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Abstract

The main idea of highly accurate
multioperators schemes for CFD applications is
briefly outlined, their optimization being
discussed.. Several examples of numerical
simulations related to aeroacoustics are
presented. Hybrid schemes with multioperators
for shock capturing calculations are considered.

1 Introduction

The idea of constructing arbitrary-order
approximation and schemes via linear
combinations of basis operators depending on a
parameter (multioperators) was proposed by the
author at 1997 ParCFD conference [1]. It is an
alternative to increasing approximation orders
by increasing numbers of degrees of freedom
(for example, by enlarging stencils). It allows to
calculate actions of multioperators on known
grid functions by calculating actions of basis
operators in a parallel and synchronous manner.
In this way, execution times can be nearly
independent of approximation orders provided
that broadcasting and gathering expenses are
small when compared with each processor’s
execution time. The detailed description of the
multioperators technique and its applications to
Computational Fluid Dynamics (CFD) can be
found in [2], [3], [4].[5].

Multioperators-based  schemes are aimed
primarily at CFD problems requiring high
accuracy, high resolution and long-time
integration (examples are DNS, LES and some
aeroacoustics problems). Using free parameters
which are essential features of multioperators, it

is possible to optimize the schemes for
enlarginge domains of small phase and
amplitude errors.

Several options of the schemes were used for
numerical simulations of instabilities, the
emphasize being placed on aeroacoustics. In
particular, hot subsonic jets were considered in
[6]. Calculations of supersonic underexpanded
jets generating screech waves are reported in

[7].

Below high-order multioperators and their
implementation in CFD schemes are briefly
described. Examples of numerical simulations
are presented. A way of using hybrid
multioperators schemes for capturing strong
discontinuities is outlined.

2 Multioperators-based schemes

2.1 Multioperators

For completeness, we reproduce here the
formulation of the main idea. Suppose that there
is an one-parameter family of operators L, (S)
which are m th-order approximations to a linear
operator L on a uniform grid with a mesh size
h . Considering sufficiently smooth function

f (x), we construct the Taylor expansion series
for L, f ata grid point , the expansion
coefficients being functions of s.We fix M
distinct values of s=s;,i=12,...M . Upon
introducing coefficients y,,i=12,...,M
satisfying



zi“ilyi =1 and summing the expansions at

s =s, multiplied by y., one arrives at the new
expansion. Equating to zero each coefficient of
that expansion, one obtains M —1linear
equations for . with zero right hand side. The

system is closed by the zi“ilyi =1 equation.

Supposing that the system is solvable, its
solution gives

[Lf]; =Z7i Ly (s)[f1; +O(h™™™). 1)

The sum L, =ZT:1yiLh(si)[f]j was labeled in

[1] as multioperator while the m -th order
operators L, (s;) were viewed as basis operators.
The truncation error in Eg. (1) becomes
O(h?*™) if the basis operators are central ones.

The crucial point is how to get one-parameter
families L, (s) providing solvable systems for

y, coefficients. It turns out that any compact

approximation having free parameters in its
inverse operator (or operators) has the potential
for being the required family. In the case of
CFD applications, we previously used one-
parameter families of Compact Upwind
Differencing (CUD) operators from [2] , the
upwinding parameter s being viewed as the free
parameter in L, (s). Three-diagonal inversions

are needed for calculations of basis operators
actions (see [2] for details).

A lot of multioperators approximating
convection terms in the Euler or the Navier-
Stokes equations can be constructed. Presently,
we use versions of multioperators generated by
the one-parameter families of compact
approximation with two-diagonal inversions
described in [5]. The families are formed by the
left and right operators L, (c)andL,(c)
depending on a parameter c. They provide the
third-order approximations to the first
derivatives and can be viewed as an upwind-
downwind pair:

L(©)=(1+cA )AL (0)=(1+cA,) A,
where A U; =u; —u;,, A.u; =u;,, —u; while
A and A, are two- or three-point operators
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defined in [5]. In the latest versions, we use A_
and A, operators as A and A ones thus

reducing the approximation error but narrowing
the stencils. As an option, the half-sum of the
left and right centered operators (L, +L,)/2can

serve as the generator of the fourth-order basis
operators. Since the expansion series for the
basis operators contain only even-order powers
of h in that case, the 10" and 18™ —order
multioperators L,, (c,,C,,...C,, ) were
constructed by fixing M =4 and M =8
parameters c,,C,,...Cy . The resulting

centered multioperators are dissipation-free
ones. To provide a high-order dissipation
mechanism, the 9" -and 17"-order
multioperators were created using the half
difference of the left and right operators.

