
 
 

 

 

 

Abstract  

The main idea of highly accurate 

multioperators schemes for CFD applications is 

briefly outlined, their optimization being 

discussed.. Several examples of numerical 

simulations related to aeroacoustics are 

presented. Hybrid  schemes with multioperators 

for shock capturing calculations are considered.  

1  Introduction  

The idea of constructing arbitrary-order 

approximation and schemes via linear 

combinations of basis operators depending on a 

parameter (multioperators) was proposed by the 

author at 1997 ParCFD conference [1]. It is an 

alternative to increasing approximation orders 

by increasing numbers of degrees of freedom 

(for example, by enlarging stencils). It allows to 

calculate actions of multioperators on known 

grid functions by calculating actions of basis 

operators in a parallel and synchronous manner. 

In this way, execution times can be nearly 

independent of approximation orders provided 

that broadcasting and gathering expenses are 

small when compared with each processor’s 

execution time. The detailed description of the 

multioperators technique and its applications to 

Computational Fluid Dynamics (CFD) can be 

found in [2], [3], [4],[5]. 

Multioperators-based schemes are aimed 

primarily at CFD problems requiring high 

accuracy, high resolution and long-time 

integration (examples are DNS, LES and some 

aeroacoustics problems). Using free parameters 

which are essential features of multioperators, it 

is possible to optimize the schemes for 

enlarginge domains of small phase and 

amplitude errors. 

Several options of the schemes were used for 

numerical simulations of instabilities, the 

emphasize being placed on aeroacoustics. In 

particular, hot subsonic jets were considered in 

[6]. Calculations of supersonic underexpanded 

jets generating screech waves are reported in 

[7].   

Below high-order multioperators and their 

implementation in CFD schemes are briefly 

described. Examples of numerical simulations 

are presented.  A way of using hybrid 

multioperators schemes for capturing strong 

discontinuities is outlined. 

2  Multioperators-based schemes  

2.1 Multioperators  

For completeness, we reproduce here the 

formulation of the main idea. Suppose that there 

is an one-parameter family of operators )(sLh  

which are m th-order approximations to a linear 

operator L  on a uniform grid  with a mesh size 

h . Considering sufficiently smooth function 

)(xf , we construct the Taylor expansion series 

for fLh at a grid point  , the expansion 

coefficients being functions of s .We fix M  

distinct values of Miss i ,2,1,  . Upon 

introducing coefficients Mii ,,2,1,   

satisfying  
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i i  and summing the expansions at 

iss  multiplied by i , one arrives at the new 

expansion. Equating to zero each coefficient of 

that expansion, one obtains 1M linear 

equations for i  with zero right hand side. The 

system is closed by  the 1
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])[(  was labeled in 

[1] as multioperator while the m -th order 

operators )( ih sL  were viewed as basis operators. 

The truncation error in Eq. (1)  becomes 

)( 2 mMhO   if the basis operators are central ones. 

 The crucial point is how to get one-parameter 

families )(sLm  providing solvable systems for 

i  coefficients. It turns out that any compact                                                                  

approximation having free parameters in its 

inverse operator (or operators) has the potential 

for being the required family. In the case of 

CFD applications, we previously used one-

parameter families of Compact Upwind 

Differencing (CUD) operators from [2] , the 

upwinding parameter s being viewed as the free 

parameter in )(sLh . Three-diagonal inversions 

are needed for calculations of basis operators 

actions (see [2] for details).  

A lot of multioperators approximating 

convection terms in the Euler or the Navier-

Stokes equations can be constructed. Presently, 

we use versions of multioperators  generated by  

the one-parameter families of compact 

approximation with two-diagonal inversions 

described in [5]. The families are formed by the 

left and right operators  )(cLr and )(cLr                                        

depending on a parameter c . They provide the 

third-order approximations to the first 

derivatives and can be viewed as an upwind-

downwind pair: 

ll AcIcL 1)()( 

 , ,)()( 1

rr AcIcL 

  

where 1  jjj uuu , jjj uuu   1  while 

lA  and rA  are two- or three-point operators 

defined in [5]. In the latest versions, we use   

and   operators  as lA  and rA  ones thus 

reducing the approximation error but narrowing 

the stencils. As an option, the half-sum of the 

left and right centered operators 2/)( rl LL  can 

serve as the generator of the fourth-order basis 

operators. Since the expansion series for the 

basis operators contain only even-order powers 

of  h  in that case, the 10
th

- and 18
th

 –order 

multioperators  ),,( 21 MM cccL  were 

constructed by fixing M =4 and  M =8  

parameters  Mccc ,, 21 .    The resulting 

centered multioperators are dissipation-free 

ones. To provide a high-order dissipation 

mechanism, the 9
th

 -and 17
th

-order 

multioperators  were created using the half 

difference of the left and right operators. 

