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Abstract  

The study of propagation of non-linear sound 
waves in relaxing media [1-3] shows that two 
kinds of solutions are possible: (i) if non-
linearity predominates over relaxation it cannot 
prevent the front steepening which leads to 
shock formation; (ii) if non-linearity is weaker 
then continuous finite permanent waveforms 
with finite amplitude are possible. In the present 
paper it is shown that for a certain range of 
parameters both ‘shock’ type (i) and ´wave´ like 
(ii) solutions can coexist. The implication is that 
starting from a non-linear wave in a relaxing 
medium it may or may not develop into a shock. 
This implies the existence of bifurcations in 
parameter space, with range for which both 
´wave´ and ´shock´ solutions are possible. The 
bifurcations are extensively described in the 
literature for non-linear dynamical systems 
described by ordinary differential equations 
(o.d.e.s). Waves are described by partial 
differential equations (p.d.e.s.); in the case of 
non-linear waves with permanent wave forms 
the solution of the p.d.e. reduces to an o.d.e., so 
bifurcations are possible. The bifurcations do 
not occur for the non-linear sound waves 
without (with) dissipation specified by Riemann 
invariants (the Burger’s equation), because they 
have a unique solution associated with a single 
sound speed. In a relaxing medium there is 
more than one sound speed, which combined 
with non-linearity can be expected to lead to 
bifurcations; this is demonstrated in the present 
paper.  

A prototype problem for the bifurcations of 
non-linear waves is thus large amplitude 
acoustics of relaxing media. The latter are 

important in high-temperature gas dynamics; 
also in non-linear acoustics in other media 
subject to combustion, chemical reactions, 
ionization, radiation and other non-equilibrium 
conditions. The starting point is the wave 
equation for weakly non-linear sound waves in 
a medium with a single relaxation time (§2); in 
the non-dissipative case non-linear waves with 
permanent wave form exist (§3). They 
correspond to four cases of ´shock´ and/or 
´wave´ like solutions with three transition 
conditions (§4). It is shown that relaxation 
opposes non-linear shock formation by limiting 
front steepening (§5). For a range of non-
linearity and relaxation parameters, ´shock´ 
and ´wave´ like solutions can coexist, implying 
the existence of bifurcations (§6). The latter can 
be expected for non-linear waves of permanent 
waveform in media with multiple wave speeds 
(§7). This is demonstrated in Figures 1 to 5 for 
the non-linear acoustics of relaxing media.  

1  Non-linear waves with permanent form  

The velocity perturbation of weakly non-linear 
acoustic waves satisfies the wave equation: 

߲ܸ ⁄ݐ߲ ൅ ܿ଴ ߲ܸ ⁄ݔ߲ ൅ ߚ ܸ ߲ܸ ⁄ݔ߲ ൅ ሺߦ 2⁄ ሻ ߲ܸଶ ⁄ଶݔ߲
ൌ ܿ̅ ߲ ෨ܸ ⁄ݔ߲ 	,	

(1)

where are assumed: (i) unidirectional 
propagation in the positive x-direction with 
equilibrium sound speed c

0
 for a linear non-

dissipative wave; (ii) weak convective non-
linearity factor (2a)=(2b) for an arbitrary 
substance: 
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ߚ ൌ ሺ ଴ܸ
ଷ 2ܿ଴

ଶ⁄ ሻሺ߲ଶ݌଴ ߲ ଴ܸ
ଶ⁄ ሻ௦

ൌ ሺܿ଴
ସ 2 ଴ܸ

ଷ⁄ ሻሺ߲ ଴ܸ
ଶ ⁄଴ଶ݌߲ ሻ௦

ൌ ሺߛ ൅ 1ሻ 2⁄  

(2a-c)

where (3a) is the specific volume; (iii) it 
simplifies to (2c) for a perfect gas with adiabatic 
exponent (3b), which is the ratio of the specific 
heats at constant pressure and temperature; (iv) 
linear dissipation with diffusivity (3c): 

଴ܸ ≡ 1 ⁄଴ߩ , ߛ ≡ ௣ܥ ⁄௩ܥ ∶ ߦ
ൌ ߟൣ ൅ ݇൫1 ⁄௣ܥ ൅ 1 ⁄௩ܥ ൯൧ ⁄଴ߩ , 

(3a-c)

due to the shear viscosity η and thermal 
conductivity ݇, where ρ

0
 is the mean state mass 

density and ଴ܸ the specific volume (3a); (v) the 
bulk viscosity absent in (3c) is due to a single 
relaxation process with frozen sound speed c∞ 

appearing in (4a): 

ܿ̅ ൌ ܿஶଶ ܿ଴⁄ െܿ଴ ൐ 0:	ሺ1 െ ߴ ߲ ⁄ݐ߲ ሻ ෨ܸ
≡ ߴ ߲ܸ ⁄ݐ߲  

(4a-b)

and relaxation time ߴ appearing in (4b) together 
with the relaxation velocity perturbation ෨ܸ .  

