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Abstract

Using a vorticity form of the Navier-Stokes equa-
tions the effects of nonlinearity on the develop-
ment and receptivity of crossflow disturbances in
the Swept Hiemenz boundary-layer are investi-
gated. Steady perturbations are generated using
wall suction and blowing that are distributed pe-
riodically as either a strip or point holes. The
method, size and the location of the forcing are
shown to significantly influence the receptivity of
the crossflow within the boundary-layer. Pertur-
bations excited by periodic blowing holes have
considerably larger amplitudes than those gener-
ated by suction holes or strips. A linear log rela-
tionship is derived that relates the receptivity am-
plitude of the linear only disturbances with the
chord position that the nonlinear primary Fourier
perturbation attains a state of equilibrium: loca-
tion that the maximum absolute amplitude of the
primary disturbance shows distinct differences to
the linear only solution. Further the size of the
chordwise velocity perturbation at the location
corresponding to equilibrium can be predicted di-
rectly from the linear only solutions. Thus, if
the receptivity amplitude of the linear perturba-
tion is smaller than some given threshold mag-
nitude, nonlinear flow characteristics can be pre-
dicted directly from the computationally less ex-
pensive linear analysis.

1 Introduction

The current investigation concerns the develop-
ment and receptivity of crossflow disturbances
within the swept Hiemenz boundary-layer. Both

the linear and nonlinear stages of the laminar-
turbulent transition process are considered. The
crossflow instability was examined by [1] and
takes the form of stationary co-rotating vortices
(and occasionally traveling disturbances). Gray
[2] observed crossflow vortex structures on a
swept wing, while in the context of a rotating disk
and cone, stationary crossflow vortices have been
observed by [3] and [4]. The linear, nonlinear and
secondary instability stages of crossflow develop-
ment and the laminar-turbulent transition mecha-
nisms in the Swept Hiemenz flow were investi-
gated by [5]. Their analysis was based on a sys-
tem of nonlinear parabolized stability equations
(NPSE). Detailed descriptions of the vortex de-
velopment, inflectional velocity profiles and the
generation of so-called half-mushroom structures
were discussed. A high-frequency secondary in-
stability was observed prior to the onset of tran-
sition, agreeing with the earlier experiments on a
swept cylinder by [6] and swept wing by [7]

In regard to the initial properties of the flow
system, environmental factors past a solid surface
can filter into the boundary-layer, seeding steady
and unsteady fluctuations of the undisturbed
state. This process is known as boundary-layer
receptivity and characterises the initial stages of
the laminar-turbulent transition process [8]. Ex-
ternal causes for receptivity and the laminar flow
breakdown can be attributed to the flow interac-
tion with freestream acoustics, turbulence, vor-
tices and wall deformations, including surface
curvature, discontinuities and roughness [9]. Re-
ceptivity of the boundary-layer establishes the
initial conditions for the amplitude, frequency
and phase of the disturbances in the flow. If the
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initial amplitude of the perturbation remains rela-
tively weak, the path to transition is driven by the
excitation and development of a primary modal
instability; crossflow vortex on swept surfaces.
Modal growth of an initially small amplitude dis-
turbance can be computed using linear stability
theory, but as the magnitude of the crossflow in-
stability grows, nonlinear processes arise through
modal interaction with higher order harmonics.
The magnitude of a disturbance is characterized
by several initial flow properties, including the
Reynolds number, spanwise periodicity and fre-
quency. Further, the shape, location and size of
the receptivity forcing, influences the amplitude
of the disturbance and can significantly affect the
onset of nonlinear effects and transition. The-
oretical investigations concerning the receptiv-
ity of three-dimensional boundary-layers to wall
roughness have been undertaken by [10], [11],
[12] amongst many others.

Crossflow development and receptivity are
investigated here using an extended scheme of
the vorticity formulation derived by [13]. It is
the aim of this study to characterise the effects of
nonlinearity on the receptivity of crossflow dis-
turbances and determine the differences (if any)
with linear solutions.

