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Abstract

Behaviours of Tollmien-Schlichting ('T-S) waves
experiencing small localized imperfection distor-
tions within the boundary layer along a flat plate
are investigated. According to the theoretical re-
sults [1], for hump and indentation distortions,
transmission of T-S waves shows that +h (hump)
can stabilize T-S waves and —h (indentation)
can destabilize T-S waves. Here, we consider
the properties of the boundary layer distorted by
small-scale localized imperfection with the width
scale d which is less than T-S wavelength Ars.
We analysis the shear stress distribution on the
wall from both a theoretical and a numerical
point of view. Then, the transmission behaviours
of T-S waves are investigated numerically. We
observe that for h < €(xRe=>/3), both hump and
indentation have destabilizing effects. By ob-
serving the profiles of the T-S wave transmis-
sion coefficient distributions around short rapid
distortions, we observe that recovering the Bla-
sius boundary layer profile is only required after
a long distance from the rapid distortion position
and the distance is far greater than € (xRe3/8)
since the shear stress distribution has a profound
influence on both upstream and downstream of
the rapid distortion position. Therefore, there is
no Blasius boundary layer velocity profiles on the
scale O (xRe_3/ 8), then, estimating theoretically
T-S wave transmission coefficient for the cur-
rent configuration h < €' (xRe~>/3) is inapplica-
ble. Therefore, the classical linearised triple-deck

theory can not be employed to formulate a uni-
versal analytical expression of the transmission
coefficient. Finally, it is concluded that the mech-
anism of the T-S wave destabilization is shown to
be independent of roughness types.

1 Introduction

In the boundary layer located along the wall as
flow moves downstream, laminar-turbulent tran-
sition is often triggered by growth of small am-
plitude perturbations and subsequent breakdown
of perturbations. The Tollmien-Schlichting (T-S)
wave is such a perturbation. In a low-level dis-
turbance environment such as free fight, the pro-
cess of laminar-turbulent transition is subdivided
into three stages: receptivity, linear eigenmode
growth and nonlinear breakdown to turbulence.
The instability of T-S waves is the second stage
of this process, the mathematics for which was
established nearly 80 years ago [2]. T-S instabil-
ity waves grow in accordance with linear stability
theory until nonlinear and three-dimensional ef-
fects contribute to the flow breakdown to turbu-
lence. Since the existence of T-S instability was
confirmed [3], there have been many studies un-
dertaken to explore and further explain transition.

T-S waves are eigenfunctions of the Orr-
Sommerfeld equation, which is a fourth-order
linear ordinary differential equation derived from
the linearised Navier-Stokes equations based on
the assumption of parallel flows [2, 4]. Solutions
of the Orr-Sommerfeld equation are used to de-



scribe the stability property of parallel base flows.
In order to predict transition to turbulence, the
amplification factors of T-S waves along stream-
wise direction are estimated. Practically, the es-
timation of amplification factor is independent of
free-stream disturbances’ environments and tiny
localized imperfection on the wall (or local cur-
vature variation of the wall). Free-stream dis-
turbances are related to the receptivity mecha-
nism, which have been widely discussed from
experimental, theoretical and numerical aspects
[5, 6, 7, 8, 9, 10]. Addressing the interaction
between T-S waves and rapid distortion on the
wall has practical significance for prediction of
laminar-turbulent transition [10].