The latter can be eliminated between (4b) and 
(13) leading to: 

ሺ1 െ ߴ ߲ ⁄ݐ߲ ሻ	ሾ߲ܸ ⁄ݐ߲ ൅ܿ଴ ߲ܸ ⁄ݔ߲ ൅ ܸ	ߚ ߲ܸ ⁄ݔ߲
൅ ሺߦ 2⁄ ሻ ߲ܸଶ ⁄ଶݔ߲ ሿ
ൌ ߴ	̅ܿ ߲ଶܸ ⁄ݐ߲ݔ߲  

(5) 

as the wave equation for the velocity 
perturbation: 

߲ܸ ⁄ݐ߲ ൅ܿ଴ ߲ܸ ⁄ݔ߲ െ ሺܿ଴ ൅ ܿ̅ሻߴ ߲ଶܸ ⁄ݐ߲ݔ߲
െ ߴ ߲ଶܸ ⁄ଶݐ߲
൅ ሺߦ 2⁄ ሻ ߲ଶܸ ⁄ଶݔ߲
െ ሺߴߦ 2⁄ ሻ ߲ଷܸ ⁄ݐଶ߲ݔ߲
൅ ሺܸߚ െ ߴ ߲ܸ ⁄ݐ߲ ሻ ߲ܸ ⁄ݔ߲
െ ܸ	ߴ	ߚ	 ߲ଶܸ ⁄ݐ߲ݔ߲ ൌ 0 

(6) 

In the derivation of (1) are assumed weak non-
linearity and dissipation, that is small ߚ and ߦ. 
The relaxation time in (4b) need not be small, 
and this ߴߦ ,ߴߚ are not negligible though ߦߚ 
would be. The solution is sought as a waveform 
with permanent shape (7a) convected at a 
velocity w

0
; the latter is not known ‘a priori’ 

since several wave speeds exist in a relaxing 
medium. Substitution of (7a) in (6) yields (7b): 

ܸሺݔ, ሻݐ ൌ ݂ሺݔ െ  :ሻݐ଴ݓ

ሺܿ଴ െ ଴ሻ݂ᇱݓ ൅ ሾߦ 2⁄ െ ଴ݓሺߴ଴ݓ െ ܿ଴ െ ܿ̅ሻሿ݂ᇱᇱ

൅ ሺߦ 2⁄ ሻݓ଴݂ߴᇱᇱᇱ ൅ ᇱ݂݂ߚ
൅ ߚ ൫݂ᇱߴ	଴ݓ

ଶ ൅ ݂ᇱᇱ݂൯ ൌ 0. 

(7a,b)

The first integration is immediate: 

ሺܿ଴ െ ଴ሻ݂ݓ ൅ ሾߦ 2⁄ െ ଴ݓሺߴ଴ݓ െ ܿ଴ െ ܿ̅ሻሿ 

݂ᇱ ൅ ሺߦ 2⁄ ሻݓ଴݂ߴᇱᇱ ൅ ሺߚ 2⁄ ሻ݂ଶ ൅ ᇱ݂݂ߴ	଴ݓ	ߚ ൌ ܣ
 

(8) 

where A is a constant of integration.  

Neglecting dissipation (9a) but not relaxation 
the order of the equation drops from two to one 
(9b): 

ߦ ൌ 0: ሺܿ଴ െ ଴ሻ݂ݓ െ ଴ݓሺߴ଴ݓ െ ܿ଴ െ ܿ̅ሻ݂ᇱ

൅ ሺߚ 2⁄ ሻ݂ଶ ൅ ᇱ݂݂ߴ	଴ݓ	ߚ ൌ .ܣ
 (9a,b)

Choosing the convection velocity (10a) to be the 
sound speed plus the relaxation velocity 
simplifies (9b) to (10b): 

଴ݓ ൌ ܿ଴ ൅ ܿ̅ ൌ ܿஶଶ ܿ଴⁄ ൐ ܿ଴, ܿஶ:							 

ଶ݂ߚ െ 2݂ܿ̅ ൅ 2 ߚ ሺܿ଴ߴ ൅ ܿ̅ሻ݂ᇱ݂
ൌ  ܣ2

(10a,b)

The convection velocity (10a) always exceeds 
both the equilibrium ܿ଴ and frozen ܿஶ sound 
speeds appearing in (4a). The arbitrary constant 
in (10b) can be determined (11c) from an 
asymptotic velocity (11a) assuming it is uniform 
(11b): 

݂ሺ∞ሻ ൌ ܸି , ݂ᇱሺ∞ሻ ൌ ܣ2	:0 ൌ ߚ _ܸ
ଶ െ 2	ܿ̅	ܸି

 
(11a-c)

Substituting (11c) in (10b) yields (12b): 
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ݕ ≡ ݔ െ ݐ଴ݓ ൌ ݔ െ ܿஶଶ ݐ ܿ଴⁄ : 

െ2ሺߴ	ܿஶଶ ܿ଴⁄ ሻ݂ ݂݀ ⁄ݕ݀ ൌ ݂ଶ െ _ܸ
ଶ െ 2ሺܿ̅ ⁄ߚ ሻሺ݂ െ

ܸି ሻ ൌ ሺ݂ െ ܸି ሻሺ݂ ൅ ܸି െ 2 ܿ̅ ⁄ߚ ሻ,
  (12a,b)

which is a separable equation in the: (i) 
convected coordinate (12a); (10a); (ii) the wave 
form (7a). 