2 Formulation

2.1 Base Flow and Perturbation Equations

Consider an incompressible viscous fluid in a
Cartesian coordinate system x* = {x*,y*,z"} rel-
ative to a swept plate, where the three coordi-
nates respectively denote the chordwise, span-
wise and wall-normal directions. Uniform flow
fields U, = mx* and V., are directed along the
chord and spanwise axis, engineering the swept
Hiemenz flow that impinges on an inclined plate.
Units of length are scaled on the boundary-layer
thickness 6 = /v/m for v the kinematic viscos-
ity of the fluid. Corresponding velocity com-
ponents are dimensionalized using the spanwise
flow field V.

The development of the crossflow instability
in the swept Hiemenz boundary-layer is investi-
gated using a vorticity form of the Navier-Stokes

equations [13]. The total velocity and vorticity
fields are given as

U=Ug+u, and Q=Qp+®, (1a)

where the undisturbed flow is defined as

Un = {2760~/ | ab)

and perturbation fields are denoted as

a={a,v,w}, and ®= {00, 0} (lc)
Functions f and g are dependent on the wall-
normal direction and are calculated by solving
the well-known Falker-Skan equations, while the
Reynolds number

R V=0 @)

A set of primary perturbation fields are de-
fined as {®;, ®,,w} where the governing system
of equations are composed of the vorticity trans-
port equation and Poisson relationship

oM

1
— 4V — Vg
T AN QAU} V0, (3a)

VZia+VA®D=0. (3b)

The  remaining  secondary  variables
{iy,i,,®} are given by rearranging the def-
initions for vorticity and the solenoidal condition

®=VAu and V-0=0. 4)

Disturbances are assumed to be periodic
along the spanwise y-direction. Hence, pertur-
bations are represented using a truncated Fourier
series as

N1

gx1)= Y qilx,z,1)e*? (5)
k=—N,

where P is the spanwise wavenumber of the per-
turbation. Here k is the kth harmonic of the span-
wise Fourier series (where kK = 1 represents the
primary disturbance) and N, is an integer that
represents half the number of modes in the series.
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Disturbances are then expanded in terms of
Chebyshev polynomials as

N;
Qk(xvzat): ZQk.j(‘x?t)Tj(&% (6)
=1

where T; is the jth Chebyshev polynomial. Here
N, is the order of the series truncation and j is
an odd and even integer for the respective pri-
mary and secondary variables. The system of
governing equations (3) are then integrated twice
with respect to the mapped variable &, generat-
ing a simple set of banded matrix representations
for the wall-normal variation. Finally, chordwise
derivatives are represented using a fourth-order
centred, compact finite difference approximation
and the time-marching is treated using a combi-
nation of a predictor-corrector scheme and semi-
implicit methods.

2.2 Excitation of the Disturbances

Steady perturbations are established by exciting
the undisturbed flow using wall suction or blow-
ing

i=v=0 and w=w,(x,y,t) on z=0.
(7a,b,c)
The function w,, is chosen to be both periodic
along the spanwise direction and in time, so as to
excite the desired stationary or travelling cross-
flow disturbance:

Ny—1 '
W= Y wiwh(x)e P (8a)
k=—N,

where o is the frequency of forcing, wy,, spec-
ifies the magnitude of the kth Fourier mode and
the chord distribution 7 = h(x) is described as a
normalized Gaussian function

1 2
h(x) = e~ )2,
T
for xy the centre of the wall forcing.
Suction and/or blowing are generated using
two methods characterized by the Fourier ampli-
tudes:

(8b)

I wiw=c and wg, =0 V k#1 and
II. wyyw=c V k#1.

Scheme 1 corresponds to a periodic suc-
tion/blowing strip, where the sign of ¢ has no ef-
fect on the receptivity of the disturbance. Only
the primary mode is excited. However, through
nonlinear interaction the growth of the higher or-
der harmonics is established. For method II all
of the harmonics are forced equally, representing
a band of periodic holes prescribed with either
suction (negative ¢) or blowing only (positive c).
The size of the amplitude ¢ then imposes condi-
tions on the receptivity analysis.

