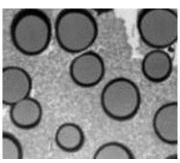

Technologies for the Next Engine Generation

Dr. A. R. Wadia Chief Consulting Engineer - Aerodynamics GE Aviation Cincinnati, Ohio

September, 2014

GE's model continuous innovation

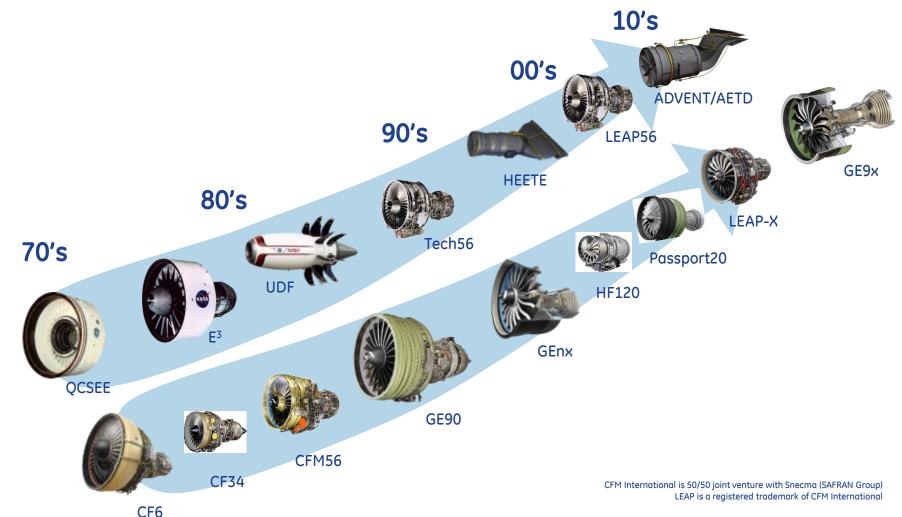
Aviation needs


Targeted technology development

Differentiated products

- Fuel efficiency
- Reliability
- Cost of ownership
- Emissions
- Noise

- Technology roadmaps
- Cross-disciplinary teams
- Ongoing R&D investment
- GE Global Research collaboration
- Sustained maturation



Technology Demonstrator Programs

Strong history leading to commercial benefits today and beyond

Investing for growth...

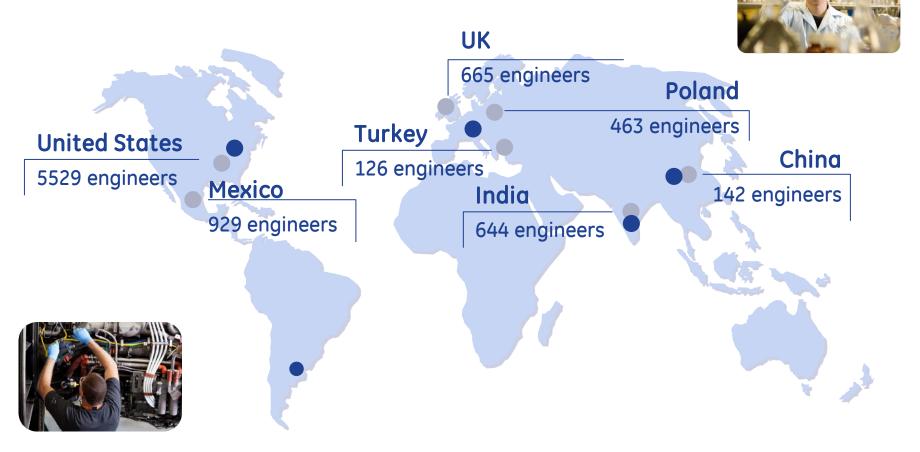
Engineering as a strategic advantage

Leadership

Innovation and execution

Capacity

Right people, right time


Capability

Right skills to deliver

GE Aviation Engineering

- Over 8000 GE Aviation engineers around the globe
- ~3000 technologists at 5 Global Research Sites

Pioneering New Technologies

GE's multi generation technology plan

	LEAP	GE9X		2025+	
Advanced Materials	CMC Shroud	Gen1 CMC HPTCMC CombustorHigh Temp Disk		Gen2 CMC HPT	
FAN & LPT	Composite Fan	Composite OGV16 blades		Low Drag Installation	
	18 bladesImproved Aero	• Improved Aero		Light weight adv. Components	
Core	NG HPT BladeAdditive mfg	• 27:1 Compressor • TAPS III			
				Beyond 2025+	
	fuel nozzleAdv cooling	Combustor • Adv. Seals		Unducted Fan	
Controls	Adv. FADECLightweight	 Distributed Controls 		onducted run	
	externals	Adv. Fuel Pump			