2  Two regimes of propagation of relaxation 
waves  

Separating the variables in (12b) leads to 
(13b): 

ߝ2 ≡ ܸି ሺܸି െ ܿ̅ ⁄ߚ ሻ⁄ : 

	ሺ2ߴሻିଵ݀ሺݐ െ ܿ଴ ݔ ܿஶଶ⁄ ሻ
ൌ ሾሺ݂ െ ܸି ሻሺ݂ ൅ ܸି െ 2 ܿ̅ ⁄ߚ ሻሿିଵ݂݂݀
ൌ ሾߝ ሺ݂ െ ܸି ሻ ൅ ሺ1 െ ሻߝ ሺ݂ ൅ ܸି െ 2 ܿ̅ ⁄ߚ ሻ⁄⁄

(13a,b)

in (13b) appears the parameter (13a). Integrating 
(13b) leads to: 

log ∗ܸ ൅ ሺݐ െ ܿ଴ ݔ ܿஶଶ⁄ ሻ ሺ2ߴሻ⁄
ൌ ߝ logሺ݂ െ ܸି ሻ ൅ ሺ1 െ ሻߝ
ൈ logሺ݂ ൅ ܸି െ 2 ܿ̅ ⁄ߚ ሻ	; 

(14) 

the constant of integration ∗ܸ is the amplitude of 
the velocity perturbation (7a) of the relaxation 
wave:  

ሺܸ െ ܸି ሻఌ	ሺܸ ൅ ܸି െ 2 ܿ̅ ⁄ߚ ሻଵିఌ

ൌ ∗ܸ expሾሺݐ െ ܿ଴ ݔ ܿஶଶ⁄ ሻ ሺ2ߴሻ⁄ ሿ. 
(15) 

This specifies the velocity perturbation of a 
weakly non-linear acoustic wave in a relaxing 
medium, for which there are four cases. 

The first case (I) is ߝ ൐ 1 in (13a) which 
(16a) implies (16b): 

   

ߝ ൐ 1:		 ଵܸ ≡ 2 ܿ̅ ⁄ߚ ൐ ܸି ൐ ܿ̅ ⁄ߚ ≡ ଶܸ
ൌ ଵܸ 2⁄ ; 

(16a-c)

the condition (16c) is required so that ߝ ൐
0,		since for 0 <	ܸି ൏ ܿ̅ ⁄ߚ  then (13a) is 
negative; also	ܸି ൏ 0	would lead to ߝ ൏ 1	so it 
is excluded from this case I. The condition 
ߝ ൐ 1	thus requires 	ܸି 	to lie between the critical 
velocities 	 ଵܸ and 	 ଶܸ	. In this case ߝ ൐ 0 and 
1 െ ߝ ൏ 0	in (15), so far downstream x→+∞ 

(upstream x→-∞) as the r.h.s vanishes 
(diverges), then V must tend to (17a) [(17b)]: 

ߝ ൐ 1:		

൝
ூܸሺ൅∞ሻ ൌ lim

௫→ାஶ
ܸሺݔ, ሻݐ ൌ _ܸ ൐ ܿ̅ ⁄ߚ ൐ 0

ூܸሺെ∞ሻ ≡ lim
௫→ିஶ

ܸሺݔ, ሻݐ ൌ 2 ܿ̅ ⁄ߚ െ _ܸ ≡ ାܸ ൐ .∞	ݎ݋	0
 (17a) 

(17b)

The downstream velocity (17a) confirms the 
asymptotic boundary condition (11a). From 
(16b,c) it follows that the velocity perturbation 
is a compression both upstream and downstream  
	 േܸ ൐ 0. Also: 

ߝ ൐ 1: ூܸሺെ∞ሻ െ ூܸሺ൅∞ሻ ൌ ାܸ െ ܸି
ൌ 2ሺܿ̅ ⁄ߚ െ ܸି ሻ ൏ 0	, 

(18) 

shows that the upstream velocity is smaller; thus 
this case I corresponds to a compression wave 
ூܸሺ൅∞ሻ ൐ ூܸሺെ∞ሻ ൐ 0. 

The second case II is ߝ ൏ 0 in (19a) 
implying (19b) by (13a):	

ߝ ൏ 0: 0 ൏ ܸି ൏ ܿ̅ ⁄ߚ ൌ ଶܸ ൌ ଵܸ 2⁄ . (19a,b)

In this case ߝ ൏ 0 and 1 െ ߝ ൐ 0 so that far 
downstream x→+∞ (upstream x→-∞) the r.h.s. 
of (15) vanishes (diverges) implying that V 
tends to (20a) [(20b)] : 
  

ߝ ൏ 0: 

	൞

ூܸூሺ൅∞ሻ ൌ lim
௫→ାஶ

ܸሺݔ, ሻݐ ൌ ାܸ ൌ

ൌ 2 ܿ̅ ⁄ߚ െ _ܸ ൐ ܿ̅ ⁄ߚ ൌ ଶܸ ൐ 0,

ூܸூሺെ∞ሻ ൌ lim
௫→ିஶ

ܸሺݔ, ሻݐ ൌ _ܸ ൏ ܿ̅ ⁄ߚ ൌ ଶܸ	.

 
(20a) 

 
(20b) 

In this case II the asymptotic limits (20a,b) 
interchange those (17a,b) of case I: (i) the 
asymptotic velocity (11a) is the upstream 
velocity (20b); (ii) the upstream velocity (20a) 
is smaller than the downstream velocity in this 
case III: 	

ߝ ൏ 0: ூܸூሺെ∞ሻ െ ூܸூሺ൅∞ሻ ൌ _ܸ െ ାܸ

ൌ 2൫ _ܸ െ ܿ̅ ⁄ߚ ൯ ൏ 0	; 
(21)

again this is an compression wave ூܸூሺ൅∞ሻ ൐
ூܸூሺെ∞ሻ, as in case I. 