3 Results

3.1 Definitions

In parabolized stability equation analysis of the
linear development of crossflow (such as that car-
ried out by [5]), it is assumed that crossflow can
be defined in the form

a(x,1) = Acgi(x,z)eho BT )
where ¢ is a shape function that varies slowly
along the chord direction, o is the chord
wavenumber of the perturbation and x¢ defines
the location for neutral stability (about x ~ 186
for crossflow). The constant parameter A, rep-
resents the magnitude of the disturbance, which
is described herein as the receptivity amplitude.
For linear analysis the receptivity amplitude is di-
rectly proportional to the size of the initial forc-
ing c as

A, = cAq

where A is the receptivity amplitude of the dis-
turbance when ¢ = 1.

Neglecting the slow chordwise variation of
the shape function § in equation (9), the defini-
tion for linear crossflow can be simplified further,
so that disturbances are given as

g(x,1) = Acg(z)eho B )

Replacing the function g with the primary Fourier
perturbation field u#; and setting the respective
maximum absolute amplitude as

M (x) :mzax|u1(x,z)|, (11)
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Fig. 1 Total chordwise velocity in the (y,z)-plane
at x = 450 for f = 0.4 and R = 500.

the definition for the linear receptivity amplitude

M(x)

‘e‘[;() (X(X)d)C| !

Ac= (12)

where it is assumed that |ii;(z)| = 1. For a pre-
scribed set of initial flow conditions the exponen-
tial denominator is a constant function in x and is
independent of the choice of wall forcing. Thus,
once M is known, it is a relatively simple task to
compute the receptivity amplitude A.. Further,
applying the above definitions to the solutions of
the nonlinear investigation generates the equiva-
lent nonlinear receptivity amplitudes.

3.2 Disturbance Development

A steady stationary crossflow disturbance is es-
tablished for the initial flow conditions R = 500
and B = 0.4. A crossflow disturbance is gen-
erated using the wall forcing scheme I, which
is prescribed about the chord location xy = 186
with amplitude ¢ = 0.01. The periodic suc-
tion/blowing strip is switched on at time ¢ = 0
and excites disturbances within the boundary-
layer. Downstream of the forcing the pertur-
bation evolves, marching downstream along the
chordwise direction. Eventually a steady cross-
flow vortex forms and nonlinear characteristics
are attained. The number of Chebyshev poly-
nomials N; used along the wall-normal direction
was set to 48, while only Ny, = 4 spanwise Fourier
modes were used in all subsequent analysis. In-
deed it was suggested by [5] that the nonlin-
ear characteristics of the crossflow vortex could
be modeled successfully using only the primary
Fourier mode and its zeroth and second order har-
monics.

Figure 1 depicts a (y,z)-plane cut of the total
chordwise U-velocity, plotted using colour con-
tours at the chord location x = 450. The flow
dynamics are plotted over two spanwise wave-
lengths and the scale along both the spanwise and
wall-normal directions are equal to illustrate the
genuine flat shape of the fully developed cross-
flow disturbance. Contours are plotted from a
value of zero (blue colour) near the wall through
to a maximum magnitude of approximately 0.9
(red colour) in the far-field. The Crossflow vor-
tices are found to evolve into shapes described by
[5] as half-mushroom structures. At the chord lo-
cation shown, the nonlinear effects have emerged
and the disturbance has rolled into vortices, creat-
ing regions of low and high velocity. This in turn
results in significant variations in the boundary-
layer thickness along the span.

3.3 Absolute Velocity

Figure 2 displays several results of the maximum
amplitude of the primary Fourier component of
the i-velocity against the chordwise x-direction.
The expression for M, equation (11), is again
utilised to simplify all subsequent notation. A
semi-log scale has been used along the vertical
axis to assist visualization, while the parameter
M has been normalized using the factor R/x(=
Ve /Us). Three nonlinear results are illustrated.
Solid blue lines depict disturbances excited using
method I. For this particular problem, only the
primary disturbance is excited. However, through
nonlinear interaction its harmonics are stimulated
and forced to grow proportionally with the pri-
mary mode. Dashed red and chain green lines de-
pict simulation results driven by scheme II where
positive ¢ corresponds to blowing only and neg-
ative ¢ suction, respectively. All Fourier modes
are now excited equally, but the higher order har-
monics are quickly forced to grow relative to the
primary perturbation. The higher order harmon-
ics would decrease in amplitude over the given
range of x if not for the processes of nonlinear
interaction. The magnitude of the linear only dis-
turbance is included for illustration purposes and
labeled using a black dotted line.

