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Abstract

A wave equation is obtained to describe the
sound propagation in a unidirectional shear
flow with linear velocity profile superimposed
to a constant cross-flow, together with an
impedance wall boundary condition, this rep-
resent the effect of a locally reacting liner with
bias flow in presence of a shear flow. The wave
equation is a third-order differential equation in
the presence of cross-flow, and its general solu-
tion is a linear combination of three linearly in-
dependent MacLaurin series. The acoustic field
in the boundary layer governed by the acoustic-
vortical wave equation is matched through the
pressure and horizontal and vertical velocity
components to the acoustic field in a uniform
free stream consisting of incident and reflected
waves. In addition with the impedance bound-
ary condition at the wall this specifies the pres-
sure field in the whole domain and the reflec-
tion and transmission coefficients. These are
plotted for several values of free stream and
cross flow Mach numbers.

1 Introduction

Air inlets and exhaust nozzles of jet engines
make extensive use of liners to absorb or atten-
uate sound. A locally-reacting acoustic liner
can be represented by an impedance wall con-
dition. In the present work, the combination
of the three effects is presented, namely: (i)
a plane flow over a flat impedance wall; (ii)
a boundary layer with a unidirectional shear

flow and linear velocity profile; and (iii) a uni-
form cross-flow representing the bias flow out
of the perforated liner (figure 1). The pressure
perturbation in the free stream consists of inci-
dent and reflected plane waves and it must be
matched to the pressure field in the boundary
layer in order to apply the impedance boundary
condition at the wall, the latter specifies the
reflection coefficient and thus the wave pres-
sure perturbation in the whole flow, inside and
outside the boundary layer. The acoustic-
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Fig. 1 : Sound propagation in a linear shear and
cross layer profile.

vortical wave equation specifying the pressure
field in the boundary layer is at least of third or-
der because, the sound is described by a second
order wave equation allowing for propagation
in opposite directions, the vorticity transport is
specified by a first-order conservation equation
along the streamlines in a potential homen-
tropic flow (§2). In the case of sound in a
unidirectional shear flow, the wave equation
leads to a second-order differential equation for
the dependence on the distance from the wall.



This differential equation has a critical layer
when the Doppler shifted frequency vanishes
occurring when the horizontal phase velocity
equals the velocity of the mean shear flow, so
that the wave cannot further propagate. The
presence of a cross-flow convects the wave away
from this condition and therefore the acoustic-
vortical wave equation has no singularity or
critical layer(§2.1).

The pressure perturbation in the bound-
ary layer is a linear combination of three solu-
tions, each specified by Taylor series as a func-
tion of the distance from the wall. The three
constants are specified by matching the pres-
sure and horizontal and vertical velocity pertur-
bations at the edge of the boundary layer to the
sound field in the free stream(§3). This speci-
fies the pressure perturbation in the boundary
layer involving the reflection coefficient, which
is determined from the impedance boundary
condition at the wall (§4). The pressure pertur-
bation as a function of the distance from the
wall is plotted (figures 6,7) for several combi-
nations of the of the free stream and cross-flow
Mach numbers (§6.2). Finally, the effects of
the free stream and cross-flow Mach numbers
over the reflection and transmission coefficients
are investigated (figures 8-11).

2 Acoustic wave equation with shear
and cross flow

The starting point for the derivation of the
acoustic-vortical wave equation is the funda-
mental equations of fluid dynamics, namely
continuity, momentum and energy equations,
in their classic forms in terms of velocity, pres-
sure and density. Some hypothesis were taken
in the derivation: (i) the viscous effects are
neglected; and (ii) the fluid is considered adi-
abatic. Moreover, the mean flow is assumed
to be plane and consist of a uniform bias or
cross-flow orthogonal to a straight wall with
velocity Vj superimposed to a unidirectional
shear flow parallel to the wall with a linear
velocity profile in a boundary layer of thickness
L matched to a uniform stream with velocity
U, as presented in figure 1. Thus, the mean
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flow vg may be written as:
V0:ey‘/0+ex UO(?J)y (1)
with the shear velocity Uy expressed as follows:

