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Abstract

The use of morphing structures aims to
increase aerodynamic efficiency, decreasing
fuel consumption and aircraft overall weight.
Within this context, piezoelectric materials
are of great interest in the design of smart
structures because the piezoelectric effect is re-
versible, allowing them to work both as sensors
and as actuators. The present work proposes
a geometrically nonlinear finite element for-
mulation for composite beams with embedded
piezoelectric layers for application in morph-
ing aerostructures. The formulation uses the
complete Green strain tensor to account for
geometric nonlinearities, and linear piezoelec-
tricity to model the electromechanical behav-
ior. A set of nonlinear equilibrium equations
results from the application of variational prin-
ciples, and is finally solved by means of an
iterative-incremental arc length method. The
sensitivity of the element to stacking sequence
and number of actuators are investigated.

1 Introduction

According to the Defense Advanced Research
Projects Agency (DARPA), a morphing air-
craft is an air vehicle capable of substantially
changing its state and providing superior sys-
tem capability by means of innovative tech-
nology integrated in its design. Early tech-
nologies involved in changing shape capabil-
ity relied on heavy motors and complex hy-

draulic systems which lead to structural re-
inforcement and increase in weight, like the
ones implemented in the F-14, F-111 and Tor-
nado fighter aircrafts [1, 2]. In order to accom-
modate large structural changes and comply
with overall weight requirements, researchers
put some effort in the improvement of smart
materials and their use as actuators. Shape
memory alloys, piezoelectric and electrostric-
tive materials are promising candidates to re-
place conventional shape changing mechanism
due to their notable energy density [1].

The use of macro fiber composites (MFC)
to include morphing capabilities into struc-
tures became popular over the last decade
[3, 1, 5]. MFC consists of unidirectional piezo-
electric fibers, usually PZT-5A, within a poly-
mer matrix, which is sandwiched between cop-
per electrodes and Kapton film layers. This
configuration allows the utilization of high
piezoelectric coupling coefficient, concentrat-
ing the applied voltage inside the ceramic. The
aforementioned smart actuator can be used in
an elevon configuration [3], as flap-like struc-
ture [1] and as a replacement of the aileron
section of a wing [5]. Due to the actuator
light weight, flexibility and ability to respond
rapidly to input voltage, the MFC is an inter-
esting choice as morphing mechanism.

Another compelling characteristic of piezo-
electric material is that the piezoelectric effect
is reversible, which means this smart material
can be used actively as an actuator or pas-
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sively as a sensor [0]. Additionally, it can be
embedded into a laminate in order to add sens-
ing and actuating capabilities into the struc-
ture [7]. To analyze the voltage response in
the case of sensors, and the displacement due
to an applied electric potential in the case of
actuators, a model that incorporates the elec-
tromechanical behavior of piezoelectric mate-
rials should be available. The finite element
method is a versatile tool that can easily take
these characteristics into account and combine
them to an structural analysis software.

From 1988 to 1997 the number of papers
on modeling smart structures using the finite
element method increased more than seven
times [3]. Early works were dedicated to model
ultrasonic transducers, but recently the use
of piezoelectric materials as active structures
became more popular. The author presents
a great deal of finite element formulations
regarding its shape, order of approximation
functions, nodal degrees of freedom, total de-
grees of freedom (DOF) and assumptions used
to derive the element. Three dimensional solid
elements were modeled using four-node tetra-
hedral and eight or twenty-node hexahedral el-
ements with sixteen to a hundred DOF. Two
dimensional plate elements were derived using
three-node triangular and four, eight or nine-
node quadrilateral elements, exhibiting be-
tween twelve to a hundred and four DOF. The
one dimensional beam elements were modeled
using two-node linear elements with eight or
ten DOF.