The first illustration (figure 2(a)) depicts the
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Fig. 2 Maximum amplitudes of the pri-
mary Fourier u;-velocity perturbation for forc-
ing schemes {I,c = 0.01} (solid), {IL,c =
0.01} (dashed) and {II,c = —0.01} (chain).
The Reynolds number R = 500, the spanwise
wavenumber 3 = 0.4 and centre of forcing xy =
186. The dotted line represents the linear only re-
sult. (a): Extended chord range. (b): Localized
about the centre of forcing.

effect of varying the forcing amplitude ¢ on the
receptivity of the disturbance. Two forcing am-
plitudes are considered: ¢ = 0.03 in the up-
per half of the plot and ¢ = 0.001 in the lower
half. There are no discernible differences be-
tween the perturbation amplitudes generated us-
ing the smaller forcing (at least for x < 400).
However, those disturbances excited by the larger
amplitude of forcing display significant devia-
tions from the linear only response.

The chord centre of the periodic forcing is
varied in figure 2(b) to illustrate the effect of the
disturbance distribution on the boundary-layer
receptivity. The prescribed initial wall forcing
magnitude ¢ = £0.01 is centred about the chord
positions x = 200, 300 and 400. Method I has
a marginal effect on the initial amplitude of the
perturbation, whilst the disturbances driven by
forcing scheme II again significantly augments
(blowing - red dashed line) and reduces (suction -
green chain line) the receptivity amplitude of the
disturbance. As the centre of forcing xy passes
downstream along the chord direction, the per-
turbation amplitude decreases. This may be ex-
pected as it is well known that larger receptiv-
ity amplitudes are observed about neutrally sta-
ble conditions for crossflow [14, 15]. Thus, as x
is increased to larger chord positions, differences
between the responses of the three nonlinear per-
turbations are reduced. Further it is observed
that all nonlinear perturbations attain a stationary
point or as described here a state of equilibrium
about an amplitude of 0.1.

The two methods of forcing have very differ-
ent effects on the amplitude of the perturbation.
Method I only causes small variations in the dis-
turbance amplitude and it is only at larger chord
locations that nonlinear modal interaction is rela-
tively prominent. However, scheme Il is found to
have a significant effect on the amplitude of the
disturbance response. This may not be too sur-
prising as all four modes are initially excited and
contribute towards the receptivity of the distur-
bance within the boundary-layer, whilst only the
primary disturbance is activated through forcing
scheme I.
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3.4 Receptivity Amplitudes

The formula for the receptivity amplitude A,
equation (12), is applied to the perturbation re-
sults in figure 2(a) and solutions are plotted
against the chordwise axis in figure 3(a). All
line types are as before. The two dotted lines de-
pict the receptivity amplitudes of the linear only
perturbations. Downstream of the periodic forc-
ing the linear receptivity amplitudes are constant
over the chord length shown and their respec-
tive values are related through the size of the
initial forcing c; A} = 0.26, Ag. o3 = 0.0078 and
Ao.0001 = 0.00026. Nonlinear receptivity ampli-
tudes generated using the smaller initial forcing
are almost identical over the chord length con-
sidered and only show significant changes to the
linear result when x > 400. Downstream of this
location the amplitude of the nonlinear distur-
bances are found to decrease rapidly.

The receptivity amplitudes given for the
larger initial forcing are found to vary greatly.
For instance, the receptivity amplitude generated
by the wall blowing method II is initially al-
most double that given by the corresponding lin-
ear disturbance. However, as the crossflow dis-
turbance evolves downstream its amplitude re-
duces in magnitude, eventually attaining values
smaller than the linear solution. This behaviour
is due to the nonlinear interaction of the primary
Fourier mode with its higher order harmonics.
(Note that results for the larger amplitude are cut
off at x = 400 as this coincides with the onset
of small-scale structures. The chosen chord grid
size is too large to fully capture flow characteris-
tics that develop following the emergence of non-
linear effects).