U ¥ if

where y is defined as the distance perpendicular
to the wall. Since the mean flow is steady and
uniform in the wall direction a Fourier integral
representation exists:

p(x,y,t) = P(y; k,w)e ke=w), (3)

0<y<L,
L <y < +o0, (2)

where P is the pressure perturbation spec-
trum for a wave of frequency w and horizontal
wavenumber k at the distance y from the wall.
Moreover, the linearised material derivative
considering a linear shear flow superimposed
to a constant bias flow (2) leads to the following
relation:

d d wi(y) = w —kUo(y),

(4a,b)

where w, is the wave Doppler frequency shifted
by the horizontal shear flow alone. As a con-
sequence, the acoustic-vortical wave equation
in a linear shear flow with a uniform cross-flow
may be written as*:

d(1d _,
dt(c()2clz52_vP>

2
LA, P oo (d\]
dy | 0xdy co?0x \ dt

(5)

Substituting equation (3) in the wave equation
(5) is obtained a third-order differential equa-
tion specifying the dependency of the acoustic
spectrum P on the distance from the wall y
with a cubic dispersion relation in k& and w:

Vo (%2 _002> P" 4w, (002 _3%2) P
+[2ikU; (co® + Vo?) — 3Vow.” + Voo k?| P’
+iw, (w? = k2e? = 2ikVyUp) P = 0.

(6)

*See Campos, Legendre & Sambuc [4] equation
(2.25).
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2.1 The absence of the critical layer

The acoustic wave equation for unidirectional
shear flow has been known for a long time
[6, 8, 12]. Moreover, Lilley [10] proposed a
third order wave operator that can be reduced
to such wave equation when a unidirectional
shear flow is considered. In this case, in absence
of bias-flow, the wave equation (6) proposed
in this work, reduces to the the acoustic wave
equation in a unidirectional shear flow:

WP+ 26Uy P + w, [(we/c0)? = k*| P = 0.
(7)
It must be noticed that equation (7) is of the
second order in y—direction. Moreover, equa-
tion (7) has a singularity when the coefficient
of P” i.e. the Doppler shifted frequency wy,
vanishes. To interpret this physically, con-
sider a wave of frequency w and horizontal
wave number k, hence horizontal phase speed
w = w/k propagating against a unidirectional
shear flow. At the critical layer y. when the
horizontal phase speed equals the mean flow ve-
locity w = U(y,) the Doppler shifted frequency
vanishes wy(y.) = 0. Therefore, the wave can no
further propagate, and the wave equation (7)
has a singularity, implying one of the following
possibilities: (i) the wave becomes evanescent
beyond the critical layer that acts as a total
reflector; or (ii) the wave is partly absorbed,
partly reflected and partly transmitted as an-
other mode able to propagate beyond the criti-
cal layer. In all cases the critical layer occurs at
the point where the wave is “stopped” by the
mean flow. The sonic condition in a potential
flow is also a singularity of the acoustic wave
equation.
On the other hand, applying a cross flow
to the wave problem as described in figure 2,
the wave is convected away from the critical
layer and therefore the singularity is removed.
Thus, the acoustic-vortical wave equation with
cross-flow (6) has no singularity, i.e. the co-
efficient of the third-order derivative does not
vanish, except if the cross flow reaches the sonic
condition. The acoustic-vortical wave equation
in a unidirectional shear flow is simpler in the
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Fig. 2 : Graphical explanation of the existence
of the critical layer. Acoustic propagation in shear
and cross flow.

presence of cross-flow, in the sense that it has
no singularity, so it has solution as Taylor se-
ries valid in the whole flow region or the radius
of convergence of the Taylor series is limited
only by another singularity y, due to another
feature of the mean flow. In the absence of
cross-flow the singularity at the critical layer
would: either require a Frobenious-Fuch series
around the critical layer with radius of con-
vergence limited only by another singularity
or restrict the Taylor series solution around
another point to a radius of convergence lim-
ited by the critical layer. The presence of the
cross-flow increases the order of the differential
equation involved in the problem to three, and
can lead to stiff solutions, even for small cross
flow velocity that appears as a factor of the
highest order derivative.