Plates and beams formulations perform
better than a solid element when analyzing
thin structures [8]. However, one dimensional
formulations have relatively less DOF decreas-
ing computational cost while maintaining pre-
cision. Common beam models are based on
Euler-Bernoulli [9] or Timoshenko [10, 11] the-
ory. A comparison between finite element
formulations using Euler-Bernoulli and Tim-
oshenko beam theories is presented by Wang
[9]. The fact that interpolation functions are
the exact solutions of the governing equations
of motion guarantees fast convergence with a

minimum number of elements. He concludes
that the first formulation is accurate enough
to predict the behavior of slender beams, with
slenderness ratio greater than twenty. For
lower ratios, the latter formulations should be
used.

Kusculuoglu et al. [10] develop a uni-
morph piezoelectric actuator where the sub-
strate and electromechanical materials have
different cross-section rotations. Linear shape
functions are used to interpolate the axial dis-
placement and rotations, while a third degree
polynomial is used for the transversal motion.
Experiments and comparison with ANSYS
commercial finite element code were used to
validate the model. With increasing thick-
ness, shear effects and rotational inertia be-
come more important and the model devel-
oped in their work predicts the beam behavior
in a more accurate way.

Alaimo et al. [l1] propose a two-node
formulation for multi-layer composite smart
beam in which the electrical degrees of free-
dom are condensed and the problem is treated
only in the mechanical domain, with the elec-
tric response being available through alge-
braic manipulation. Timoshenko beam the-
ory and quadratic through-thickness distri-
bution of the electric potential are assumed.
By using Hermite interpolation functions,
the resulting element is superconvergent and
does not present shear locking. The cur-
rent model performance was compared with
a two dimensional laminate modeled using
COMSOL Multiphysics®.  The results for
a two-node, nine degree of freedom element
matched the 81,153 DOF plate model very
well, with substantially lower computational
cost.

The effects of nonlinearities into the finite
element formulation of piezoelectric structures
were also studied [12]. The electromechani-
cal coupling behavior is modeled using linear
piezoelectricity. The formulation presented in
their work is applicable to one, two or three
dimensional elements, depending only on the
choice of interpolation functions. In their sim-
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ulations, serendipity eight node plate elements
were used, with the same shape functions for
displacement and electric potential. By using
Newton-Raphson method associated with arc
length constraints the authors show that this
general nonlinear finite element model can pre-
dict well the structure behavior before and af-
ter limit points, which are pairs in the load-
displacement space in which the tangent stiff-
ness matrix becomes singular.

In this paper, a novel nonlinear finite el-
ement model for composite beams with em-
bedded piezoelectric layers is developed. The
geometric nonlinearity is added by means of
the complete Green strain tensor, while the
piezoelectric effect is modeled using the stan-
dard linear approximation. The formulation
also takes into account the layerwise mechan-
ical behavior of the beam. Voigt notation will
be used throughout the text.

2 Mathematical Formulation

A laminate beam with n layers, consisting of
composite or piezoelectric materials, is consid-
ered. The beam has length L and rectangular
cross section with width b and thickness h as
seen in Fig. 1. The beam is considered to
have n, actuator and ng sensor layers polar-
ized in the thickness direction. Each layer has
z-coordinates z,_1 and z, as shown in Fig. 2.

N Ih

Fig. 1 : Beam element.
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Fig. 2 : Lateral view of a laminate.

2.1 Basic Assumptions

For a composite unidirectional ply, the elastic
constants are dependent on the fiber orienta-
tion. A usual coordinate system is defined as
seem in Fig. 3, where the 1-direction coincides
with the fiber, the 2-direction is perpendicular
to the fibers, in the plane of the lamina and
3-direction is normal to the plane of the lam-
ina. A laminate is constructed when various
plies are assembled together. Due to the dif-
ferent orientations of each lamina, the stress-
strain relationship of the laminate should be
expressed in an arbitrary coordinate system

(%,,2)-

Fig. 3 : Global (x,y,z) and local (1,2,3) coor-
dinate systems.