The remaining cases satisfy (22a) which is 
met (13a) by two distinct conditions (22b) and 
(22c):  

0 ൏ ߝ ൏ 1: ܸି ൐ 2 ܿ̅ ⁄ߚ ൌ ଵܸ		ݎ݋		ܸି ൏ 0. (22a-c)
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Thus case III involves a compression (22b) and 
case IV a rarefaction (22c). In both cases ߝ ൐ 0 
and 1 െ ߝ ൐ 0, so far downstream x→+∞ 
(upstream x→-∞ሻ	as	the	r.h.s.	of	ሺ15ሻ	vanishes	
ሺdivergesሻ,	 then	 V	 must	 tend	 to	 ሺ23aሻ	
ሾሺ23bሻሿ: 

0 ൏ ߝ ൏ 1: 

൝
ூܸூூ,ூ௏ሺ൅∞ሻ ൌ lim

௫→ାஶ
ܸሺݔ, ሻݐ ൌ 		ݑ݋	ܸ_ ାܸ,

ூܸூூ,ூ௏ሺെ∞ሻ ൌ lim
௫→ିஶ

ܸሺݔ, ሻݐ ൌ ∞	.
			

(23a)

(23b)

In the preceding cases I (II) in (16b)[(19b)] the 
non-linearity parameter was small  ߚ ൏ 2 ܿ̅ _ܸ⁄  
ߚ) ൏ ܿ̅ _ܸ⁄ ), so relaxation dominates and limits 
the amplitude of the wave form. In the case III 
the non-linearity parameter (22b) is large 
ߚ ൐ 2 ܿ̅ _ܸ⁄ , and relaxation is insufficient to 
prevent shock formation, so a continuous 
solution does not exist for all space, viz. there is 
a upstream divergence (23b). The same 
conclusion applies to case IV. 

3  Regimes of propagation and transition 
velocities  

In the cases III and IV there are in each 
two sub-cases for the downstream condition 
(23a) combined with (22b,c): 

0 ൏ ߝ ൏ 1,			 _ܸ ൏ 0, 

		 ூܸூூ஺ሺ൅∞ሻ ൌ lim
௫→ାஶ

ܸሺݔ, ሻݐ ൌ _ܸ ൏ 0, (24a,b)

0 ൏ ߝ ൏ 1,			 _ܸ ൐ 2 ܿ̅ ⁄ߚ , 

	 ூܸ௏஺ሺ൅∞ሻ ൌ _ܸ ൐ 2 ܿ̅ ⁄ߚ ൐ 0, (25a,b)

0 ൏ ߝ ൏ 1,			 _ܸ ൏ 0, 

	 ூܸூூ஻ሺ൅∞ሻ ൌ ାܸ ൌ 2 ܿ̅ ⁄ߚ െ ܸି ൐ 0, (26a,b)

0 ൏ ߝ ൏ 1, _ܸ ൐ 2 ܿ̅ ⁄ߚ , 

		 ூܸ௏஻ሺ൅∞ሻ ൌ ାܸ ൌ 2 ܿ̅ ⁄ߚ െ ܸି ൏ 0. (27a,b)

Thus two sub-cases include an initial 
compression [(25a,b);(26a,b)] and rarefaction 
[(24a,b);(27a,b)]. From the point-of-view of 
non-linearity parameter there are two regimes: 

:݁݉݅݃݁ݎ ቊ
ߚ ൒ 2 ܿ̅ _ܸ⁄ ≡ ߚ̅ ∶ ,݇ܿ݋݄ݏ

ߚ ൏ 2 ܿ̅ _ܸ⁄ ≡ ߚ̅ ∶ .݁ݒܽݓ
 

(28a)

(29b)

From the point-of-view of the parameter (13a) 
there are three cases:  

	:݁݉݅݃݁ݎ

ە
ۖ
۔

ۖ
ۓ
ߝ ൐ 1: ,ܫ	݁ݒܽݓ					

0 ൑ ߝ ൑ 1: ,ܸܫ	ݎ݋	ܫܫܫ	݇ܿ݋݄ݏ

ߝ ൏ 0: .ܫܫ	݁ݒܽݓ					

(30a)

(29b)

(29c)

From the point-of-view of the velocity _ܸ there 
are four ranges: 

	:݁݉݅݃݁ݎ

ە
ۖۖ

۔

ۖۖ

ۓ _ܸ ൑ 0: ,ܤܫܫܫ	ݎ݋	ܣܫܫܫ	݇ܿ݋݄ݏ

0 ൏ _ܸ ൑ ܿ̅ ⁄ߚ ,ܫܫ	݁ݒܽݓ				:

ܿ̅ ⁄ߚ ൑ _ܸ ൏ 2 ܿ̅ ⁄ߚ ,ܫ	݁ݒܽݓ	:

_ܸ ൒ 2 ܿ̅ ⁄ߚ ,ܤܸܫ	ݎ݋	ܣܸܫ	݇ܿ݋݄ݏ

		

(31a) 

(32b)

(30c) 

(30d)

this leads to three transition velocities, namely 
_ܸ ൌ 0, ଵܸ, ଶܸ with ( ଵܸ, ଶܸ ) appearing in (16b,c). 

The first transition (31a) is between a 
shock (30a) and a wave (30b) and simplifies 
(13b) to (31b): 

ܸି ൌ 0 ሺ2ߴሻିଵ݀ሺݐ െ ܿ଴ݔ ܿஶଶ⁄ ሻ
ൌ ሺ݂ െ 2 ܿ̅ ⁄ߚ ሻିଵ݂݀. 