For small-amplitude roughness which is lo-
cated in the viscous sub-layer and has a slight
modification of the streamwise component of the
boundary layer base flow profile, such modifica-
tion on transition has not been fully understood.
From both theoretical and numerical points of
view, only the receptivity mechanism of iso-
lated roughness with small height is well un-
derstood [11]. The receptivity mechanism indi-
cates that any departure from surface smoothness
can excite T-S waves by interacting with free-
stream disturbances or acoustic noise. For dis-
tributed roughness, it is inferred that the faster
growth of T-S waves on the rough wall was not
attributed to a destabilization effect of rough-
ness such as inflectional instability behind an
isolated roughness and claimed that the growth
is due to the continual excitation of T-S waves
on rough wall by free-stream turbulence [13].
The problem of the effect of distributed rough-
ness on the stability and transition still remains
open. Thanks to uncertainty of experiments, the
reason is difficult to be derived for either iso-
lated roughness or distributed roughness. By
virtue of numerical simulations, it is discovered
that the influence of two-dimensional humps and
steps on the stability characteristics of a two-
dimensional laminar boundary layer by the di-
rect numerical simulation (DNS) based on the
vorticity-velocity formulation of the complete
Navier-Stokes equations (NSEs) for incompress-
ible fluids and showed that a localized rectan-
gle hump destabilizes the laminar boundary layer
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[14]. Recently, it is found that this conclusion is
inconsistent with the asymptotic theoretical pre-
diction [1]. Fundamentally, a full understanding
about isolated/distributed roughness on the sta-
bility property of the laminar boundary layer has
particular theoretical and practical significances
for understanding the laminar-turbulent transition
in the boundary layer.

In this paper, our interest is to study be-
haviours of T-S waves numerically when base
flows are distorted by rapid varying localized im-
perfection on the wall and understand whether or
T-S waves are energized or weakened. The de-
scription of the interaction between T-S waves
and localized imperfection depends on the gen-
eration of base flows. Profiles of base flows
around small localized roughness change rapidly
for subsonic flows, the theoretical description of
which is generally given by the triple-deck the-
ory. However, the practical limitation on triple-
deck solutions is their extended downstream-
wake behavior at X > 1 as governed by the slow
algebraic-fractional power-law decay in the in-
teractive pressure and skin-friction disturbances
[15]. The power-law decay conditions were only
obtained by manipulating linearised lower-deck
solutions. Moreover, at X > 2, the parallel shear-
flow assumption is questionable underlying the
triple-deck theory. In reality, the streamwise
development of base flows becomes influential.
Numerical investigation in the paper shows that
when X > 30, for flat plate cases, the approxi-
mate Blasius flow profiles could recover. Sup-
posed that the triple-deck model is solved numer-
ically, in order to generate acceptable and avail-
able results for engineering applications, a non-
linear triple-deck model must be solved and large
upstream and downstream distance also must be
adopted. Due to requirements of domain size,
the computational complexity and cost are com-
parable to DNS. Besides the generation of base
flows, the prediction of T-S waves around rough-
ness is also problematic. The numerical evidence
indicates based on the triple-deck theory, the lo-
calized asymptotic analysis may not produce the
true behaviours of T-S waves when base flows are
distorted by rapid varying localized imperfection
on the wall.



Thanks to the inevitable modelling deviation
from the real physics, which is generally in-
duced by numerical strategies, the high preci-
sion numerical methodology has to be used to ad-
dress the physical phenomena and handle para-
metric responses for the boundary layer prob-
lem. Therefore, in this paper, the spectral ele-
ment method (SEM) is used to establish the dis-
cretization of the governing equations (see [16]
for more details). High order curved elements
are used to approach smooth roughness elements.
The polynomial basis functions with eight modes
are adopted to establish the discrete spectral ele-
ment space to approach the variables in the gov-
erning equations. With the aid of SEM, base
flows are generated by DNS of the fully non-
linear Navier-Stokes equations (NSEs) with very
low dissipation. T-S waves are simulated by the
linearised Navier-Stokes equations (LNSEs). For
base flow generation, the inlet and outlet posi-
tions are far from localized roughness locations
in order to guarantee that base flows recover the
Blasius profiles. In simulations of LNSEs, the
most unstable Orr-Sommerfeld (O-S) eigenfunc-
tions are prescribed as the boundary condition
profiles at the inlet of the computational domain.
At the outlet, sponge regions are used to damp
out T-S waves.

In next section we give an introduction of
the fundamental definitions related to the stud-
ied problem which we are interested in. The cor-
responding partial differential equations will be
given. Then, the basic numerical strategies and
configurations are provided in §3. The various
numerical results and the discussion are given in
§4. Finally, the further discussion is given and
some conclusions are derived for the distortion
of both humps and indentations.