The rotation of each lamina around the 3-
direction gives the following mechanical con-
stitutive relationship

{o}r=[0] {eh

with {6}y = { O Oyy O Tyz Tux Ty }.
being the second order stress ten-
sor  represented in  vector  notation,
{ehe = {&a & & W Yo Yo ) the
engineering strain vector and [Q] ; the fourth
order constitutive stiffness tensor represented
in matrix form for the rotated laminate. This
equivalent material properties matrix is given

by

k=12...n (1)

[Q_}k:[T}k[Q]k[T}l{ (2)
where [Q} ; 1s constitutive stiffness matrix in

the (1,2,3) coordinate system, and [T}k is a
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transformation matrix expressed as

[ 2 52 0 0 0 —2cs5]
52 c? 0O 0 0 2cs
0 0 1 0 O 0
[T}k I ) 0 0 ¢ s 0
0 0 0 —s ¢ 0
cs/2 —cs/2 0 0 0 ?—s%

with ¢ = cosyy and s = sin .

The engineering strain vector considered in
this work is derived from the complete Green
strain tensor, which is defined as following us-
ing index notation
&= 1 (% %—F%%) , Lj,k=1..13

2 \ ox j ax,’ ax,- E)x j
(4)
with u; being the components of displacement
and x; the directions of the global coordinate
system. The engineering components of shear
strain tensor are

’Yijzzeiﬁ for 175]

The constitutive relationships that dictates
the electromechanical behavior of the piezo-
electric layers are expressed as

{o} = [Q]{e} — [¢|{E}
D}y = [e]"{e} + [e]*{E} (5)

where [e} is a 3 x 6 piezoelectric coefficient

matrix and [8}8 is the dielectric permittiv-
ity at constant strain. {D} and {E} are the
electric displacement and field vectors, respec-
tively. Each element e;; expresses the sensi-
tivity of the piezoelectric material in the i-
direction when a stimuli is applied in the j-
direction and vice-versa. Equations 5 are used
to model both actuator and sensor layers, re-
spectively, and will be used in the rest of this
work.

The kinematic relationships between dis-
placements and strains follow from Timo-
shenko’s beam theory. It states that after the
application of load, the beam cross-sections re-
main plane and rigid, but not perpendicular

to the neutral axis. For a beam moving in the
x—z plane, as seen in Fig. 4, the displacement
field is given by

i=u(x)—z0(x)
v=20
w=w(x) (6)

where u and w are the axial and transversal
displacements of the neutral axis, respectively,
and 0 is the cross section rotation.

Fig. 4 : Timoshenko’s beam kinematic as-
sumptions.

2.2 Finite Element Method

In the finite element method, the displacement
field in Equation (6) is expressed as a linear
combination of shape functions and the nodal
displacements. For this formulation, a beam
with 3 equally spaced nodes, as the one in Fig.
5, is chosen. There are a total of 9 mechanical
and ny electrical DOFs for each element. To
simplify the definition of shape functions, a
natural coordinate system is defined as shown
in Fig. 6. Writing the 2™-order Lagrangian
polynomials in the aforementioned coordinate
system gives
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Fig. 5 : 3-node beam element.
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Fig. 6 : Beam natural coordinate system.

Ni(®)= 55~ 1)
Na(e) =18
N>(8) = & (E+1) @

which allow the displacements to be written as

u:{Nl Nz N3} us
W:{Nl Nz N3} wo

6:{N1 N> N3}

D
)

(8)

Considering that the electric field is ap-
plied only in the thickness direction, and ad-
mitting that it varies linearly across the piezo-
electric layer thickness, the electric field vector
in each layer is reduced to a scalar component

given by
9

Ezi - 1

9)
2.3 Variation Formulation

The principle of stationary potential energy
states that the equilibrium state is the one
where the potential energy is stationary, and
can be mathematically written as

SU +38V =0 (10)

where U is the potential energy of the system
and V is the negative of the work done by ex-
ternal forces.

The potential energy is given by

U:%/VT{S}T[Q‘}{s}dv—/VP{e}T[e}{E}dv
—%/V{E}T[e}{E}dV (11)

where Vr is the total volume of the beam
and Vp are the piezoelectric layers volume. In
Equation (11) the first term is the strain en-
ergy stored in the elastic continuum, the sec-
ond term is a coupling energy that transfer
energy between the electrical and mechanical
domain, and the last term is the electric en-
ergy stored in the piezoelectric layers.
Considering {e} ={ € Yiz }! and {E} =
E., the matrices [Q], [e} and [8] are reduced
toa2x2,2x1 and 1 x 1 matrix, respectively.