(33a,b)

This corresponds to: 

ߝ ൌ 0: 																	 

	ܸሺݔ, ሻݐ ൌ 2 ܿ̅ ⁄ߚ  

൅ ∗ܸ expሾሺݐ െ ܿ଴ݔ ܿஶଶ⁄ ሻ ሺ2ߴሻ⁄ ሿ, 
(34a,b)

implying a finite velocity far downstream (33a) 
and divergence (33b) upstream: 

ߝ ൌ 0: 

ܸሺ൅∞ሻ ൌ lim
௫→ାஶ

ܸሺݔ, ሻݐ ൌ2 ܿ̅ ⁄ߚ 	,

ܸሺെ∞ሻ ൌ lim
௫→ିஶ

ܸሺݔ, ሻݐ ൌ ∞	.
 

(35a) 

(33b) 

The third transition (34a) is also between wave 
(30c) and shock (30d) and simplifies (13b) to 
(34b): 

ܸି ൌ 2 ܿ̅ ⁄ߚ : ሺ2ߴሻିଵ݀ሺݐ െ ܿ଴ݔ ܿஶଶ⁄ ሻ
ൌ ሺ݂ െ 2 ܿ̅ ⁄ߚ ሻିଵ݂݀; 

(36a,b)
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this leads to: 

ߝ ൌ 1:	 

ܸሺݔ, ሻݐ ൌ 2 ܿ̅ ⁄ߚ ൅ ∗ܸ expሾሺݐ െ ܿ଴ݔ ܿஶଶ⁄ ሻ ሺ2ߴሻ⁄ ሿ ; (37a,b)

thus the wave form is the same (35a,b)≡(32a,b) 
in the two cases ε=0 and ε=1 of transition 
between wave and shock. The result 
(32b)[(35b)] could be obtained from (15) with 
ε=0 (ε=1) using (31a) [(34a)]; both cases imply 
(33a,b). The second transition velocity ܸି ൌ
ܿ̅ ⁄ߚ  corresponds to ε=∞ in (13a) and limit is 
less obvious from (15). 

The second transition (36a) is between 
waves (30b,c) and simplifies (13b) to (36b): 

ܸି ൌ ܿ̅ ⁄ߚ : ሺ2ߴሻିଵ݀ሺݐ െ ܿ଴ݔ ܿஶଶ⁄ ሻ
ൌ ሺ݂ െ ܿ̅ ⁄ߚ ሻିଶ݂݂݀
ൌ ሾሺ݂ െ ܿ̅ ⁄ߚ ሻିଵ

൅ ሺܿ̅ ⁄ߚ ሻሺ݂
െ ܿ̅ ⁄ߚ ሻିଶሿ݂݀.				 

(38a,b)

This integrates:  

log ∗ܸ ൅ ሺݐ െ ܿ଴ݔ ܿஶଶ⁄ ሻ ሺ2ߴሻ⁄
ൌ logሺ݂ െ ܿ̅ ⁄ߚ ሻ
െ ሺܿ̅ ⁄ߚ ሻ ሺ݂ െ ܿ̅ ⁄ߚ ሻ⁄ , 

(39) 

and leads to: 

ߝ ൌ ∞: 

												 ∗ܸ expሾሺݐ െ ܿ଴ݔ ܿஶଶ⁄ ሻ ሺ2ߴሻ⁄ ሿ ൌ 
ሺܸ െ ܿ̅ ⁄ߚ ሻ expሾሺ1 െ ܸߚ ܿ̅⁄ ሻିଵሿ 

(40a,b)

far downstream x→+∞ (upstream x→-∞) the 
l.h.s. of (38b) vanishes (diverges) and the r.h.s. 
implies that 1 െ ܸߚ ܿ̅⁄ ൏ 0	ሺ1 െ ܸߚ ܿ̅⁄ ൐ 0ሻ so 
that it tends to (39a) [(39b)]: 

ߝ ൌ ∞: 

൝
ܸሺ൅∞ሻ ൌ lim

௫→ାஶ
ܸሺݔ, ሻݐ ൌ ܿ̅ ⁄ߚ ൅ ܱ	,

ܸሺെ∞ሻ ൌ lim
௫→ିஶ

ܸሺݔ, ሻݐ ൌ ܿ̅ ⁄ߚ െ ܱ	.
 

(41a)

(39b)

In this case the upstream and downstream 
velocities are close on opposite sides of (36a). 

4  Centre velocity and slope of wavefront  

All the preceding solutions, e.g. (15) 
involve an arbitrary amplitude ∗ܸ. The latter can 

be replaced by the velocity at a given point; 
choosing ଴ܸ at the ´centre´ of the waveform 
(40a), the velocity perturbation (15) satisfies 
(40b):    

ܿஶଶ ݐ ൌ ܿ଴ݔ: ሺ ଴ܸ െ ܸି ሻఢሺ ଴ܸ െ ାܸሻଵିఢ

ൌ ∗ܸ.
 

(42a,b)

It reduces to (41c) [(42c)] in the case 
(31a)≡(32a)≡(41a,b)[(34a)≡(35a)≡(42a,b)] of 
transition between wave and shock: 

ߝ ൌ 0, ܸି ൌ ܿ̅ ⁄ߚ :	 

଴ܸ ൌ ∗ܸ ൅ ାܸ ൌ ∗ܸ ൅ 2 ܿ̅ ⁄ߚ െ ܸି
ൌ ∗ܸ ൅ ܿ̅ ⁄ߚ ,				 

(43a-c)

ߝ ൌ 1, ܸି ൌ 2 ܿ̅ ⁄ߚ :		 ଴ܸ ൌ ∗ܸ ൅ ܸି
ൌ ∗ܸ ൅ 2 ܿ̅ ⁄ߚ .				 