3 Acoustic pressure at the boundary
layer and free stream

The acoustic-vortical wave equation in pres-
ence of bias and shear flow (6) applies inside
the boundary layer, therefore the vertical posi-
tion y describing the distance from the wall is
normalized to the boundary layer thickness L,
leading to the following pressure perturbation
spectrum:

z=y/L,  P(yk,w)=Q(z), (8a,b)

In addition, four dimensionless parameters are
defined, namely: (i) the cross-flow Mach num-



ber (9a); (ii) the Mach number (9b); (iii) the
dimensionless frequency or Helmholtz num-
ber (9¢); and (iv) the dimensionless horizontal
wavenumber or compactness (9d):

MOEE7 MOO—Uﬁa
0 0 (9a-d)
L 27l
Ew—:L, e=kL=cosb,
co A

where A is the acoustic wavelength in an homo-
geneous medium at rest and 6 is the angle of
incidence of the plane wave at the free stream
z = 1, measured from the horizontal in the
direction of the flow. Thus, considering the
Helmholtz number, three regimes may be de-
scribed: (i) for € > 1 corresponding to sound
rays in the boundary layer; (ii) for Q < 1 the
boundary layer is considered acoustically thin;
and (ii) for Q ~ 1 the wavelength is of the same
order of magnitude than to the thickness of
the boundary layer and therefore this repre-
sents the most interesting case. Furthermore,
the dimensionless Doppler shifted frequency is
expressed as:

_ wil L
O = —— =~ [w—kUy(y)]
@ < (10)
co co

Substitution of the dimensionless parameters
and relations (9a-d,10) in equation (6) leads to
the following third-order differential equation:

Mo (Mo® =1) Q" +i. (1-3Mo”) Q"
+[2ie Moo (14 Mo?) = 3Mow? + Moz?| ¢/
Ficy (@3 - 2i€MoMoo) Q =0.

(11)

The coefficient of the highest order derivative
is a non-zero constant except for a bias flow at
sonic speed; excluding this case the differential
equation (11) has no singularities, and the so-
lution exists as a MacLaurin series (12b) with
infinite radius of convergence (12a):

2< 00

Qz) = ioanz”. (12a,b)
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substitution of (12b) in equation (11) leads
to the recurrence formula for the coefficients
a,!. The recurrence formula shows that the
first three coefficients ag,a1,a2 are arbitrary.
Thus, by choosing (ag,a1,a2) = (1,0,0), (0,1,0)
and (0,0,1) leads to three linearly independent
solutions denoted respectively by Q1(z) ~ O(1),
Q2(2) ~ O(2) and Q3(z) ~ O(z). Hence, the
solution for the acoustic pressure inside the
boundary layer (13a) is a linear combination
in the following form:

0<z2<1:

Q- (2) = B1Q1(2) + B2Q2(2) + B3Q3(2),
(13a,b)

where By, By and B3 are arbitrary constants
of integration. The three arbitrary constants
of integration are obtained by matching the
acoustic-vortical waves in the boundary layer
to acoustic waves in the free stream given by:

p+(r,y,t) = expli(kz —wt)| Pr(y), (14)

with: (i) the same frequency w and horizontal
wavenumber k as for the pressure perturbation
of acoustic-vortical waves in the boundary layer
(13a); (ii) the dependence on the distance from
the wall consisting of a downward propagating
wave with unit amplitude and an upward prop-
agating wave whose amplitude is the reflection
coefficient R:
L<y<oo: Py(y)=e "4+ R,

(15a,b)

(iii) the vertical wavenumber in the form:

K= \/2)(1 — My cosf — Mysinf)® — k2, (16)
0

where 6 is the angle of incidence, that appears
also in the horizontal wavenumber (9d); (iv)
this confirms that the vertical compactness:

o= HL:Q\/[l — Moo cosf — Mysin6)® — cos?6
(17)

fsee Campos, Legendre & Sambuc [4], equation
(3.7).
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involves the dimensionless frequency (9¢) and
the angle of incidence 6. Consequently, the
acoustic wave field at the free stream (18a)
may be rewritten as follows :

Q4 (2) = e % 4 Re'%?.
(18a,b)

1<z<00:

The solution at the free stream (18b) is
matched to the acoustical-vortical wave field
(13b) in the boundary layer by the continuity
of the pressure perturbation and its first two
derivatives:

Q-(1) = Q+(1),

These conditions (19a-c) are equivalent to the
continuity of the pressure P and horizontal U
and vertical V' velocity perturbations at the
edge of the boundary layer.

4 Impedance boundary condition for
locally reacting liner

The impedance boundary condition at the
wall y =0 in terms of the admittance may be
expressed as follows:

V(0)=—AP(0):

P'(0) = —poVo V' (0) +iwpoV (0), (20a,b)

leading to an expression in terms of the pres-
sure perturbation only:

(1= poVoA) P'_(0) = —iwpoAP-(0). (21)

Also, the boundary condition (21) may be ex-
pressed in terms of dimensionless parameters
as follows:

A= poCQA :

(1—MoA) Q' _(0) = —iQAQ_(0), (22a,b)

involving: (i) the specific admittance (22a) ob-
tained dividing by that of a plane wave; (ii) the

See Campos Legendre & Sambuc [4], section §3-c.

cross flow Mach number (9a) and dimension-
less frequency (9¢). Similarly, the transmission
coeflicient is defined:

Q-(0)
Q4+ (L)

as the ratio of the pressure perturbations at
the wall and in the free stream at the edge of
the boundary layer. This completes the deter-
mination of the pressure perturbation in the
whole flow outside and inside of the boundary
layer, and of the scattering coefficients consis-
tent with an impedance wall boundary condi-
tion.

T—

(23)

5 Conditions in the free stream: Zone
of silence and propagation sectors

Real values of the vertical wavenumber (16)
correspond to the propagation zone(s) at the
free stream, otherwise imaginary vales corre-
spond to the zone(s) of silence where the sound
waves are evanescent. These zones(s) of silence
and propagation alternate and correspond to
angular sectors depending on My and M.
The boundaries between the zone(s) of silence
and propagation zone(s) are the roots of the
equation (17), that is a periodic transcenden-
tal equation, that would have to be solved by
means of numerical methods. The roots of
equation (17) are given by the solution of the
following formula:

(1 +2Mo + My? + MOOQ) cosbfi

= Moo £ 14 Mo/ Mo? + Moo+ 2M,
(24a-d)

where the second + applies to My and the first
=+ to the remaining terms.

As a first example, consider My = 2.0
in the absence of cross-flow My =0 as de-
picted in figure 3a, there is only one real angle
64+ = 70.52° separating a zone of silence in the
downstream arc 0 < 0 < 6, from a propaga-
tion zone 61 < # < 180° in the upstream arc.
Moreover, a second example with a free stream
My = 2.0 and a cross-flow My = 0.3 Mach
numbers is depicted in figure 3b and leads to



the angles #__ = 33.39° and 64 _ = 76.33°; the
vertical wavenumber is imaginary for 6 = 60°
in this range and real for § = 30° and 90°
outside this range. Thus (figure 3b) there
are downstream 0° < 0 < 33.39° = 0__ and
upstream 6, _ = 76.33° < 6 < 180° propaga-
tion zones, with a zone of silence in between
0__ =3339°<60<76.33° =0,_.