Let
{u}
_ ) i
{q} = {GS} (12)
{07}
be the vector of independent variables consist-
ing of nodal displacements and sensors elec-
tric potentials. Substituting Equations 4 and
8 into Equation 11, and rewriting using Equa-
tion 12 the first variation of U is given by

U = {8q}" [Ku{q} = {8¢} {Fiu} (13)

where [K,;] is the nonlinear stiffness matrix,
which is a quadratic function of the indepen-
dent variables. This matrix is fully populated
and can be divided into sub-matrices as

[Kuu] [Kuw] [KMG] {Kuqﬁ
[K ] _ [Kwu] [KWW] [Kwe] qu)
" [Kou| [Kow] [Keo] |Koo
[Kou] [Kow] [Koo] [Kog
(14)

Let F,, F,, Fg and Fy be external nodal
loads applied to the axial, transversal, rota-
tional and electric DOFs, respectively. Taking
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the first variation of the work performed by ex-
ternal loads, the second term in the right-hand
side in Equation 10 can expressed as

oV = —{SQ}T{Fext} (15)

where the external forcing vector is

( F,— Kfq) {‘DA} \
Ry ={ B [Ka [ L)
Fg — Kgq) {o*}
( Fo J

Substituting Equations 13 and 15 into
Equation 10, one gets

OU + 8V = {SC[}T({le} - {Fext}) =0 (17>

For any arbitrary and admissible variation in
the independent variables vector, {d¢} # O,
Equation 17 can be rewritten as

{Fmt} - {Fext} - {O} (18)
3 Solution Method

The Arc Length Method [13] is a highly
efficient numerical technique used to solve
strongly nonlinear set of equations, which ex-
hibits one or more points where the tangent
stiffness matrix is singular. Implementation of
the Arc Length Method starts with the state-
ment of equilibrium as

{g} = {Fin'} —MF} = {0} (19)

where {g} is the out-of-balance force vector
that is a function of the scalar load multiplier,
A, and the independent variables, {g}. Equa-
tion 19 has m+ 1 variables and only m equa-
tions, making it an undetermined system that
needs an additional equation to be solved. The
remaining relationship between displacements,
voltages and load factor comes in the form a
constraint equation, given in incremental form

by [11]

a={Aq} {Ag} + AW {FAT{FY —AI> =0
(20)

where W is the scale factor and Al is the pre-
defined size of desired intersection, which ap-
proximates the arc length and defines the max-
imum search radius in the hyper-plane formed
by the unknown variables including the scalar
load multiplier.

Expanding Equations 19 and 20 into a Tay-
lor series where only the linear terms are kept
gives

{g}n = {g}n—l + [Kt]n,1 {SCI}n—l
- {F}nflﬁ}\'nfl

an = Qp—1 +2{AQ}£—1{64}%1
+2AN, 18N, (WPH{FYT{F}  (21)

where [K;] is the tangent stiffness matrix and
is the Jacobian of the out-of-balance force vec-
tor. By equating both expressions of Equation
21 to zero and performing some algebraic ma-
nipulations, the corrections of each interaction
are found and used to update the displace-
ments, voltages and load factor

{a}n ={q}tn—1+1{8G}n—1+My-1{8q:}

A=A 1+, (22)

The correction iterations are repeated until a
predetermined tolerance is achieved, and the
entire loop is performed again until the desired
number of load factor increments. The ap-
proach discussed in this section is chosen over
the conventional Newton-Raphson methods to
solve the equilibrium problem because it can
be used in nonlinear problems where the equi-
librium path required the applied load to be
decreased.