2 Preliminaries

The non-dimensional momentum and continuity
equations for an unsteady viscous fluid with con-
stant density are defined by

{ du+u-Vu= —Vp+Re 'VZu

V-u= 0, M
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where u = (u,v,w) denotes the velocity, p is the
kinematic pressure and Re is a Reynolds number
based on streamwise distance L. For a flat plate,
it is assumed that Re is large, the base flow field
can be approximated by the well-known Blasius
equation

1
Frm)+ 55 mf" () =0, (2)
with the following boundary conditions

fm=f(m)=0 at n=0, (3a)
ff=1 at 1 — oo (3b)

where the prime denotes the derivative with re-
spect to 1. The dimensionless variables are de-
fined by

f=¥/vVVUwx and 1 =y\/UsV/x,

where ¥ denotes the stream function. Hereby,
the streamwise and vertical velocity profiles of
the Blasius boundary layer are calculated by

v

=9y wf (M) “4)

Up

and

v 1 w,
Ve =-S5 =2/ - £ )

Further, let’s consider the following lin-
earised system for addressing behaviours of
T-S waves when base flows are distorted by
humps/indentations

i+ i-Vi+i-Vi =-Vp+Re 'V
V-u =0,

(6)
where i and i denote the perturbed velocity vec-
tor and the base flow velocity vector, respectively.
And p is the perturbed pressure.

Following the scales used in the triple-deck
theory, we introduce the scales xRe3/3 and
xRe5/8, then, the following dimensional scales
are defined around roughness elements

X = (x—x.)/(xcRe /%)Y =y/(x.Re/®),
(7)



where x. is the center position of roughness ele-
ments.

It is known that 2D T-S waves can be de-
scribed by the following expression

Q(X,Y,1) = a(Y)exp(i(aX —1)).  (8)

For an unstable frequency @ € R™, the T-S wave
envelope is defined by the absolute maximum
amplitude of the T-S wave for all t € R™ as fol-
lows

A™(X) — max { ‘ﬂ(Y)exp_g(a)X VY € [0, oo)} .

)
With the similar definition, the distorted T-S
wave envelopes for humps/indentations are de-
noted by the following notations, respectively

AM(X) and  AP*(X). (10)

For a flat plate boundary layer, let A?ax(x) de-
note the absolute maximum amplitude of the T-S
wave. In order to quantify the difference between

AT™(x) and A (X) (A (X) denotes A7 (X)

and/or A*(X)), the following quantity is de-
fined

Tni(X) = Ap (X)JAFH(X). AD

In terms of asymptotic theory, when the Blasius
boundary layer recovers for X > 1, .7,,(X) is
constant, then value of which is the so-called
transmission coefficient I, j(>). Further, to in-
vestigate /i-dependence of .7, ;(X), we introduce
another quantity 7", (x)

Tiix) = Thi(x) — 1. (12)

Similarly, we introduce the following normal di-
rection shear stress notations

Tf(X)77h<X)7Ti<X)‘ (13)
Correspondingly, the following ratios are defined
T(X)/Tr(X), 1(X) /Tp(X). (14)
Also, the following quantities are introduced to
determine s-dependence of (14)
] Th(X) Ti(X)
Th(X):—X— T (X) = IX
77(X) 7r(X)

1. (15)
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Fig. 1 Convergent criteria H&,duH o/ llullo evolutions
for the generation of base flows distorted by humps.
Res = 1140.1. Height/depth h=0.6,0.8,1,1.2 and
width d = 1. The arrow indicates / growing direction.
T is a non-dimensional quantity which is defined 7 /7,
( T¢ is a streamwise typical time scale ).

In the calculations, the width (d) and height
(++h)/depth(—h) of hump/indentation are defined
according to the following relations

d~ O(x.Re 33 h< O(x.Re™%),  (16)
and d = d/(x.Re3/8) and h = h/(x.Re>/3).