2.2 Creating CFD schemes

Desirable approximation orders can be obtained
for more or less arbitrary sets of the parameters
s or c. However, high orders should be
accompanied by other important properties
characterized efficient schemes.. Thus the
parameter sets must be chosen first of all to
provide their stability. To simplify the analysis
of multioperators-based schemes, distributions
of the parameters values between their minimal
and maximal values S.;,,S.. O CpinsCpax are
introduced. Thus multioperators and their
Fourier images become dependent on two
parameters. In the case of the CUD-based

multioperators, S.;,,S. Should be chosen such
that

min ?

LM (Smin ’Smax) and I-M (_S
can be used as an upwind-downwind pair [4].
The task can be accomplished by looking for the
parameters which provide positive and negative
real parts of the Fourier images of the
multioperators.
In the case of the left and the right basis
operators, the values of c,,cC,, must be

chosen to meet the same requirement. Finally,
Coin»Crax  Must be chosen to provide positivity

of dissipation multioperators in the case of

min ’_Smax)

max



EXTREMELY HIGH ORDER AND HIGH RESOLUTION MULTIOPERATORS - BASED SCHEMES FOR

CFD APPLICATIONS

centered multioperators which are dissipation-
free ones.

Assuming that the requirements are met, the
general structure of the schemes can be
illustrated using 1D equation
u, + f(u), =0 where u and f are vectors. If a

upwind-downwind pairs with switching the
upwinding parameter sare chosen as the basis
operators then the flux-splitting is used to
construct the semi-discretized scheme

u +(Ly f"+L,f)/2h=0, f"=f(u)+Cu,
f~=f(u)—Cu, C>0where
I—K/I = I—M (Smin ’Smax)+ LM (_Smin ’_smax)1 (2)

I—K/I = I—M (Smin ’Smax) - LM (_Smin ’_Smax) :

In the same way, the left and right
multioperators from the upwind-downwind pair
can be used. It can be proved that the scheme
belongs to the class of schemes with positive
operators and hence is stable in the mean
square root norm (in the frozen coefficients
sense). Supposing that L, is a centered
multioperators, it can be used directly for
approximating f(u),. In that case, the above

described dissipation operator D,, should be
added. Then the resulting scheme looks as

u,+Ly, f(u)y/h+CD,u=0 3)
where constant C >0 can be used to control the
dissipation level.

In multidimensional cases, schemes (2) and
(3) are easily generalized by applying
multioperators created independently for each
spatial directions. Approximations to the
viscous terms of the Navier-Stokes equations
can be included to the schemes in different ways
(for example, by using either compact or
multioperators approximations).

The discretization of the time derivatives in
Egs.(2), (3) is a problem-dependent. We are
interested mainly in unsteady problems so the
natural choice is the Runge-Kutta time stepping
of desired orders. Up to now, the fourth or the
sixth-orders sufficed for our purposes.

2.3 Optimization

Once domains of admissible values of
the multioperator’s parameters are obtained, the

Sin 1 Smax OF Crin s Crax  Values from the domains
can be used to control additional properties of
the schemes. In particular, one can look for the
values enlarging domains of wave numbers
supported by meshes for which the phase and
the amplitude errors are small. That problem is
important in the case of aeroacoustics.

The phase errors can be characterized by the
function of the dimensionless wave number
a =kh defined byr(a) =a"(a)/a—1 where a

and a" are respectively actual and the numerical

phase velocity in the case of Eq. (1) with
f(u)=au, a=const >0.

Consider for example the tenth order scheme

(3). Using the uniform parameters distribution

between c.. and c_, ,. the optimal values of

Cin Crux Can be found. In the same way, it is
possible also to enlarge the domain of small
values of the dissipation function d(«)
characterizing attenuations of harmonics. The
examples of functions r(e) and d(«) for
approximately optimal values of c. ,cC., are
presented in Fig.1. Judging from the Figure, the
resolution of the scheme is close to the spectral
one.

max

max

OE+00H d

E-04

BE-04

9E-04

70 25 TED 20 25 @ 30

Fig.1. Fhase errors r(«) and amplitude errors
d(a) vs. dimensionless wave number « .

As to the dissipation, it damps only non-
physical harmonics which are not resolved well
by the scheme. Thus it plays the role of a built-
in filter of spurious oscillations.



2.4 Benchmark calculations

Acoustic test.

To estimate resolution properties of the
schemes, the following initial value problem
was considered as a test problem:

u,+u, =0,

u(0, x) =[2 + cos(x)]exp (= In(2)(x/10)?),
p=17

It should be discretized using the uniform mesh
with h=1. The comparison of the exact
solution and the obtained numerical solution at
times t =400 and t =800 is needed. The
problem was proposed by C.Tam in [8].