4 Results

A Matlab® code was implemented to solve
the equilibrium problem. In order to demon-
strate the performance of the developed
model, a few simulations will be carried out.
The influence of stacking sequence on the elec-
tromechanical structural behavior and the ef-
fect of changing the number of actuator layers
in the laminate are investigated.
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Data used in simulations can be seen in
Table 1, where the material properties for
the T300/976 graphite/epoxy composite and
PZT-G1195N piezoelectric ceramic, and geo-
metric properties for the beam are specified,
respectively.

Table 1: Geometric and material properties
used in simulations

T300/976 PZT-G1195N  Unit
L 300 300 mm
b 40 40 mm
t 2.4 0.2 mm
Eq 150.0 63.0 GPa
Ex 9.0 63.0 GPa
Gi13 7.1 24.2 GPa
V12 0.30 0.30 —
el — 16.00 Cc/m?

€33 — 10.935 nF /m

In the actuators analyses, the voltage mag-
nitude across each piezoelectric layer of a can-
tilever beam, ¢, is varied and the tip transver-
sal displacement, w(L), is measured. There-
fore, the electric potential applied across each
pair of actuators is given by 2¢*. For the sen-
sors simulations, the magnitude of a transver-
sal tip load on a cantilever beam, P, is varied
and the tip displacement and average voltage
across the elements, ¢S , are measured. Both
configurations can be seen on Fig. 7.

4.1 Stacking Sequence Variation

To verify the influence of stacking sequence
on the electromechanical behavior of actuator
and sensors, five different symmetric laminates
were compared. The first stacking sequence is
[p/ —45/45];, where the entry ‘p’ denotes that
these layers have piezoelectric properties, and
is chosen as reference. The others are [p/0/0];,

_|_

® |

Fig. 7 : Cantilever beam used in simulations:
(a) actuator configuration; and (b) sensor con-
figuration.

[p/ —30/60], [p/ —90/90]s and [p/90/0];. Ge-
ometric and material properties can be found
on Table 1.

The actuator behavior of different stack-
ing sequences can be seen on Fig. 8. The se-
quences [p/0/0]s and [p/ —30/60], are stiffer
than the reference needing higher voltage lev-
els to achieve the same displacement, while
the sequences [p/ —90/90]s; and [p/90/0]; are
more flexible than the baseline needing a
lower voltage in the piezoelectric actuators to
achieve the same tip displacement. The se-
quence [p/0/0]s is the most rigid because all
graphite fibers are aligned with the axial di-
rection leading to a fiber predominant mate-
rial property, while the sequence [p/ —90/90],
is the most flexible due to the fibers being
aligned with the transverse direction, which
results in an epoxy matrix predominant mate-

E
rial property. The ratio 1145 16.667 and ex-

22
plains the difference between the two extreme
cases.
A similar analysis is valid for the sensor
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Actuator Stacking Sequence Variation
120000 T T

———[p/ - 45/45],
[p/0/0],
100000 ¢ [p/ — 30/60],
—[p/ — 90/90],
[p/90/0],

80000
— 60000 -
40000

20000 ¢

0

Fig. 8 : Stacking sequence variation on an ac-
tuator bimorph beam.

operational mode, and is shown on Fig. 9
and Fig. 10. For a predetermined tip load,
the stacking sequence [p/0/0]s has the lowest
displacement, which leads to a lower sensing
voltage across the piezoelectric layers. The se-
quence [p/ —90/90];, however, yields the high-
est tip displacement and, consequently, the
higher electric potential.

This case study shows that composite
structures are versatile and the stacking se-
quence is extremely important to define its be-
havior under electrical or mechanical external
loads. For the case where piezoelectric lay-
ers work as actuators, it is desired that the
beam exhibits a certain level of flexibility al-
lowing the element to morph at lower applied
voltage levels; however, this suggestion is rel-
ative to the actuation mechanism only, and
another requirements such as the ones regard-
ing structural strength, manufacturing process
and aeroeleasticity should be taken into ac-
count when applying this kind of smart struc-
tures into real aircrafts. When the piezoelec-
tric layers act as sensors, no design guideline
are recommended since the element is passive
and used to monitor the structural behavior.