3 Direct numerical simulations

3.1 Base flows and physical configuration

We consider the boundary layer with small local-
ized imperfection over a flat plat and define local
Reynolds number, Re = (U0,)/V, in terms of
the free-stream velocity U., and the local Blasius
boundary layer displacement thickness at x.. The
initial conditions for solving NSEs are set by Ba-
sius profiles. In order to guarantee steady states
of (1) are obtained, a typical convergent tolerance
is used as follows

where | - ||o means the standard L? norm and 9
denotes the discrete temporal derivative. Figure 1
illustrated the evolutions of the convergent crite-
ria (17) for the generation of base flows distorted
by humps.

With the help of DNS, we are interested in
exploring behaviours of transmitted T-S waves.

oul Ml <107, am



Therefore, we need to study the local character-
istics of base flows around localized imperfec-
tion which is located in the unstable regime ac-
cording to the neutral stability diagram of the
flat plate boundary layer. Numerically, to ob-
tain high precision base flows, the body-fitted
high order elements are adopted to generate mesh
around roughness elements. In the computations
of base flows, we set the inlet and outlet posi-
tions far from roughness position (X < —45 and
X > 45 for upstream and downstream, respec-
tively). Along the normal direction, the Blasius
similarity variable n =y/d € [0,70], the maxi-
mum value of which is used as a reference nor-
mal direction distance at localized roughness po-
sition, where 0 is the boundary layer thickness
scale. By the above configuration, the obtained
base flows are independent of computational do-
main size. The shape y = f(x —x,) of roughness
is defined by the following expression

0, x<—%7
fl)=q £5(1+cos(3)), xe[-5.9],
0, x> %,

(18)
where d is the streamwise width scale and 4 is
the normal direction length scale ( +/4 and —h de-
note the height scales of humps and indentations,
respectively). The schematic figure of the com-
putational domain is illustrated for hump cases
in figure 2(a). In figure 2(b), the elements of
the background coarse mesh around the hump are
shown. Because we consider that the spectral/hp
element approximation with an element is a poly-
nomial of order P (eight modes), in order to es-
tablish a consistent approximation of the hump
geometry boundary, the boundary of the hump is
approximated by curved elements with P-order
polynomial expansions of curved edges. In figure
2(c), the high-order mesh with collocation points
is shown around the hump. The configurations of
the current mesh and the polynomial order were
set up based on the P-refinement independence.

3.2 Perturbations of solving LNSEs

In computations, the LNSEs are solved in sub-
domains of the original domains in which base
flows are generated. In the sub-domains, only the
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(a)

Fig. 2 Schematic figures of the computational do-
main and the mesh around a hump: (a) the compu-
tational domain with a smooth hump on the lower
boundary. /4 and d denote height and width of the
hump, respectively; (b) low-order background mesh
around the hump; (c) high-order body fitted mesh
around the hump.

inlet positions are changed to guarantee that the
inlet displacement Reynolds numbers are in the
unstable regime of the neutral stability diagram.
So, when the inlet displacement Reynolds num-
ber Reg lies in the unstable regime for a given
real frequency ®, the boundary condition normal
component of (6) is defined by the most unstable
eigenfunction of the discrete spectrum. Mathe-
matically, the inlet boundary condition is formu-
lated as follows

i = eR[(urs,vrs) -exp(—ior)], (19)

where € can be arbitrary non-zero constant. vrg
is the most unstable eigenfunction corresponding
to the frequency @ and urg is obtained directly
by the divergence-free condition. In simulations,
the dimensionless frequency .# is defined by

Q]
F=— x10°. (20)
Re
4 Results

The behaviours of transmitted T-S waves are de-
termined by localized distorted base flows which
induce the local change of the boundary layer in-
stability. Typically, shear stress distributions of
base flows around small localized imperfection
on the wall have a significant contribution to fig-
ure out the behaviours of transmitted T-S waves.
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Fig. 3 Schematic figure of triple-deck structure.

Classically, the triple-deck theory is used to de-
scribe and formulate locally distorted base flows
(see figure 3 for schematic triple-deck structure).
In this section, we firstly review the lower-deck
structure and the corresponding linearised ap-
proximation. Then, we discuss the shear stress
distribution in terms of the linearised lower-deck
theory. Finally, we will discuss the availability
of the linearised theory for formulating the trans-
mission coefficient. The transmission behaviours
are addressed numerically for various configura-
tions.