2.2  Creating CFD schemes 

Desirable approximation orders can be obtained 

for more or less arbitrary sets of the parameters 

s  or c . However, high orders should be 

accompanied by other important properties 

characterized efficient schemes.. Thus the 

parameter sets must be chosen first of all to 

provide their stability.  To simplify the analysis 

of multioperators-based schemes, distributions 

of the parameters values  between their minimal 

and maximal values maxmin , ss  or maxmin ,cc are 

introduced. Thus multioperators and their 

Fourier images become dependent on two 

parameters. In the case of the CUD-based 

multioperators, maxmin , ss  should be chosen such 

that 

      ),( maxmin ssLM  and ),( maxmin ssLM    

can be used as an upwind-downwind pair [4]. 

The task can be accomplished by looking for the 

parameters which provide positive and negative 

real parts  of the Fourier images of the 

multioperators. 

   In the case of the left and the right basis 

operators, the values of maxmin ,cc must be 

chosen to meet the same requirement. Finally, 

maxmin ,cc  must be chosen to provide positivity 

of dissipation multioperators in the case of 
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centered multioperators which are dissipation-

free ones. 

  Assuming that the requirements are met, the 

general structure of  the schemes can be 

illustrated using 1D equation 

0)(  xt ufu  where u  and f are vectors. If a 

upwind-downwind pairs with switching the 

upwinding parameter s are chosen as the basis 

operators then the flux-splitting is used to 

construct the semi-discretized  scheme 

02/)(   hfLfLu MMt , Cuuff  )( ,  

,)( Cuuff 
0C where                                          

),(),( maxminmaxmin ssLssLL MMM 
,        (2) 

),(),( maxminmaxmin ssLssLL MMM 
. 

In the same way, the left and right 

multioperators from the upwind-downwind pair 

can be used. It can be proved that the scheme 

belongs to the class of schemes with positive 

operators  and hence is stable in the mean 

square root norm (in the frozen coefficients 

sense). Supposing that ML  is a centered 

multioperators, it can be used directly for 

approximating xuf )( . In that case, the above 

described dissipation operator MD  should be 

added. Then the resulting scheme looks as 

       0/)(  uCDhufLu MMt               (3) 

where constant 0C  can be used to control the 

dissipation level. 

   In multidimensional cases, schemes (2) and 

(3) are easily generalized by applying  

multioperators  created  independently for each 

spatial directions. Approximations to the 

viscous terms of the Navier-Stokes equations  

can be included to the schemes in different ways 

(for example, by using either compact or 

multioperators approximations). 

   The discretization of the time derivatives in 

Eqs.(2), (3) is a problem-dependent.  We are 

interested mainly in unsteady problems  so the 

natural choice is the Runge-Kutta time stepping 

of desired orders. Up to now, the fourth or the 

sixth-orders sufficed for our purposes. 

2.3 Optimization 

Once domains of admissible values of 

the multioperator’s parameters are obtained,  the 

maxmin , ss  or maxmin ,cc  values from the domains 

can be used to control additional properties of 

the schemes. In particular, one can look for the 

values enlarging domains of wave numbers 

supported by meshes for which the phase and 

the amplitude errors are small. That problem is 

important in the case of aeroacoustics. 

   The phase errors can be characterized by the 

function of the dimensionless wave number 

kh  defined by 1/)()( *  aar   where a  

and *a  are respectively actual and the numerical 

phase velocity in the case of Eq. (1) with  

              ,)( auuf   0 consta . 

Consider for example  the tenth order scheme 

(3). Using the uniform parameters distribution 

between minc  and maxc ,. the optimal values of 

maxmin ,cc  can be found.  In the same way, it is 

possible also to enlarge the domain of small 

values of the dissipation function )(d  

characterizing attenuations of harmonics. The 

examples of functions )(r  and )(d  for 

approximately optimal values of  maxmin ,cc  are 

presented in  Fig.1. Judging from the Figure, the 

resolution of the scheme is close to the spectral 

one. 

 

 
  

Fig.1.  Fhase errors )(r  and amplitude errors 

)(d vs. dimensionless wave number  . 

 

As to the dissipation, it damps only non-

physical harmonics which are not resolved well 

by the scheme.  Thus it plays the role of a built-

in filter of spurious oscillations. 

 

 

 



                                                                                                                                                             A.I.TOLSTYKH 

4 

2.4 Benchmark calculations  

Acoustic test. 

To estimate resolution properties of the 

schemes, the following initial value problem 

was considered as a test problem: 

,0 xt uu   

),)10/)(2ln(exp()]cos(2[),0( 2xxxu     

7.1  

It should be discretized using the uniform mesh 

with 1h . The comparison of the exact 

solution and the obtained numerical solution at 

times 400t  and 800t  is needed. The 

problem was proposed by C.Tam in [8]. 