Mo =2.0
Mo = 0.0 0, = 70.52°
Propagation
zone Zone of
silence
N NN
(a) Zone(s) for Moo =2.0 and My =0
0y =76.33°
Mo =20 0__ =33.39°
Mo = 0.3 zone of
silence
Upstream

propagation
zone

Downstream
propagation
zone

(b) Zone(s) for Mo =2.0 and My =0.3

Fig. 3 : Examples of propagation zones and zones
of silence with (b) and without (a) cross flow.

The distinction between propagation zones
and zones of silence applies strictly in a uni-
form stream where the vertical wavenumber
is constant, corresponding: (i) to real values
to upward exp(iky) and downward exp(—iky)
waves; (ii) to imaginary values kK = | k |, when
the divergent solution exp(—iky) =exp(| & | y)
is discarded and only the evanescent wave
exp(iry) = exp(— | K | y) is retained. In a shear
flow the distinction is less clear, since the wave-
forms are not sinusoidal in the y—direction
and a vertical wavenumber strictly does not
exist. A local varying vertical wavenumber
k(y) would exist in the ray limit of the weak
shear on a wavelength scale, that is Q2 < 1
in (9¢); this would break down for 2 ~ 1 or
2 < 1. Thus it may be appropriate to plot
wave fields into the zones of silence since waves
can penetrate these regions in the boundary
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(a) Pressure map in the free stream.

1.0

0.8

0.6

0.4

[=)
Pressure amplitude [dB]

0.2

=1.0 . X 0.5 1.0

(b) Pressure map in the boundary layer

Fig. 4 : Pressure maps for My =0.0 and My, =2.0
corresponding to figure 3a.

layer. The pressure fields may be compared
in: (i) the uniform free stream where a zone of
silence exists; (ii) in the boundary layer where
the non-uniform flow excludes the existence of
a zone of silence in a strict sense. The two
cases with (figure 3a) and without (figure 3b)
bias flow are illustrated in the figures 4,5 with
free stream zone in the top and the boundary
layer zone in the bottom of each figure. The
contour plots for the modulus for the ampli-
tude of the acoustic pressure are shown: (i)
using (25a) in the free stream, so that at the
boundary between the zone of silence and the
upstream and downstream propagation zones
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(a) Pressure map in the free stream.
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(b) Pressure map in the boundary layer

Fig. 5 : Pressure maps for My =0.3 and My, =2.0
corresponding to figure 3b.

¢ =0 and the value if Sy is zero:

Qx(2) |
1+R1’

(ii) the boundary layer is used with the same
normalization S_ (25b). In both plots the hori-
zontal x and vertical y coordinates respectively
along and perpendicular to the wall are made
dimensionless by dividing by the thickness of
the boundary layer. In the plots in figures 4,5
polar coordinates are taken and the pressure
is represented by:

S1(z) =10log [ (25a,b)

Syi(z,y) =e*r S (z) = eihreostg, (% sinQ) :
(26¢)

The top plots in the figures 4,5 show the pres-
sure amplitude in a large region of the free
stream —20 < x/L <20 by 1 <y/L <20 above
the boundary layer. The boundary layer (bot-
tom plots in figures 4,5) corresponds to an
horizontal strip 0 <y/L < 1. The pressure
amplitude in the shear and cross flow in the
boundary layer is depicted inside a smaller box
—1<z/L<1by0<y/L<I1.

In the top of figures 4,5 the amplitude of
the pressure shows a clear distinction between:
(a) the zone of silence downstream and propa-
gation zone upstream; (b) the zone of silence
between upstream and downstream propaga-
tion zones. In all cases the pressure amplitude
is much lower in the zone of silence with a sharp
transition towards the propagation zone(s). On
the bottom of figures 4,5, the pressure ampli-
tude in the boundary layer with shear and
cross flow: (figure 4) is fairly smooth in the
absent of the bias flow; (figure 5) the bias flow
causes some concentration of the pressure. In
all cases the acoustic “zone of silence” has been
destroyed by the vortical modes in the bound-
ary layer.