4.1 Linearised lower deck

Let’s recall the classical triple-deck structure
[15, 17] and introduce a small parameter €, the
asymptotic dimensionless thickness of the on-
coming boundary layer, which is defined by

€=Re /2, (1)

For the lower deck, the following variables are
used

X :=A4Xy = A3y, (22)
We denote by Up(Y) the non-perturbed Blasius

velocity profile of the boundary layer at x = x,
and its slope at wall, A, is defined by

~ [ Uo(Y)
(), @

where Y = £~y is a main deck variable. It is as-
sumed that locally, the hump/indentation has the
following profile [15]

y/xe = *hF (X), (24)

where £ is initially of the order one and the func-
tion F is such that 2F (X) is of the order one or

£ 0.500 £
0.000
-0.500

-1,
0094
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Fig. 4 Shear stress distributions around small-scale
humps and indentations: (a) shear stress distribu-
tions around humps; (b) shear stress distributions
around indentations. Res = 1140.1. Height/depth
h=0.6,0.8,1,1.2 and widthd = 1.

less. Consider now i < 1 (h is a redefined scale
of /i in terms of the scale along the y-direction in
(22)), in terms of the arguments of subsonic flows
[15], the following approximate relations hold for
the linearised lower deck equations

dp  h> [
Eg_zz/;Faena@mxﬁg

A 4/3 oo
T 1_M/ F(X —1)B(1)dt,(25b)

2
where Ai(X) denotes Airy function and 6 =
[—3A1'(0)]>/*. o(t) and B(t) are two special
functions of ¢ (see [15] for more details). For the
fixed shape F(X), (25) and (25) are independent
of the integrals at the right hand sides of (25).
Therefore, the following scaling relations hold

p . )
P ht~14h 26
x "~ hT + (26)

Changing the sign in front of h, the above rela-
tions also hold for indentation.

4.2 Shear stress and pressure distributions

To investigate the influence of hump/indentation
on behaviours of transmitted T-S waves and as-
sess the availability of .7}, ;(e0) estimation by
the linearised lower-deck theory, shear stress
and pressure distributions are calculated around
roughness positions. Figure 4 shows the nor-
malized shear stress distributions with respect
to different values of / for humps and indenta-
tions. From here on, arrows in figures indicate the
growth direction of height/depth scales except for
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Fig. 5 Shear stress distribution normalized by &
around small-scale humps and indentations: (a) nor-
malized shear stress distribution around humps; (b)
normalized shear stress distribution around indenta-
tions. Res = 1140.1. Height/depth 1 = 0.6,0.8,1,1.2
and width d = 1.
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Fig. 6 Pressure distribution around small-scale
humps and indentations: (a) pressure distribution
around humps; (b) pressure distribution around in-
dentations.  Res, = 1140.1.  Height/depth h =
0.6,0.8,1,1.2 and width d = 1.
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Fig. 7 dP(X)/dX distribution normalized by #
around small-scale humps and indentations: (a) nor-
malized dP(X)/dX distribution around humps; (b)
normalized dP(x)/dX distribution around indenta-
tions. Res = 1140.1. Height/depth 2 = 0.6,0.8,1,1.2
and widthd = 1.
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Fig. 8 Shear stress and dP(X)/dX distributions nor-
malized by h around small-scale humps and inden-
tations: (a) normalized shear stress distributions; (b)
normalized dP(X)/dX distributions. Res = 1140.1.
Height/depth 4 = 0.6 and width d = 1.