In our notations, the dimensionless wave
number o = f=2.3> /2 approximately
corresponds to the domain of phase and
amplitude errors to be properly resolved. Fig.2
shows the comparison of the calculations at

t =800. The solid line and the markers present
the exact and numerical solutions respectively
in the case of the 10" - order scheme. No
deviation between the solutions is seen in the
Figure.

Exact
L] Numerical

775 800 ' 825 X

Fig.2. Acoustic test [6]. Comparison of the
exact and numerical (markers)solutions

Periodic problem for Burger’s equation.

The C-norm of the deviations or the numerical
solutions from the exact solution of the periodic
problem for the Burger’s equation are shown in
Table 1 for several numbers N of grid points.
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The time moment corresponds to the shock-free
exact solution.

Tablel.Solution errors for smooth exact
solutions of the Burgers equations

N | WENO5 L59 L10 L18

16 | 1.3E-2 | 1.3E-03 | 1.3E-3 | 1.3E-03

32| 1.2E-3 | 6.6E-06 | 6.6E-6 | 7.6E-06

64 | 95E-5|54E-09 | 54E-9 | 1.4E-09

128 | 3.3E-6 | 5.6E-12 | 49E-12 | 2.1E-14

In the table, WENOS5, L59, L10.and L18 denote,
respectively, the fifth-order well known WENO
scheme, the 9™ order multioperators scheme
based on the fifth-order CUD operators, the
above mentioned 10th and 18" order
multioperators schemes. As seen, the
accuracies and the convergence rates
dramatically exceed those of the fifth-order
scheme.

3 Examples of calculations.

3.1 Instability and sound radiation of hot
subsonic jets

Possible target problems for multioperators-
based schemes include direct numerical
simulations in the cases requiring high accuracy
and high resolution methods for long —term time
integrations. An example in the aeroacoustics
area is sound generation due to jet’s
instabilities. In [6], unstable behaviour of
subsonic hot jets is calculated using the Navier-
Stokes equations. Such type of jets under certain
conditions exhibits several types of instabilities
characterized by either non-synchronous
rolling-up and vortex rings pairings or well
synchronized regimes with or without pairings
events. In all cases, the jets serve as sound
generators, the source of radiation being
unsteady motion of vortex rings.
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The problem formulation was similar to that of
[9] with jets specified by inflow conditions. The
above described the tenth-order multioperators
schemes were used with non-reflecting
boundary conditions and outflow sponge zones.
The Mach number, temperature ratio and shear
layer thickness were varied in the calculations.
Very high accuracy of the schemes allowed to
detect small amplitude pressure fluctuations
directly from the flow fields described by the
Navier-Stokes equations without linearization or
introduction deviations from base flows.

The snapshots of the flow field fragments with
vortex rings at successive time moments in the
case of synchronized (periodical regime) are
shown in Fig.3. for the Mach number M _ =
0.1.. Calculations for 0.1<M_ <0.8 showed
stabilization effect of increasing M _ with the

transition from synchronized regime to irregular
one.

€€ b
\

Fig.3 Instability of hot subsonic jets. Details of
vorticity isosurfaces showing vortex rings.
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3.2 Screech calculations

The scheme with the seventh- and ninth-order
multioperators described in [3] was used for
numerical simulation of unstable behavior of
supersonic underexpanded jets. The calculations
were carried out for the both 2D and 3D flow
fields in the cases of narrow rectangular
nozzles, the 2D calculations being reported in
[7].. They allowed to obtain rather clear pictures
of unsteady motions of shock cells and the
resulting screech waves propagating upstream.
Snapshots of the pressure, density and vorticity
fields at two successive time moments
calculated for the Mach numberM; =1.5 of

the perfectly expanded jet are presented in

Fig.4. The red markers indicate the screech

waves at both sides of the jet.. Fig. 5 shows the
Strouhal numbers corresponding to the screech
peaks in the spectra obtained for several values

of M. For comparison, the theoretical

estimates, experimental [9] and numerical data
[10] are also shown in the Figure.

T=100 =103
a) pressure  b)
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Fig. 4. Snapshots of the pressure, density and
vorticity fields at two successive time moments.
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Fig. 5. Screech Strouhal number vs. Mach
number. Comparison of calculated and existing
data.