6 Pressure field and scattering coeffi-
cients

6.1 Baseline case

The baseline parameters are taken as: (i)
the sound speed (27a) in sea level atmospheric
conditions; (ii)(iii) a high subsonic free stream
(27b) with a much smaller bias velocity (27c);
(iv) a boundary layer of moderate thickness
(27d); (v) a wave frequency of 1kHz in the part
of audible range 20Hz — 20kHz more sensitive
to noise (27e); (vi) a wall impedance (27f) or
inverse of wall admittance combining resistance
and inductance:

{c0,Uso, Vo } = {340,272,20.4} m# s~

1 .
— =1+

w
L=0. — = 1.08 kH
0.05m, o 08 kHz, Y
(27a-f)

These are typical values as order of magnitude
of conditions in the inlet and exhaust ducts of



modern jet engines, where the acoustic liners
with bias flow are used to attenuate the sound;
for example precise values of the specific ad-
mittance depend on frequency and may not
be available for a specific application, but it is
known that the real and imaginary parts do
not usually exceed unity. The preceding base-

1.0
z ~
N
0.8f N
N
N

0.6
0.4

— = No bias flow = 1.2

—— Base=0.8

¥ 1 =03 N
021 o o 2 =12 N

— M, =20" N

*—X  M_=3.0 |p| N
0'8‘4 0.5 0.6 0.7 0.8 0.9 1.0

(a) Amplitude of normalized acoustic pressure.
1.0

-

z

0.8f

No bias flow= 1.2
Base=0.8
M, =03

0.6

M =12"

RSN

0.4k $ M, =20

M, =30

0.2

arg(p)
0 o1 02 03 04 05 06 07 08 09

(b) Phase of normalized acoustic pressure.

Fig. 6 : Dimensionless distance from the wall as
the vertical axis and acoustic pressure normalized
to the wall value as horizontal axis, illustrating
the profile of the modulus (top) that start at z =
0, | p(0) |=1 and phase (bottom) that starts at
z=0, arg{p(0)} = 0. The baseline case is used,
and four values for the core flow Mach number
are considered (29a), all with bias flow (28b). The
case without bias flow My = 0.0 and free stream
Mach number M., = 1.2 appears as the dashed
line.

line values (27a-f) serve only to calculate the
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reference values of the four dimensionless pa-
rameters, namely the specific impedance (27f)
and: (i/ii) the free stream (28a) and cross flow
(28b) Mach numbers; (iii) the dimensionless
frequency(28¢c):

U Vi
My =-2=08, My=-2=0.06,
co co
ol (28a-c)
Q=—=1.
o

The bias flow My and the shear flow My, will
each be varied in turn over a sufficiently wide
range to cover most aeronautical applications,
so that the choice of starting numbers (28a-b)
is not critical. Therefore, the cases with cross-
flow are considered for all combinations of the
free stream (29a) and cross-flow (29b) Mach
numbers:

Mo =0.3,0.8,1.2,2.0,3.0;

(29a,b)
Mo = 0.03,0.06,0.3,0.8,2.0.

The dimensionless parameters (28a-c) specify
the scattering coefficients, namely the ampli-
tude and the phase of the reflection and trans-
mission coefficients as a function of the angle
of incidence in the full range of directions.

6.2 Results

The acoustic pressure normalized to the wall
value is plotted as a function of dimensionless
distance from the wall within the boundary
layer in the figures 6,7 with the amplitude in
the top and the phase in the bottom. In all
figures appear, besides the baseline case (28a-c)
with bias flow also the comparable case with-
out bias flow in order to assess the importance
of the cross flow. The cases without bias flow
are different in each figure 6-7 leading to five
distinct comparisons with bias flow. The base-
line concerns 6 = 60° propagation downstream
and the cases with and without flow bias flow
are compared for a free stream Mach number
My, = 1.2 in the figure 6. The top plot shows
that the curvature is opposite in the case with
(line with blobs) and without (dashed line)
bias flow; thus the bias flow causes a slower
decrease of the acoustic pressure away from