special remarks. In terms of (26), the following
relations hold

T (X) ~h, 7 (X) ~ h. (27)
Then, the normalized 7;(X) and 7(X) by /
should collapse, which are illustrated in figure
5. It is clear that the different curves collapse
partially. However, around maximum/minimum
values of (27), the deviations among the nor-
malized quantities are observed. For the cur-
rent small parameters, the obtained results do
not support the linearised lower-deck prediction
very well. Figure (6) shows the pressure distri-
butions p; 4(X) and pi;(X) around humps and
indentations. Considering (26), the normalized
dp14(X)/dX and dp; ;(X)/dX by h also should
collapse. From figure (7), it is observed that al-
though the curves collapse, there still exist some
significant deviations from theoretical prediction.
Moreover, figure 8 shows comparisons between
a hump and an indentation for the same /. Ac-
cording to the linearised lower-deck theory, with
small & value, 7 (X)/ hand -t¥(X)/h should have
the same profile and meanwhile, the same argu-
ment should also be held for dp; ;(X)/dX and
—dp1,i(X)/dX. But, we do not get the coincident
conclusion with the theoretical prediction from
figure 8. For small humps/indentions, there exists
a significant deviation of the above mentioned
numerical results from the linearised theoretical
results. That means for the fixed }Az, the accuracy
of the linearised theory is significantly dependent
on d. That is to say, although his very small, the
prediction precision is strongly dependent on the

3



value of h/d.

4.3 Behaviours of transmitted T-S waves

To formulate the influence of hump and indenta-
tion on T-S waves, the transmission coefficient is
introduced to quantify T-S wave behaviours [1].
As illustrated in figure 9, the theoretical defini-
tion of the transmission coefficient and the an-
alytical expression to leading order were intro-
duced by [1]

L% — 14I]'I_‘18.X/14;1'121X7
T, = 1+CeihF(0),

(28a)
(28b)

where F(k — &) is Fourier transform of rough-
ness element and C is a constant dependent on
a,0q,0n and 1o (see [1] for details). In the
formulation, the T-S wave has a wavenumber o
and the mean-flow distortion has a continuous
Fourier spectrum, which is a continuous function
of wavenumber k. It was predicted that (28) in-
dicates that roughness shape is irrelevant, and the
gain or reduction in the T-S wave amplitude is
proportional to § = 7 (0), which is the (rescaled)
area enclosed by the roughness contour.

As indicated by (28), the hump can stabi-
lize T-S waves and the indentation can destabi-
lize T-S waves. Figures 10 and 11 show that the
behaviours of transmitted T-S waves. Within a
small range of X € [—6, 6], it may be possible that
T-S waves can be stabilized (7,(X) < 1) down-
stream by small-height hump in figure 10(a). But,
this is not true. Figure 10(b) shows that the sta-
bilized T-S wave is destabilized further down-
stream again. For the current configurations, it is
concluded that humps and indentations have the
similar destabilization influence on T-S waves. It
is also observed that with the same &, .Jj,(c0) is
greater than 7;(e0) (X > 1).

Further, theoretical result of (28) indicated
that .7, is only dependent on h for the fixed
roughness profile F(X). That is to say, .7,"(X)/ h
and 7*(X)/ h should collapse around humps and
indentations. But, figures 12 and 13 show that
the approximate collapse phenomena only occur
within a small range X € [—1,1]. Beyond this
range, the distorted T-S waves do not hold the
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Incident AP**(X)

Fig. 9 Schematic illustration of transmitted T-S
waves distorted by a hump.
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Fig. 10 .7,(X) around humps: (a) .7,(X) for X €
[—6,6]; (b) Z,(X) for further down stream. Res =
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Fig. 11 7/(X) around indentations: (a) Z;(X)
for X € [—6,6]; (b) Z;(X) for further down stream.
Res = 1140.1 and .# = 55.10. 1 =0.6,0.8,1,1.2 and
width d = 1.
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Fig. 12 .7(X)/h around humps: (a) 7;*(X)/h for

€ [~6,6]; (b) F;*(X)/h for further down stream.
Res = 1140.1 and .# = 55.10. 1 =0.6,0.8,1,1.2 and
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Fig. 13 .7;*(X)/h around indentations: (a) .7;*(X)/h
for X € [—6,6]; (b) .7*(X) /h for further down stream.
Res, = 1140.1 and .F = 55.10. h=0.6,0.8,1,1.2 and
widthd = 1.
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Fig. 14 Comparisons of 7,;(X) and 7,%(X)/h
around hump and indentation: (a) %,(X ); (b)
Z¥(X)/h and —F*(X)/h. Res, = 1140.1 and .F =
55.10. h =1 and width d = 1.