Fan Technologies

Generational changes in technology

Lightweight
Durable
Efficient

Composite technology advancement

Improved performance and weight reduction

GE90-94B 777-200ER, 777F

- Wide chord design
- 22 blades

GE90-115B 777-200LR, -300ER

- Swept aero
- 22 blades

GEnx 787, 747-8

- Improved efficiency
- Lower Radius Ratio
- 18 blades

LEAP

737 MAX, A320 neo

- 3D woven fiber and resin transfer mold
- Advanced camber
- 18 blades

GE9X Next-Gen 777

- Improved fiber and resin system
- Thinner airfoils
- 16 blades

Fan blade experience

Today: 30+ million flight hours

2019: 150+ million flight hours

- Integrated structure
- Saves 700+ lbs/aircraft

High bypass turbofan challenges

Better Fan Efficiency while Reducing Noise

- Every fan blade design continues to improve efficiency
- GE9x fan rig tests maturing new acoustic technologies

Improved Aeromechanics

- GE relying on detailed analytical CFD and test experience
- GEnx fan design methodology improve flutter stability
- GE9X inlet and fan concepts reduce blade responses in distortion

Reducing the Weight the Fan System

- GE90 blade composite blades
- GEnx composite fan containment case (save up to 700+ lbs/aircraft)
- GE9X improves cost and weight with advanced manufacturing and new materials

Successful Field Experience that was Developed on Bird Strike and Blade Out Rigs

30+ million flight hours today and by 2019 over 150 million flight hours

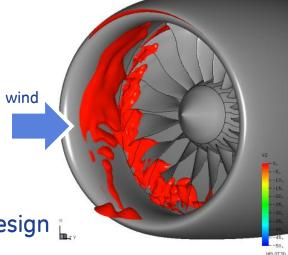
Subscale Rigs

Bird-strike/FBO rigs

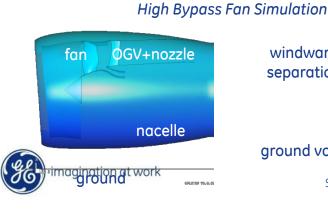
Manufacturing

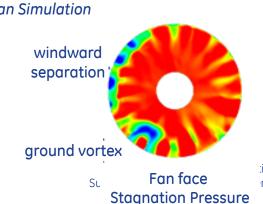
Unsteady Coupled Inlet+Fan CFD in Crosswind

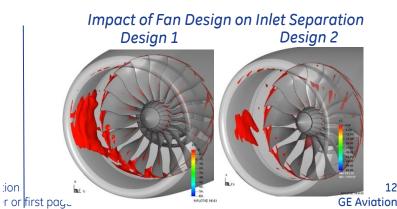
Validation Program


- Modeling nacelle, fan, OGV, & nozzle and ground plane
- Utilizing model and engine test data for validation

Improved Fan-Inlet Design Tool


- Allows computation of Fan pumping effect on inlet
- Captures all fan inlet interactions
- Improved tool for nacelle and distortion-tolerant fan design


Improved Fan response and distortion transfer assessments


- Fan forced response analyses & assessment
- Fan response to inlet distortion & distortion transfer to core
- · Fan operability assessment via numerical throttling

Nacelle Separation bubble

Open Rotor Designs for Low Noise and High Efficiency

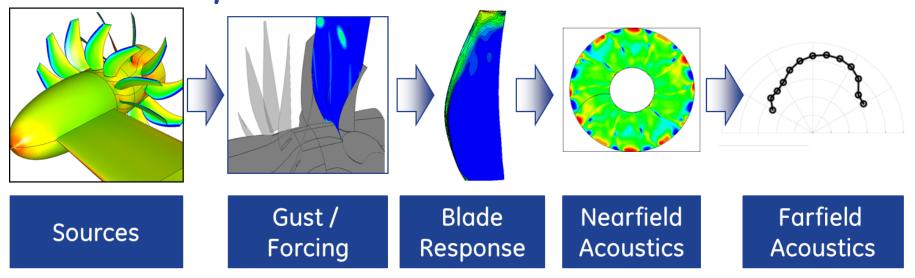
(gg)