In our notations, the dimensionless wave 

number 2/3.2    approximately 

corresponds to the domain of phase and 

amplitude errors to be properly resolved. Fig.2 

shows the comparison of the calculations at 

800t . The solid line and the markers present 

the exact and numerical solutions respectively 

in the case of the 10
th

 - order scheme. No 

deviation between the solutions is seen in the 

Figure.  

 

 

Fig.2. Acoustic test [6].  Comparison of the 

exact and numerical   (markers)solutions 

 

Periodic problem for Burger’s equation. 

The C-norm of the deviations or the numerical 

solutions from the exact solution of the periodic 

problem for the Burger’s equation are shown in 

Table 1 for several numbers N  of  grid points. 

The time moment corresponds to the shock-free 

exact solution. 

 

 

Table1.Solution errors for smooth exact 

solutions of the Burgers equations 

 
N WENO5 L59 L10 L18 

16 1.3 E -2 1.3E-03 1.3E-3 1.3E-03 

32 1.2 E -3 6.6E-06 6.6E-6 7.6E-06 

64 9.5 E -5 5.4E-09 5.4E-9 1.4E-09 

128 3.3 E -6 5.6E-12 4.9E-12 2.1E-14 

 

In the table, WENO5, L59, L10.and L18 denote, 

respectively, the fifth-order well known WENO 

scheme, the 9
th

 order multioperators scheme 

 based on the fifth-order CUD operators, the 

above mentioned 10th and 18
th

 order 

multioperators schemes. As seen,  the 

accuracies and the convergence rates 

dramatically exceed those of the fifth-order 

scheme. 

3 Examples of calculations.  

3.1 Instability and sound radiation of hot 

subsonic jets  

Possible target problems for multioperators-

based schemes include direct numerical 

simulations in the cases requiring high accuracy 

and high resolution methods for long –term time 

integrations. An example in the aeroacoustics 

area is sound generation due to jet’s 

instabilities.  In [6], unstable behaviour of 

subsonic hot jets is calculated  using the Navier-

Stokes equations. Such type of jets under certain 

conditions exhibits several types of instabilities 

characterized by either non-synchronous 

rolling-up and vortex rings pairings or well 

synchronized regimes with or without pairings 

events. In all cases, the jets serve as sound 

generators, the source of radiation being 

unsteady motion of vortex rings. 
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The problem formulation was similar to that of 

[9] with jets specified by inflow conditions. The 

above described the tenth-order multioperators 

schemes were used  with non-reflecting 

boundary conditions and outflow sponge zones. 

The Mach number, temperature ratio and shear 

layer thickness were varied in the calculations. 

Very high accuracy of the schemes allowed to 

detect small amplitude pressure fluctuations 

directly from the flow fields described by the 

Navier-Stokes equations without linearization or 

introduction deviations from base flows. 

The snapshots of the flow field fragments with 

vortex rings at successive time moments in the 

case of synchronized (periodical regime) are 

shown in Fig.3. for the Mach number M = 

0.1.. Calculations for 0.1  M 0.8 showed 

stabilization effect of increasing M  with the 

transition from synchronized regime to irregular 

one. 

 

Fig.3  Instability of hot subsonic jets. Details of  

vorticity  isosurfaces  showing vortex rings. 

3.2 Screech calculations  

The scheme with the seventh- and ninth-order 

multioperators described in [3] was used for 

numerical simulation of unstable behavior of 

supersonic underexpanded jets. The calculations 

were carried out for the both 2D   and 3D flow 

fields in the cases of narrow rectangular 

nozzles, the 2D calculations being reported in 

[7].. They allowed to obtain rather clear pictures 

of unsteady motions of shock cells and the 

resulting screech waves propagating upstream. 

Snapshots of the pressure, density and vorticity 

fields at two successive time moments 

calculated  for the Mach number 5.1jM   of                                   

the perfectly expanded jet are presented in 

Fig.4. The red markers indicate the screech 

waves at both sides of the jet.. Fig. 5 shows the 

Strouhal numbers  corresponding to the screech 

peaks in the spectra obtained for several  values 

of jM . For comparison, the theoretical 

estimates, experimental [9] and numerical data  

[10] are also shown in the Figure. 

 

Fig. 4. Snapshots  of the  pressure, density and 

vorticity fields at two successive time moments. 

 

Fig. 5.  Screech Strouhal number vs. Mach 

number. Comparison of calculated  and existing 

data. 
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4. Hybrid multioperators schemes for 

strongly discontinuous solutions.  

The  above described way of using highly 

accurate multioperators approximations results 

in conservative schemes provided that 

governing equations  are written in the forms of 

conservation laws. The schemes can be cast in 

the form of flux balances for control cells 

formed by meshes. Thus the schemes have the 

potential for using as shock capturing ones. 