4. Hybrid multioperators schemes for
strongly discontinuous solutions.

The above described way of using highly
accurate multioperators approximations results
in conservative schemes provided that
governing equations are written in the forms of
conservation laws. The schemes can be cast in
the form of flux balances for control cells
formed by meshes. Thus the schemes have the
potential for using as shock capturing ones.
Moreover, it can be proved that their solutions if
converged are week approximations to the exact
solutions. Clearly, the notion of approximation
orders is meaningless in the vicinities of
discontinuities. Thus the important question is
whether the high-order convergence of the
solutions .when refining meshes retains in the
regions away from the shocks. The requirement
is met in the case of multioperators schemes. In
Table 2, the maximum norms of the numerical
solutions errors is shown for the instance of
time at which the exact solution of the above
considered periodic problem for the Burgers
equation is discontinuous. The calculations
were carried out using the ninth-order L59
scheme, their errors being calculated for the
nodes which lie exterior to the shock vicinity.

Table 2. Solution errors Er for discontinuous
exact solutions of the Burgers equations away
from the shock with the local convergence
orders k.

N | 64 128 256 512 1024
Er | 2.8E-2 | 3.6E-3 | 4.5E-5 | 2.7E-8 | 2.4E-14
k 2.9 6.3 10.7 20.1

As seen, the superconvergence holds when
refining the meshes. The same fact was
revealed when testing against the Riemann
problems.

Another important point concerns the
monotonicity problem. According to the well
known Godunov’s theorem, high order schemes
formally are not monotone ones. It is the case of
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the multioperators-based scheme. However, the
controlled high-order dissipation can damp
noticeable spurious numerical oscillations in
certain cases. An example is the flow fields
shown in Fig.4. where the shocks are not
accompanied by spurious oscillations. Thus the
schemes have the potential for using in the
cases of relatively small Mach numbers without
special measures.

In the cases of strong discontinuities, the
following ways to create robust shock capturing
schemes with multioperators were investigated
in [12]. The first one is using low-order
monotone schemes and their fluxes for the flux
correction described in [13]. Various options are
possible when choosing monotone schemes as
partners of high-order ones.. Numerical
experiments were carried out using the
monotone Lax-Friedrichs type of schemes. It
was found that the device can kill or reduce
spurious oscillations while reasonably accurate
solutions can be obtained away from the shock.
Unfortunately their convergence was found to
be only first-order one. Nevertheless, the
accuracy was an order of magnitude higher than
that for the first order schemes.

An example of calculations with the flux-
corrected ninth-order L59 scheme is shown in
Fig.6 for the Riemann problem from [14] with
extremely strong shocks.

1ST ORDER
n=100

IS
LAY RRNA) EARR) EARN RN EAAY LRRAY LRRRN LAamR vyt

Fig. 6. Density distributions from numerical
solutions of the Riemann problem [14]. The
bold line indicates the exact solution
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In the Figure, the density distribution showing
two strong shocks (the Mach number
M=1014.1) moving away from the center [14]
are presented for two meshes (n=100,200). The
solution obtained with the first-order partner of
the L59 scheme is also displayed in the figure.

The second way to deal with strong
discontinuities considered in [12] is to blend at

each grid point j multioperators solutions uJM
and solutions ujL of a monotone scheme in the

L M - -
form u; =r;u; +(1—r;)u; wherer; isagrid
function which is very small and is near unity
respectively in domains of smooth and non-
smooth solutions. Various types of the function
can be used. In [12], it was a smooth function
of the difference u; —u}". The monotone

schemes are not supposed to be necessary first-
order ones. For example, they can be high-order
schemes with limiters. As an option, it is

possible to blend u?" with the above described

its flux-corrected solution considered as ujL.

The hybrid scheme was constructed with the
16" order multioperator L, (C,,,C,., ) and 15"

order dissipation multioperator D,,(C/,,,Cl.y)

in (3), the latter being tuned by choosing its
free parameters to get an appropriate spectral
content of the dissipation. The flux corrected
scheme (3) was used to obtain monotone

solutions ujL . The numerical example is

presented in Fig.7. In the Figure, the details of
the solutions of the Riemann problem from [15]
obtained with the hybrid scheme and the
scheme (3) without blending are shown for
n=400. The problem is characterized by
rather strong contact and shock discontinuities,
the Mach number being about 198.

2F
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Fig. 7. Density distributions from numerical
solutions of the Riemann problem[8] with the
contact at x =0.8.The bold line indicates the
exact solution, solid line and line with markers
correspond respectively to the blended and non-
blended scheme with the 16" —order
multioperators and the 15™ —order dissipation.

As seen, the original scheme can work alone
despite noticeable wiggles. It was found that
blended multioperators schemes in contrast to
flux-corrected ones can preserve high-order
convergence away from discontinuities.
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