GE: designs, acoustic predictions, test planning/execution

NASA: rig fabrication, facilities, data acquisition, personnel

FAA: feedback, reviews, sponsorship under Continuous Lower Energy, Emissions, and Noise (CLEEN) program

- 26% fuel burn reduction relative to CFM56-7B powered narrow body aircraft
- 15-17 EPNdB cumulative margin to Chapter 4



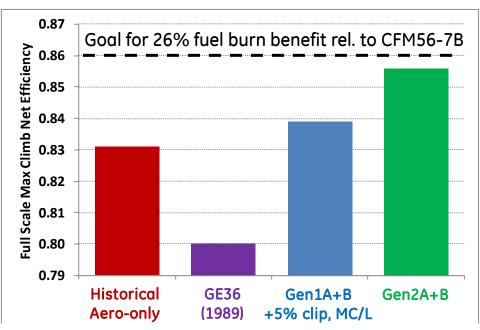
National Aeronautics and Space Administratio

Computational aero-acoustics (CAA) Prediction process

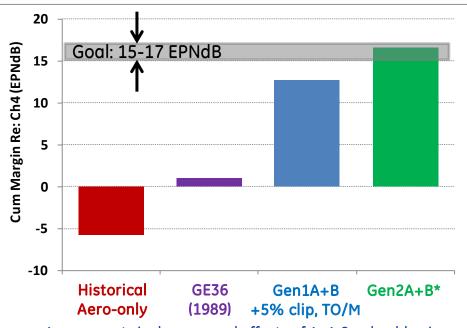
Multi-step Acoustic Prediction Process

Wakes/Gusts → Unsteady R2 Surface Pressure → Radiated Acoustics

CFD


CAA

Predicted experimentally observed trends between 2 Gen1 designs.


Used for Gen2 design guidance.

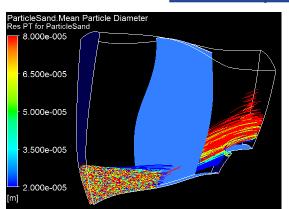
Open rotor technology progress

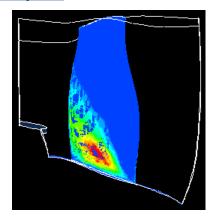
Adjusted rig efficiency by +0.8 pt for full scale Re No.

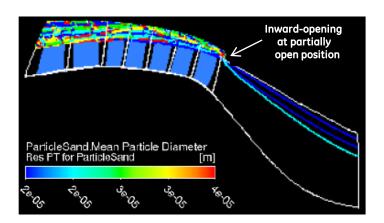
- Assessments incl. measured effects of AoA & pylon blowing
- Pitch and pylon blowing not necessarily optimized
- Gen2A+B* = measured Gen2A + assessment of "+B" tech (based on measured Gen1A+B vs. Gen1A)
- 1980's designs were marginally satisfactory for either performance or acoustics
- Gen2 demonstrated technology effectively meets CLEEN open rotor goals


Booster Technologies

Core Stream Ice and Sand Particle Extraction

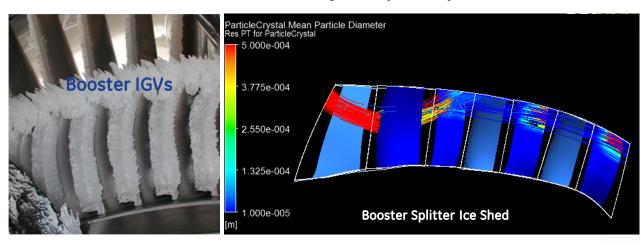

- VBV doors open at part power. Bleed air from Booster exit to control Booster operating line.
- Can be effective in extracting ice and sand particles from entering core engine.
- GE90 & GEnx use inward-opening VBV doors.

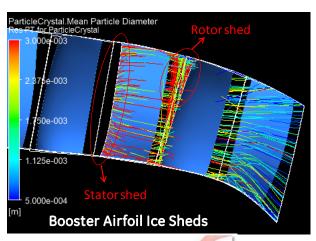

Improved extraction reduces core performance deterioration & improves HPC operability



• Improved particle trajectory CFD fidelity provides better understanding of particle tracking through Fan, Booster and Goose Neck Duct into HPC.