Fig. 15 Vertical velocity fields: (a) vertical velocity
is rescaled by € and y rescaled by €5/4; (b) vertical
velocity is rescaled by € and y rescaled by boundary
layer scale. Res = 1140.1. i = 0.6 and width d = 1.

Transmission coefficient of T-S waves

theoretical scaling relation. Clearly, thanks to
the distortion, the boundary layer instability is
changed and locally, the T-S waves do not hold
the similar growth and decay rates to those of the
T-S waves in the Blasius boundary layer. [1] ar-
gued that the effect of a localized roughness ele-
ment is to ‘boost’ instantly the amplitude of the
T-S wave amplitude. But, the numerical evidence
shows that the argument is inapplicable. In figure
14, a comparison for a hump and an indentation
with the same value of £ is given. From 14(a), it
is clearly observed that when X — oo, the influ-
ence of humps on T-S waves is more than that of
indentations. From 14(b), the sign in (28) indi-
cates the different downstream behaviours of T-
S waves but not the similar behaviours. In fig-
ure 15, the rescaled vertical velocity of a base
flow around a hump is illustrated locally. Around
the hump, the freestream vertical velocity scale
can be observed. It indicates that thanks to the
subsonic ellipticity property, momentum is re-
distributed and the approximate Blasius bound-
ary layer does not exist locally. By the nonlin-
ear mechanism, the flow structure past a hump is
completely different from the flow structure gen-
erated by the linear extrapolation. For the current
cases, the trivial Taylor expansion can not be used
to establish an approximate relation between the
flow generated by the linear extrapolation and the
flow generated by the nonlinear mechanism, al-
though the h is small. Therefore, we can say that
the T-S wave transmission behaviours can not be
described by a linearised theory under the current
parameter configurations.

5 Further discussion and conclusion

In this paper, the high precision spectral element
method is employed to implement the computa-
tions and analyse the behaviours of the T-S waves
when the base flows are distorted by small-scale
localized roughness. From numerical point of
view, the present approach, which achieves high-
precision high-fidelity results by using high-order
polynomials, has a certain reliability for address-
ing local roughness problems on boundary layers
in detail. The base flows are generated by fully
non-linear simulations and the T-S waves are



simulated by the linearised Navier-Stokes equa-
tions. The related analysis is quite important to
understand the real physics of the transmitted T-
S waves.

We demonstrated that the numerical evi-
dences are against the arguments of the energiz-
ing or weakening of T-S waves by the interac-
tion with localized roughness elements. Accord-
ing to the asymptotic analysis, the analytical def-
inition (28) of transmission coefficient is defec-
tive, at least for subsonic flows. From the results,
we conclude that with very small fz, there exists a
region where .7,(X) is small than 1. However,
as indicated by numerical results, the weaken-
ing of the T-S waves by humps is a local prop-
erty. This phenomenon does not disclose the
real physics for further downstream. After de-
caying within a small range, the T-S waves grow
again and the growth rate goes back to that of
the flat plate boundary layers when the flat plate
boundary layer profiles recover. Then, 7,(X) is
constant. For indentations, although the ampli-
tudes of the T-S waves are much energized be-
hind indentions, .7;(X) decays and intends to be
constant when X > 1. For humps and indenta-
tions, when the flat plate boundary layer recov-
ers, Jj(e0) < Jp(e0). As indicated by figure 9,
on two sides of the vertical dash-dot line, the
amplitude of the T-S wave at the centre position
of the roughness element has a jump if on both
sides there exist two exact flat plate boundary
layers. Because on both sides, there are no flat
plate boundary layers, the calculating of 7 (o)
by the extrapolation of the T-S amplitudes from
both sides of roughness will give rise to inaccu-
rate results, even wrong results. Practically, a ref-
erence T-S wave amplitude A™**(X) is needed for
calculating .7 (o). If the roughness elements are
placed close to upper branch, the calculation of
transmission coefficient .7 (e0) is useless, thanks
to the requirement of the long downstream dis-
tance along which the T-S waves decay.