ON SOUND ABSORPTION BY AN ACOUSTIC LINER WITH BIAS FLOW

1.0

0.8

0.6f

0.4+
No bias flow
—— Base=0.06
¥—¥ ),=0.03
02F o o M,=0.3"
— M,=08"

*—X My=2.0

Ip|
0'%.2 0‘.4 0‘.6 0‘.8 1.0 1‘.2 114 1.6

(a) Amplitude of normalized acoustic pressure.
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z
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/7
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’ — = No bias flow
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’ ¥—¥ ,=0.03
4

£ e—e )/=03"
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(b) Phase of normalized acoustic pressure.

Fig. 7 : As figure 6, but using four values for
cross flow Mach number are considered (29b).

the wall. In the presence of bias flow the pres-
sure decreases away from the wall more slowly
for larger free stream Mach numbers (figure 6)
while the phase varies more slowly; the cases
marked with asterisk corresponding to the zone
of silence in the free stream do lie among the
others within the boundary layer as a contin-
uous variation. The bottom of the figure 6
shows that the phase of the acoustic pressure
varies almost linearly with the distance from
the wall for lower Mach numbers; for larger
Mach numbers the phase is non-linear indicat-
ing strong sound refraction effects. Concerning
the comparison of the phase of the acoustic
pressure like the amplitude, it is larger with-
out than with bias flow. It should be borne in

10

T T T T T
|R| == No bias flow = 1.2 ¥—¥ M =03
—e i =12

— M, =20

—— Base=0.8 ¥ M, =3.0

10-1 =

-2 L L L L L L L L
10 0 20 40 60 80 100 120 140 160 180
(a) Amplitude of reflection coefficient.

15

¥ M =03 — M, =20

arg(‘R) - —‘ No bia; flow=1.2‘

—  Base=0.8 —e i =12 *—x M, =3.0

10f

_150 2‘0 4‘0 6‘0 8‘0 160 1‘20 1“10 1‘60 180
(b) Phase of reflection coefficient.
Fig. 8 : Reflection coeflicient versus angle of

incidence. The baseline case is used, and four
values for shear Mach number are considered (29a),
all with bias flow. The case without bias flow

corresponds to My, = 1.2 and is represented by
the dashed line.

mind that the Mach number of the bias flow is
small, and thus its main effect is to remove the
critical layer at the condition of zero Doppler
shifted frequency for the horizontal core flow.
In spite of the smallness of the Mach number
of the bias flow is has a detectable effect on
the acoustic pressure, both for the amplitude
(top of the figure 6) and for the phase (bottom
of the figure 6).

To make more visible the effects of cross-
flow the corresponding Mach number is given
larger values well in excess of a typical bias
flow, and more representative of a fluidic jet.
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(b) Phase of reflection coefficient.

Fig. 9 : As figure 8, but using four values for
cross Mach number are considered (29b) .

This is done only in one figure, figure 7. In-
creasing the Mach number of the cross-flow
leads to a slower decay of the modulus of the
acoustic pressure away from the wall (figure 7
top) as was the case increasing the core flow
Mach number (figure 6 top); the phase is an
almost linear function of the distance from the
wall both for lower core flow (figure 6 bottom)
and lower cross flow (figure 7 bottom) Mach
numbers. Large cross-flow Mach numbers, well
in excess of a typical bias flow, and imply-
ing a high flow rate for a fluidic jet, lead to
strong sound refraction effects illustrated by
non-linear amplitude and phase dependencies
on the distance from the wall. The comparison
of the cases with and without bias flow is made

C. LEGENDRE, L.M.B.C. CAMPOS

for the baseline case in the figure 7, hence for
the free stream Mach number My, = 0.8 in-
stead of My, = 1.2 in the figure 6. Both the
amplitude (top) and the phase (bottom) of the
pressure vary more slowly with the distance
from the wall in the absence of the bias flow
(dashed line) compared with its presence (solid
line).
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(a) Amplitude of transmission coefficient.
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(b) Phase of transmission coefficient.