Repeating the calculations in figure 3(a) for
values of ¢ € [0.00001 : 0.05] and x; = 186, the
receptivity amplitudes depicted as four lines or
curves in figure 3(b) are generated. Linear am-
plitudes are located along the straight black dot-
ted line A, = 0.26¢c. The corresponding non-
linear amplitudes are selected at the chord lo-
cation x = 250. Results excited by scheme II
are reflected about the linear line, with suction
(green chain) having the expected stabilising ef-
fect on the receptivity amplitudes and blowing
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Fig. 3 (a): Receptivity amplitudes A, plotted
against chord length x. Line types correspond to
that given in figure 8a. (b): Receptivity ampli-
tudes A, plotted against forcing magnitude ¢ €
[0.00001 : 0.05]. Again line types match that
given in figure 8.
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Fig. 4 The chord location that the primary distur-
bance attains a state of equilibrium (a value of 0.1
when normalised on R/x) plotted against the re-
ceptivity amplitude A, of the linear disturbance.

(red dashed) destabilising. The third nonlinear
curve (method I - blue solid) also shows a marked
drop in the receptivity amplitude as ¢ increases,
though not to the extent illustrated by the suction
only case.

3.5 Equilibrium Location

For all disturbances investigated, the maximum
amplitude M, when normalised on R/x, attains a
stationary point,

M

dx
or a state of equilibrium about a magnitude of
0.1. Thus, we attempt to derive a relationship
relating the equilibrium position x, with one or
more flow characteristics. The equilibrium loca-
tions x, are plotted against the linear receptivity
amplitude A, (taken from the solid black line in
figure 3(b)) in figure 4, where colour types are
as before. Open markers correspond to distur-
bances excited about xy = 186, while symbols
with a X and + at the centre are associated with
the wall forcing prescribed at x = 200, 300 and
400, with ¢ = 0.01 and 0.001, respectively. A
semi-log scale has been used along the horizon-
tal axis to aid illustration of results. The solid line
depicts the location that the corresponding nor-
malised linear calculation attains an amplitude of

0,

0.1. Interestingly all nonlinear results are located
within a very small bandwidth along this solid
line, including those generated using alternative
forcing locations, initial amplitudes and methods.
The plot suggests that for a linear receptivity am-
plitude A. < 1073, the chord position for equi-
librium is approximately located along the line
given by the linear solution. As A, is raised to
larger values, the range of x, increases quite sig-
nificantly, with chord variations on the order of
100 for A, = 10~2. However, it may still be pos-
sible to give a crude approximation for the loca-
tion of equilibrium using the linear only calcula-
tion. Moreover, the size of the velocity pertur-
bation at equilibrium can be estimated using the
solutions of the linear receptivity calculations.

4 Final Discussion

An investigation has been carried out on the ef-
fects of nonlinearity on the development and re-
ceptivity of crossflow in the swept Hiemenz flow.
Disturbances are generated using periodic forc-
ing along the spanwise direction, using either a
suction/blowing strip or a band of periodic holes.
Only four spanwise Fourier modes are used to
generate the nonlinear flow characteristics, but
the resulting crossflow vortex evolution qualita-
tively agrees with the depictions given in [5].
Receptivity is investigated for a variety of ini-
tial forcing amplitudes and distributions. Suc-
tion and blowing holes have a significant effect
on the amplitude of the disturbance. The abso-
lute maximum of the primary u-velocity pertur-
bation is found to stop growing linearly and at-
tain a stationary point or a state of equilibrium
about an amplitude of 0.1. For linear receptiv-
ity amplitudes A. < 1073 the location for equi-
librium is linearly proportional (on a log scaling)
with the receptivity amplitude given by the lin-
ear only analysis. It is hypothesised that nonlin-
ear receptivity calculations generated by alterna-
tive forcing methods (such as surface roughness)
will also lie about this linear log line. (Note we
have not considered the effect of boundary-layer
receptivity to roughness, but it is possible to im-
plement by suitably modifying the conditions for
no-slip). This would suggest that some nonlinear
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flow dynamics of the crossflow vortex develop-
ment can be predicted directly from a linear only
receptivity investigation.
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