The present study further indicates that a min-
imal localized hump has a worse effect on the T-S
waves compared with a minimal localized inden-
tation if the hump and the indentation are close to
lower branch.

HUI XU, SPENCER SHERWIN, PHILIP HALL

6 Acknowledgements

The authors would like to thank Prof. X.S. Wu
for the useful discussion. This research was
performed in the Laminar Flow Control Cen-
tre (LFC-UK) at Imperial College London. The
Centre is supported by EPSRC, Airbus UK and
EADS Innovation Works.

References

[1] Wu X. S. and Hogg L. W. Acoustic radiation of
tollmien schlichting waves as they undergo rapid
distortion. J. Fluid Mech. Vol. 550, pp 307-347,
2006.

[2] Schlichting H. and Gersten K. Boundary-Layer
Theory. Mac Graw-Hill, 1968.

[3] Schubauer G. B. and Skramstad. H. K. Laminar-
boundary-layer oscillations and transition on a
flat plat. NASA TR-909, 1948.

[4] Schmid P. J. Stability and transition in shear
Sflow. Springer-Verlag New York, 2001.

[5] Gaster M. On the generation of spatially grow-
ing waves in a boundary layer. J. Fluid Mech.
Vol. 22, pp 433-441, 1965.

[6] Murdock J. W. The generation f a Tollmien-
Schlichting wave by a sound wave. Proc. R. Soc.
Lond. A. Vol. 372, pp 571-534, 1980.

[7] Goldstein M. E. 1983 The evolution of Tollien-
Schlichting waves near a leading edge.J. Fluid
Mech. Vol. 127, pp 59-81, 1983.

[8] Kerschen E. J. Boundary layer receptivity the-
ory. Appl. Mech. Rev. Vol. 43, pp S152-S157,
1990.

[9] Dietz A. J. Local boundary-layer receptivity to
a convected free-stream disturbance. J. Fluid
Mech. Vol. 378, pp 291-317, 1999.

[10] Wu X. S. Receptivity of boundary layers with
distributed roughness to vortical and acoustic
disturbances: a second-order asymptotic the-
ory and comparison with experiments. J. Fluid
Mech. Vol. 431, pp 91-133, 2001.

[11] Saric W. S., Reed H. L. and Kerschen E. J.
Boundary-layer receptivity to free-stream distur-
bances. Annu. Rev. Fluid Mech. 34, 251-276,
2002.

[12] Smith J, Jones B and Brown J. The title of the
journal paper. Journal Name, Vol. 1, No. 1, pp
1-11, 2001.

10



[13] Corke T. C., Sever A. Bar and Morkovin, M.
V. Experiments on transition enhance- ments by
distributed roughness. Phys. Fluids Vol. 29, pp
3199-3213, 1986.

[14] Worner A., Rist U. and Wagner S. Humps/steps
influence on stability characteristics of two-
dimensional laminar boundary layer. AIAA. Vol.
41, No. 2, 192-197, 2003.

[15] Smith, F. T. Laminar flow over a small hump on
a flat plate. J. Fluid Mech. Vol. 57, pp 803-824,
1973.

[16] Karniadaks G. E. and Sherwin S. J. Spectral/hp
Element for Computational Fluid Dynamics.
Springer-Verlag New York, 2005

[17] Cousteix J. and Mauss J. Asymptotic Analysis
and Boundary Layers. Springer-Verlag Berlin
Heidelberg. 2007.

Contact Author Email Address
mailto: hui.xu@imperial.ac.uk
Copyright Statement

The authors confirm that they, and/or their company or or-
ganization, hold copyright on all of the original material
included in this paper. The authors also confirm that they
have obtained permission, from the copyright holder of any
third party material included in this paper, to publish it as
part of their paper. The authors confirm that they give per-
mission, or have obtained permission from the copyright
holder of this paper, for the publication and distribution of
this paper as part of the ICAS 2014 proceedings or as indi-
vidual off-prints from the proceedings.

Transmission coefficient of T-S waves

11