(44a-c)

In the case (38a)≡(36a)≡(43a,b) of transition 
between waves (38b) leads to (43c): 

ߝ ൌ ∞, ܸି ൌ ܿ̅ ⁄ߚ : 

∗ܸ ൌ ሺ ଴ܸ െ ܿ̅ ⁄ߚ ሻ expሾሺ1
െ ߚ ଴ܸ ܿ̅⁄ ሻିଵሿ.				 

(45a-c)

The relation (43c) between ଴ܸ and ∗ܸ can be put 
in the form: 

ܺ ≡ ߚ ଴ܸ ܿ̅⁄ െ 1: 																									 

ߚ ∗ܸ ܿ̅⁄ ൌ ܺ expሾെ1 ܺ⁄ ሿ, 
(46a,b)

which involves the two velocities ( ଴ܸ, ∗ܸ) made 
dimensionless dividing by (43b). 

The slope of the waveform is given (12b) 
in all space by: 

݂ᇱܸ ൌ െሺܿ଴ ܿஶଶ⁄ ሻሺܸ
െ ܸି ሻ ሺܸ െ ାܸሻ ሺ2ߴሻ⁄ .  

(47) 

In particular it takes the value (46b) at the centre 
(46a): 

ܿஶଶ ݐ ൌ ܿ଴ݔ: ଴݂
ᇱ

ൌ െሺܿ଴ ܿஶଶ⁄ ሻ ሺ ଴ܸ െ ܸି െ ାܸ ൅ ܸି ାܸ ଴ܸ⁄ ሻ ሺ2ߴሻ⁄ 				
ൌ െሺܿ଴ ܿஶଶ⁄ ሻ ሾ ଴ܸߚ െ 2ܿ̅ െ ܸି ሺ2ܿ̅ െ ܸି ሻߚ ଴ܸ⁄ ሿ ሺ2ߴ	ߚሻ⁄  

(48a,b)

where was used (17b). The slope of the wave 
form varies inversely with the relaxation time, 
i.e. the wave front is steep (shallow) for short 
(long) relaxation time, corresponding to an 
almost discontinuous (mostly blurred) shock 
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wave. This demonstrates that a long relaxation 
time is the dominant time scale for a relaxation 
wave with a shallow front like a “blurred 
shock”. The negative sign conforms that the 
amplitude decreases across the front. The 
present problem has a solution with permanent 
wave form (15) which involves or leads to ten 
velocities: (i) the velocity (10a) of convection of 
the wave form; (ii) the asymptotic velocity (11a) 
as a boundary (or initial) condition; (iii) the 
other boundary velocity (17b) related to (ii); 
(iv/v) the upper and lower transition velocities 
(16b,c) (vi) the wave amplitude ∗ܸ in (15) which 
is arbitrary; (viii) the middle velocity ଴ܸ in 
(40a,b) and (43c); (viii-x) the preceding involve 
the equilibrium ܿ଴ and frozen ܿஶ sound speed 
appearing in the relaxation speed ܿ̅ in (4a)    

The velocity perturbation satisfies (15) in 
dimensionless form: 

ߝ ് 0,∞: ሺܹ െ 1ሻఌሺܹ െ 1 ൅ 1 ⁄ߝ ሻଵିఌ

ൌ ∗ܹ݁ఛ,			 							
 

(49a,b)

where: (i) the velocity is made dimensionless 
dividing by ܸି  in (48a,b); (ii) the convected 
coordinate (48b) combines position and time: 

ܹ ൌ ܸ ܸି⁄ 	, ߬ ≡ ሺݐ െ ܿ଴ݔ ܿஶଶ⁄ ሻ ሺ2ߴሻ⁄ . (50a,b)

For fixed time ݖ → െ∞ downstream and 
ݖ → ൅∞ upstream, and ݖ ൌ 0 corresponds to 
the mid-point (40a). The expression (47b) does 
not hold (47a) for ߝ ൌ 0, which corresponds 
(13a) to ܸି ൌ 0, invalidating the choice (48a) of 
dimensionless velocity. In the case ߝ ൌ 0, the 
velocity perturbation (32b) takes the 
dimensionless form (49c): 

ߝ ൌ 0:ܹ ≡ βV 2cത⁄ ,ܹ ൌ 1 ൅ ∗ܹ݁ఛ,
 (51a-c)

using (49b) instead of (48a). The expression 
(47b) also does not hold for ߝ ൌ ∞ 
corresponding (13c) to ܸି ൌ cത β⁄  in (38b): 

ܸି ൌ cത β⁄ : 
ܸሺݔ, ሻݐ ൌ cത β⁄ ൅ ∗ܸ expሾെ ሺݐ െ ܿ଴ݔ ܿஶଶ⁄ ሻ ሺ2ߴሻ⁄ ሿ expሾെሺ1

െ β	V c⁄ ሻିଵሿ ; 
(52a,b)

the corresponding dimensionless (49b) form is: 

ߝ ൌ ∞:	ܹ ≡ βܸ cത⁄ , 

		ܹ ൌ 1 ൅ ∗ܹ݁ఛ expሾെሺ1 െWሻିଵሿ. 
(53a-c)

In all three cases [(47a,b);(48a,b)], [(49a-c); 
(48b)] and [(51a-c);(48b)] there are two 
dimensionless variables: (i) the amplitude ܸ 
normalized ܹ in different ways (48a), (49b) and 
(50b); (ii) the same (48b) convected coordinate 
 There are two dimensionless parameters: (i) .ݖ
the normalized amplitude ∗ܹ; (ii) the 
dimensionless combination (13a) of non-
linearity and relaxation effects 