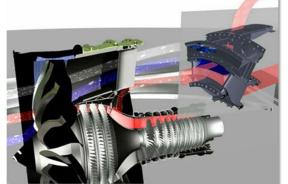
Sand Transport Analyses




Improved Particle Trajectory Modeling Benefits

More effective sand & ice shed particle extraction prior to HPC by optimizing Booster & GND flowpath, and VBV configuration designs.

- Improved Inclement Weather Operability simplify Engine Control Systems
- reduced HP spool performance deterioration
- without adversely affecting Booster and GND aerodynamic performance


Ice Particle Shed Trajectory Analyses

Next Generation Engines will benefit from Improved Ice and Sand/Dirt Extraction

HP Compressor Technologies

Advanced compression technology

GE90-115B 777-200LR, -300ER

1995-2004

- 9-10 stages
- Compressor Pressure Ratio 19
- Overall pressure ratio ~40

GEnx and LEAP

787, 747-8, C919, 737 MAX, A320neo,

2011

- 10 stages
- Compressor Pressure Ratio 23
- Overall pressure ratio ~50

GE9X

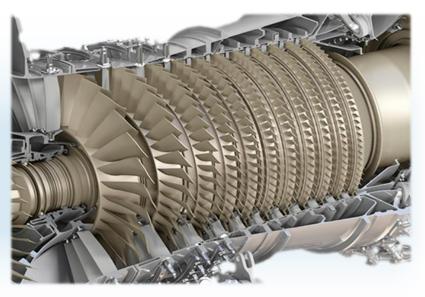
Next-Gen 777

2018 Cert

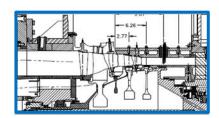
- 11 stages
- Compressor Pressure Ratio 27
- Overall pressure ratio ~60

It all begins with a world-class compression system for GE9X... testing begins in 2013!

High Pressure Ratio Compressor


Technology Driver:

Increased Thermal Efficiency from High OPR


Technology Play:

- 11 stage, 27:1 pressure ratio with advanced
 3D aero
- Improved clearances from TCF engine mount

Benefit: ~2% SFC benefit

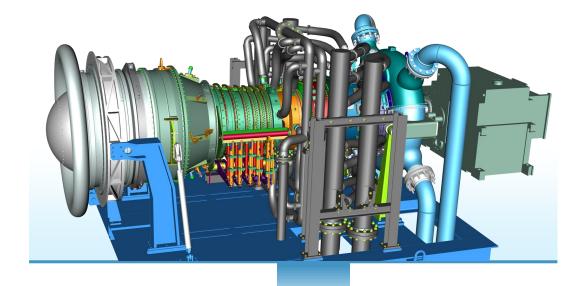
Technology Maturation Program for High OPR HPC

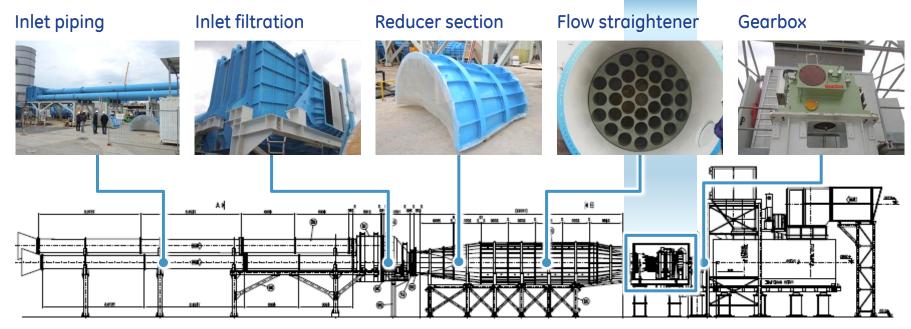
Front stage rig Improved front stage efficiency