4.2 Number of Actuator Layers

This analysis considers a laminate with twenty
two layers with varying number of actuators.

Sensor Stacking Sequence Variation
4000 T T T T

——[p/ — 45/43],

[p/0/0],

[p/ — 30/60],
— [p/ — 90/90],

3000 [p/90/0]

1000 ¢

0 0.02 004 006 008 0.1
w(L) [m]

Fig. 9 : Stacking sequence variation on a sen-
sor bimorph beam. Load versus tip displace-
ment.

The thickness of all layers are considered to
be t = 0.2mm, while the other properties are
the ones in Table 1. The reference stack-
ing sequence, with two piezoelectric layers, is
[p/45/) —45/35/45/ —45/ —35/0,/90;]s. The
ply orientations 35 and —35 were chosen in
order to maintain equal Young’s Modulus val-
ues for the composite and piezoelectric ma-
terials, assuring that the structure has the
same stiffness. Four and six actuator layers,
with stacking sequences [p/45/—45/p/45/ —
45/ —35/0,2/90,]; for the first and [p/45/ —
45/p/45/ —45/p/0,/90,]; for the latter, were
used in the comparison.

The results are shown on Fig. 11. The
top and bottom layers were subjected to op-
posite sign electric potential of the same inten-
sity, ¢, and the tip displacement were mea-
sured. For a fixed displacement, the higher the
number of actuators, the lower is the voltage
applied in each piezoelectric layer. This be-
havior was expected since for each additional
pair of actuators, more energy is introduced
on the system and is converted in mechanical
strain. Thus, to efficiently design an active
piezoelectric beam, one can embed various ac-
tuating layers within the structure, decreasing
the electric potential magnitude used to en-
force deformation.
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Sensor Stacking Sequence Variation

4000 :
— YT
[9/0/0).
5
3000 p/90/0,
= 2000
Q
1000 +
0 1 1 1 1
0 1000 2000 3000 4000
¢S [V ]

Fig. 10 : Stacking sequence variation on a sen-
sor bimorph beam. Load versus average volt-
age across layers.

5 Conclusion

A finite element formulation for geometri-
cally nonlinear composite morphing beams
with embedded piezoelectric layers was de-
rived. Each lamina can be of different mate-
rials, with piezoelectric characteristics or not,
and the number of actuators and sensors are
predefined. Classical laminate theory accounts
for each layer’s orientation with respect to the
beam longitudinal axis and the material prop-
erties which varies across the thickness. The
piezoelectric effect was modeled using a lin-
ear approximation, where all electromechani-
cal layers are polarized in the thickness direc-
tion. Geometric nonlinearities are added us-
ing the complete Green strain tensor, which is
a set of nonlinear partial differential equations
which measures the degree of deformation on a
body. The kinematic assumptions are the ones
stated on Timoshenko’s beam theory, in which
cross-sections are no longer perpendicular do
the neutral plane.

The addition of nonlinear terms in the
element formulation introduces a hardening
effect in the structural behavior, with the
linear formulations underestimating the re-
sponse when both models are subjected to
the same level of input.  This assump-
tions also leads to a full coupled stiffness

Number of Actuator Layers Variation
15000 T T T T

5000

2Layers
4Layers
6Layers

0 0.02 004 006 008 0.1
w(L) [m]

Fig. 11 : Number of actuator layers variation.

matrix, with membrane-bending, membrane-
rotation, bending-rotation and mechanical-
electrical coupling.

Simulations have shown that the stacking
sequence is of great importance in the struc-
ture behavior, and a beam with the same num-
ber of layers and material can exhibit different
electromechanical behavior depending only in
the orientation of fibers. For morphing actua-
tors beams, the best stacking sequence, when
only morphing requirements are being consid-
ered, is the one that provides lower stiffness in
order to allow the structure to change shape
with a lower voltage. Increasing the number
of actuators also contributes to lowering the
voltage needed to morph the element, and the
adequate piezoelectric material should be cho-
sen when designing morphing beams.
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