Fig. 10 : Transmission coefficient versus angle
of incidence. The baseline case is used, and four
values for shear Mach number are considered (29a);
all with bias flow. The case without bias flow
corresponds to My, = 1.2 and is indicated by the
dashed line.

Considering the reflection coefficient as a
function of the angle of incidence (figures 8,9)
again the amplitude and phase are plotted sep-
arately respectively at the top and bottom.
The amplitude and phase are relatively smooth

10
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(figure 8) at low free stream Mach number
whereas at higher Mach numbers the interac-
tion of the sound with the shear and bias flows
leads to sharper phase changes and several am-
plitude peaks. The free stream Mach number
My = 1.2 is used for the comparison of the
cases without (dashed line) and with (line with
circles) bias flow. The variation in the ampli-
tude and phase of the reflection coefficient are
smaller and smoother in the absence of bias
flow. The increase in the Mach number of the
cross flow also leads to sharper changes in the
amplitude and phase of the reflection coeffi-
cient (figure 9). In the figure 9 the baseline
case is used to compare the cases of no bias
flow (dashed line) and bias flow (solid line);
the variations of the amplitude and phase of
the reflection coefficient are again smaller and
smoother in the absence of bias flow. The
reflection coefficient in the zone of silence is
larger without bias flow.

Concerning the transmission coefficient,
the amplitude and phase are again plotted sep-
arately at the top and bottom (figures 10,11)
versus the angle of incidence. The transmis-
sion coeflicient has severally larger amplitude
and phase changes for downstream propagation
and increasing free stream (figure 10) and cross
flow (figure 11) Mach numbers. The compari-
son with the absence of the bias flow (dashed
line) is made for the baseline case My = 0.8
(solid line) in the figure 11 and for My, = 1.2
(line with blobs) in the figure 10. The base-
line case My, = 0.8 in the figure 11 shows that
the bias flow increases the amplitude in the
zone of silence, and increases the phase in the
propagation zone. This is consistent with of
what was seen in the figure 9 for the reflection
coefficient in the zone of silence, the bias flow
reduces the reflection coefficient and increases
the transmission coefficient. Thus the bias flow
spreads the acoustic energy over a wider range
of directivities by increasing the pressure field
in what would be the “zone of silence” in the
absence of boundary layer. The comparison of
bias flow present (line with blobs) and absent
(dashed line) for a free stream Mach number
My, = 1.2 in the figure 10 shows that the mod-

ulus of transmission coefficient is increased by
the bias flow in the zone of silence, and is less
affected in the propagation zone, and also the
phase jump at the transition between the two
zones is smoothed by the bias flow.
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(b) Phase of transmission coefficient.

Fig. 11 : As figure 10, but using four values for
cross Mach number are considered (29b) .

7 Concluding remarks

The comparison of the acoustic liner with
and without bias flow shows that the mathe-
matical consequences are: (i) the removal of
the singularity at the critical layer; (ii) the
increase of the order of the differential equa-
tion from two to three, implying that there is
further decoupling of the acoustic and vortical
modes. From the physical point-of-view the
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comparison of the bias flow present and ab-
sent demonstrates changes in the modulus and
phase of: (i) the acoustic pressure as a function
of the distance from the wall; (ii) the reflec-
tion and transmission coefficient as a function
of the angle of incidence, including different
trends in the zones(s) of silence and propaga-
tion. The overall conclusion is that a bias flow
with small Mach number can change signifi-
cantly the acoustic pressure in the boundary
layer by: (i) broadening the range of direc-
tions of propagation into the zone of silence;
(ii) changing the ratio of pressure amplitudes in
the free stream and at the wall. Both effects (i)
and (ii) can have a beneficial effect on noise re-
duction, depending on the core flow, boundary
layer flow and wall impedance characteristics.
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