LSRC rig
Improved rear stage
efficiency & clearances

HPC 11-stage rigLeverage GE O&G Massa facility

 Validates efficiency and operability goals




Leverage Cost Workout

- Grit Blast finish on HPC case
- Robotic vane assembly

Compressor test facility, Massa, Italy

Combustor Technologies

Combustion technology evolution

DAC (GE90-94B) 777-200ER, 777F

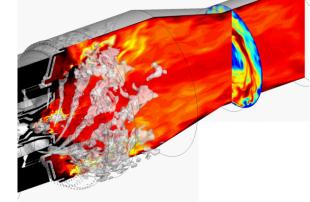
• 2 Nozzle lean burn

• 10M+ flight hours

1995

TAPS I (GEnx) 787, 747-8

 World-class emissions TAPS II (LEAP) 737 MAX, A320 neo

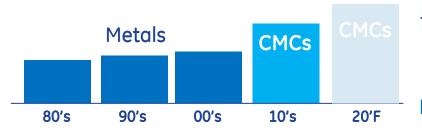

- Improved durability
- 30% lower emissions

TAPS III (GE9X)

- Reduced cooling flow
- NextGen Mixer
- 60% lower emissions

GE leading in lean combustion in service experience and technology

GE Proprietary Information


Subject to restrictionise arther formationing.

HP Turbine Technologies

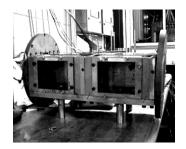
CMCs ... long-term commitment to execute and unlock potential

Material temp. capability

1/3 weight 20% Greater thermal capability

Product development and revenue service

Application growth



Research and proof of concept

1980 1990 2000 2010 2020+

Combustion test rig

Demo engine test

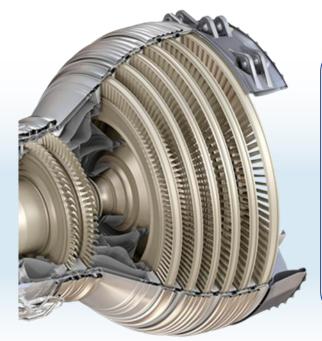
Mixer

Turbine nozzles

LP Turbine Technologies

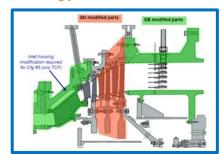
Advanced LP Turbine

Technology Driver:

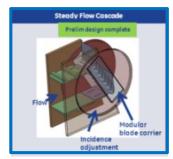

Minimize fuel burn through increased efficiency and decreased weight

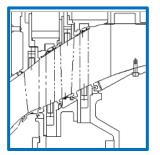
Technology Play:

 Increased LP speed, advanced aerodynamics and mechanical design, overhung LPT with aerodynamic OGV


Benefit:

0.6pts fuel burn reduction vs SOA




Technology Maturation Program for Adv LPT

Technology Development
Single and dual spool test
validation

Cascade rig
Steady flow & unsteady to
confirm loading optimization

Rotating rigs
Validate improvements
with low & high speed rigs

Low Cost Mfg
TiAl Near-Net-Shape
Spin Casting Facilities

Bringing it all together

CFM LEAP-1A/B/C

<u>Fan</u>

18 Blades

3D Woven Composite Blade

Composite Case

Booster

Inward Opening VBV Doors

Inlet Lip Anti Ice

Program:

Core 2&3 complete

FETT Sept. 2013

<u>LPT</u> R65 Rotor TiAl Blades

HPT

Advanced Cooling
Next Gen Blade

CMC shroud

Modulated Turbine Cooling

HPC

10 stages

PR=23

Start Bleed

Transient Bleed

GE9X Product Overview

	115B	GE9x
Bypass Ratio	8:1	10:1
HPC Pressure Ratio	18:1	27:1
Overall Pressure Ratio	46:1	64:1
T3 Redline	1300°F	1400°F
Thrust	115klb	100klb
Fan Diameter	128"	132"

pound takeoff thrust class

Fan, booster

- 132" fan diameter
- 4th generation fan blade technologies
- Improved fan/booster aero ... higher tip speed
- Composite structures
- Acoustic technologies

Nacelle, installation, controls

- Integrated nacelle and exhaust system for reduced weight and improved aerodynamics
- Acoustic optimization
- Performance-enhancing, lightweight controls, externals

Core

- Next-gen HPC aero
- 27:1 HPC pressure ratio
- Next-gen high-temp disk alloy and coating
- TAPS III combustor
- Next-gen HPT blade
- CMCs beyond LEAP
- Advanced seals

Low pressure turbine

- Increased efficiency
- Next-gen materials

Learning from our past and designing for the future

Proven track record... executes on new products

Innovation ... creates product value across the lifecycle

Investment ... solutions for severe environmental challenges

Support ... technology insertion and new digital services

48,000 engines

8,000 engineers

locations

35

test sites

