into equatiog (35) gives . pircraft mass trequency, fo/U

N suing Y virtudl N inertia parameter, */prcZ/I

20 (8 4 dynamic pressure, %plP
\/N wing + Niirkual p.q,r angular velocity components

which _glves an excellent fit (o the water tunnel data in  § Laplace transform variable
Figure) 15, with an inertia pafameter Nyyum of 948 and S planform area
hence a factor 8 on the ‘fluid nertia’ of 1.23 - a five-fold ¢ time

increase on the estimate made on the basis of attached ®v,w  translational velocity components

flow! u freestream velocity
, ) . . . . x,¥,2 cartesian coordinates
Because the virtual inertia {s an incompressible flow XY,z applicd aerodynamic forces
phenomenon, the possible. presence of an additional
vortex lift induced component in low-speed wind tunnel s angle of attack and sideslip
measuremeitts will need to be taken into account when v,6,0  Euler attitude angles
extrapolating o' higher (sybsonic) Mach Numbers. o phase lag angle
Virual inertias are also of particular significance for free (1) uhit impulse
motion testing in water tunndls, and must be taken into P fluid density
account when resolving ae¢rodynamic loads from model T running varlablc in time, non- dnmcnsxonil ime
motions [35]. | o) frequency, rads™ ‘
: ! . Q non-dimensional frequency
Summary 2 S o potential function
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motion, In particular, the injroduction of ‘acceleration References
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Figure 12 Conventional ‘convective time lag’
explanation for longitudinal acceleration
derivatives
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