5 Bifurcations due to the combination of non-
linearity and relaxation  

Each of the seven cases is illustrated in figures 1 
to 5, for unit amplitude (52a) and seven values 
(52b) of the parameter (13a): 

∗ܹ ൌ 1, ߝ ൌ െ1, 0, 1 4⁄ , 1 2⁄ , 3 4⁄ , 1, 2 . (54a,b)

These correspond to: (i) the initial velocities 
relative to ଶܸ in (16c): 

ܸି ଶܸ⁄ ൌ ିܸߚ ܿ̅⁄ ൌ ߝ ሺߝ െ 1 2⁄ ሻ⁄
ൌ ሼ2 3⁄ , 0, െ1,∞, 3, 2, 4 3⁄ ሽ; 

(55) 

 (ii) the ratio of non-linearity parameter to the 
critical value (28a,b): 

߰ ൌ ߚ ⁄ߚ̅ ൌ ିܸߚ 2ܿ̅⁄
ൌ ܸି ଵܸ ൌ⁄ ߝ ሺ2ߝ െ 1ሻ⁄
ൌ ሼ1 3⁄ , 0, െ 1 2⁄ ,∞, 3 2⁄ , 1, 2 3⁄ ሽ, 

(56) 

coincides with the ratio ܸି  to ଶܸ in (16b), i.e. 
one-half of (53). In all cases the same 
dimensionless similarity variable (48b) is used. 
Since it is a combined space-time variable 
corresponding to a waveform convected at a 
constant velocity, it has two interpretations: (i) 
before (§3-5), it was considered at a fixed time, 
specifying the waveform as a function of 
position, so that ߬ → ∞ upstream ݔ → െ∞ and  
߬ → െ∞ downstream ݔ → ∞; (ii) in the sequel 
(§6 and Figures 1 to 5) it is considered at a fixed 
position, specifying the waveform as a function 
of time so that ߬ → ∞ for late time ݐ → ∞ and 
߬ → െ∞ for early time ݐ → െ∞. Thus the 
correspondence (i) and (ii) is: (i) upstream 
ݔ → െ∞ and late time ݐ → ∞ for ߬ → ∞; (ii) 
downstream ݔ → ∞ and early time ݐ → െ∞ for 
߬ → െ∞. The solutions bounded for all time 
߬ → േ∞ are waves. The solutions unbounded 
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for ߬ → ൅∞ or ߬ → െ∞ show that a bounded 
continuous solution is not possible; a bounded 
solution is possible if it is discontinuous, 
corresponding to a shock. The two transition 
cases (55a) both correspond a single solution 
(55c): 

ߝ ൌ 0, 1; ܸି ൌ 0, 2cത β⁄ :		ܹ
ൌ 1 ൅ ∗ܹ݁ఛ,

 
(57a-c)

for the initial velocities (55b), with distinct 
normalizations: (i) for ߝ ൌ 1 in [(47b);(48a)]; 
(ii) for ߝ ൌ 0 in (49a-c). The plots in Figure 1, 
for distinct amplitudes ∗ܹ ൌ െ1, 0, ൅1 show: (i) 
constant velocity for zero amplitude; (ii) 
divergence േܹ ൌ േ∞ at late time ߬ → ∞ 
starting from unity േܹ ൌ 1 at early time 
߬ → െ∞. In the remaining figures 2 to 5, of 
non-transition cases, the unit amplitude is used 
(56a), so that only the dimensionless ratio of 
non-linearity and relaxation is varied.  

The value (56b) below the lower transition 
leads (47b) to (56c): 

∗ܹ ൌ 1; ߝ				 ൌ െ1:		ሺܹ െ 2ሻଶ

ൌ ݁ఛሺܹ െ 1ሻ;													 
(58a-c)

this corresponds to a quadratic equation (57b) in 
the case of relative non-linearity parameter 
(57a): 

߰ ൌ 1 3⁄ :		ܹଶ െ ሺ4 ൅ ݁ఛሻܹ ൅ 4 ൅ ݁ఛ

ൌ 0. 
(59a,b)

The roots lead to two solutions (58b) for the 
same initial velocity (54)≡(58a): 

ܸି ൌ 2 cത 3β⁄ :	4 ൅ ݁ఛ േ ඥ݁ఛሺ݁ఛ ൅ 4ሻ
ൌ 2 േܹ ൌ 3βܸ ܸି cത⁄ . 

(60a,b)

Both solutions (Figure 2) start at early time 
߬ → െ∞ with finite amplitude േܹሺെ∞ሻ ൌ 2; 
the solution above ାܹሺെ∞ሻ ൌ 2 ൅ ܱ diverges 
ାܹሺ൅∞ሻ ൌ ∞ at late time as ߬ → ∞, i.e forms a 

shock. The solution below ܹି ሺെ∞ሻ ൌ 2 െ ܱ 
tends at late time ߬ → ∞ to one half of the initial 
value ܹି ሺ൅∞ሻ ൌ 1, as follows from:  

lim
ఛ→ஶ

ܹି ൌ
1
2
lim
ఛ→ஶ

ൣ4 ൅ ݁ఛ൫1 െ √1 ൅ 4݁ିఛ൯൧

ൌ
1
2
lim
ఛ→ஶ

൛4

൅ ݁ఛൣ1
െ ൫1 ൅ 2݁ିఛ ൅ ܱሺ݁ିଶఛሻ൯൧ൟ
ൌ 1. 

(61) 

This is confirmed by (56c): (i) at early time 
߬ → െ∞ then േܹ → 2; (ii) at late time ߬ → ∞ 
either ܹି → 1 or ାܹ → ∞. Thus a small 
difference in downstream velocity ܸି ൌ
2ܿ̅ ⁄ߚ3 േ ܱ leads to a shock or a wave. 