Moreover, it can be proved that their solutions if 

converged are week approximations to the exact 

solutions. Clearly, the notion of approximation 

orders is meaningless in the vicinities of 

discontinuities.  Thus the important question is 

whether the high-order  convergence of the 

solutions .when refining meshes retains   in the 

regions away from the shocks. The requirement 

is met in the case of multioperators schemes. In 

Table 2,  the maximum norms of the numerical 

solutions errors is shown for the instance of 

time at which the exact solution of the above 

considered periodic problem for the Burgers 

equation is  discontinuous. The calculations 

were carried out using the ninth-order L59 

scheme, their errors being calculated for the 

nodes which lie exterior to the shock vicinity.   

Table 2. Solution errors Er for discontinuous 

exact solutions of the Burgers equations away 

from the shock with the local convergence 

orders  k. 

 

N 64 128 256 512 1024 

Er  2.8E-2 3.6E- 3 4.5E-5 2.7E-8 2.4E-14  

k  2.9 6.3 10.7 20.1 

As seen,  the superconvergence holds when 

refining the meshes. The same fact  was 

revealed when testing against the Riemann 

problems. 

Another important point concerns the 

monotonicity problem. According to the well 

known Godunov’s theorem, high order schemes  

formally are not monotone ones. It is the case of 

the multioperators-based scheme. However, the 

controlled  high-order dissipation can  damp 

noticeable spurious numerical oscillations in 

certain cases. An example is the flow fields 

shown in Fig.4. where the shocks are not 

accompanied by spurious oscillations.  Thus the 

schemes  have the potential for using in the 

cases of relatively small Mach numbers without 

special measures. 

In the cases of strong discontinuities,  the 

following ways to create robust shock capturing 

schemes with multioperators  were investigated 

in [12]. The first one is using low-order 

monotone schemes and their fluxes for the flux 

correction described in [13]. Various options are 

possible when choosing monotone schemes as 

partners of high-order ones.. Numerical 

experiments were carried out  using the 

monotone Lax-Friedrichs type of schemes. It 

was found that the device can kill or reduce 

spurious oscillations while  reasonably accurate 

solutions can be obtained away from the shock. 

Unfortunately their convergence was found to 

be only first-order one. Nevertheless, the 

accuracy was an order of magnitude higher than 

that for the first order schemes. 

 An example of calculations with the flux-

corrected ninth-order L59 scheme is shown in 

Fig.6 for the Riemann problem from  [14] with 

extremely strong shocks.                                                             

.

 

Fig. 6. Density distributions from numerical 

solutions of the Riemann problem [14]. The 

bold line indicates the exact solution 
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In the Figure, the density distribution showing 

two strong shocks  (the Mach number 

M=1014.1) moving away from the center [14]       

are presented for  two meshes (n=100,200). The 

solution obtained with the first-order partner of 

the L59 scheme is also displayed in the figure. 

The second way to deal with strong 

discontinuities considered in [12] is to blend at 

each grid point j multioperators solutions M

ju  

and  solutions L

ju  of a monotone scheme in the 

form M

jj

L

jjj ururu )1(  where jr  is a grid 

function which is very small and is near unity 

respectively in domains of smooth and non-

smooth solutions.  Various types of  the function 

can be used. In [12], it was a  smooth function 

of the difference M

j

L

j uu  . The monotone 

schemes are not supposed to be necessary first-

order ones. For example, they can be high-order 

schemes   with limiters. As an option, it is 

possible to blend  M

ju  with the above described 

its flux-corrected solution considered as L

ju .  

The hybrid scheme was constructed with  the 

16
th

 order multioperator ),( maxmin ccLM  and 15
th

  

order dissipation multioperator  ),( maxmin ccDM
  

in (3), the latter being tuned  by choosing its 

free parameters to get  an appropriate spectral 

content of the dissipation.  The flux corrected 

scheme (3) was used to obtain monotone 

solutions L

ju . The numerical example is 

presented in Fig.7. In the Figure,  the details of 

the solutions of the Riemann problem from [15] 

obtained with  the hybrid scheme and the 

scheme (3) without blending are shown for 

400n .  The problem is characterized by 

rather strong  contact and shock discontinuities, 

the Mach number being about 198. 

  

Fig. 7. Density distributions from numerical 

solutions of the Riemann problem[8] with the 

contact at  8.0x .The bold line indicates the 

exact solution, solid line and  line with markers 

correspond respectively to the blended  and non-

blended scheme with the 16
th

 –order 

multioperators and  the  15
th

 –order dissipation.   

As seen, the original scheme can work  alone 

despite noticeable wiggles.  It was found that 

blended multioperators schemes in contrast to 

flux-corrected ones can preserve high-order 

convergence away from discontinuities. 
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