The value (60b) above the upper transition 
leads (47b) to (60c):  

∗ܹ ൌ 1; ߝ ൌ 2 ሺܹ െ 1ሻଶ

ൌ ݁ఛሺܹ െ 1 2⁄ ሻ; 
(62a-c)

this is again a quadratic equation (61b) for the 
case of relative non-linearity parameter (61a):  

߰ ൌ 2 3⁄ : ܹଶ െ ሺ2 ൅ ݁ఛሻܹ ൅ 1

൅
1
2
	݁ఛ ൌ 0. 

(63a,b)

The roots (61b) lead to two solutions (62b) for 
the initial velocity (62a): 

ܸି ൌ 4cത 3β⁄ : 

2 േܹ ൌ 2 ൅ ݁ఛ േ ඥ݁ఛሺ݁ఛ ൅ 2ሻ
ൌ ܸߚ3 ሺ2ܸି ܿሻ⁄ . 

(64a,b)

The asymptotic value (Figure 3) at early time 
߬ → െ∞ is the same in both cases േܹሺെ∞ሻ=1. 
The upper value ାܹሺ൅∞ሻ ൌ ∞ forms a shock 
at late time ߬ → ൅∞. The lower value remains a 
wave of finite amplitude, with at late time 
߬ → ∞ value ܹି ሺ൅∞ሻ ൌ 1 2⁄ , as follows from: 

lim
ఛ→ஶ

ܹି ൌ
1
2
lim
ఛ→ஶ

ൣ2 ൅ ݁ఛ൫1 േ √1 ൅ 2݁ିఛ൯൧

ൌ
1
2
lim
ఛ→ஶ

൛2

൅ ݁ఛൣ1
െ ൫1 ൅ ݁ିఛ ൅ ܱሺ݁ିଶఛሻ൯൧ൟ
ൌ 1 2⁄ .

 

(65) 

This is confirmed from (60c) since: (i) at early 
time ߬ → െ∞ then േܹ → 1; (ii) as late time 
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߬ → ∞ then either ାܹ → ∞ or ܹି → 1 2⁄ . 
Again a small difference in the downstream 
velocity  ܸି ൌ 4cത 3β⁄ േ ܱ leads to a shock or a 
wave. 

In the intermediate range 0 ൑ ߝ ൑ 1 only 
shock solutions exists. The cases ߝ ൌ 0 and 
ߝ ൌ 1 have been considered (55a-c) and the 
other transition case: 

∗ܹ ൌ 1; ߝ	 ൌ 1 2⁄ 						߰ ൌ ∞ ൌ ܸି ,						 

݁ଶఛ ൌ ሺܹ െ 1ሻሺܹ ൅ 1ሻ ൌ ܹଶ െ 1, 
(66a-e)

is (64b), and leads to a large initial velocity 
(64d); it corresponds (47b) to a solution (64e) 
like (49c) in Figure 1, replacing ߬ by 2߬ and ܹ 
by ܹଶ. The ‘unphysical’ case (64a-e) separates 
the remaining two cases with positive or 
negative initial velocity, e.g.:   

∗ܹ ൌ 1; ߝ	 ൌ 1 4⁄ ,			߰ ൌ െ1 2⁄ , ܸି
ൌ െ cത β⁄ ,ܹ
ൌ െܸߚ ܿ̅⁄ :				 

ሺܹ െ 1ሻሺܹ െ 3ሻଷ ൌ ݁ସఛ, 

(67a-f)

∗ܹ ൌ 1; ߝ	 ൌ 3 4⁄ 						߰ ൌ 3 2⁄ , ܸି
ൌ 3 cത β⁄ ,ܹ
ൌ െܸߚ 3ܿ̅⁄ :			 

ሺܹ െ 1ሻଷሺܹ ൅ 1 3⁄ ሻ ൌ ݁ସఛ, 

(68a-f)

using (47b). In both cases (65a-f) in Figure 4 
and (66a-f) in Figure 5, there is divergence at 
late time ߬ → ൅∞ and a shock forms. The shock 
arises from distinct early time ߬ → െ∞ 
conditions ܹሺെ∞ሻ ൌ 1, 3 in (65a-f) and 
ܹሺെ∞ሻ ൌ 1,െ1 3⁄  in (66a,f). 

6  Discussion  

The plotting of waveforms of the figures 1 
to 5 was made as a function of the convected 
space-time coordinate (48b) in two ways. At 
fixed time as a function of position, finite 
amplitude downstream ݔ → ൅∞ corresponds 
upstream ݔ → െ∞ to: (i) a finite amplitude for a 
wave; (ii) a finite amplitude for a ‘shock’, 
meaning that a continuous bounded solution is 
not possible, and a shock must form to have a 

bounded discontinuous solution. Bearing in 
mind the similarity variable (48b) in space-time, 
and entirely equivalent interpretation can be 
made at fixed position as a function of time. For 
the same amplitude: downstream as ݔ → ൅∞ 
corresponds far into the past ݐ → െ∞, and the 
upstream condition ݔ → െ∞ corresponds to late 
time ݐ → ൅∞, with two cases: (i) finite 
amplitude for a wave; (ii) divergent solution or 
‘blow-up’ for a shock, i.e. a discontinuity is 
needed to prevent divergence. 

The two parameters affecting the 
propagation of weakly non-linear sound waves 
in a relaxing medium are: (i) the ratio (67a) of 
the non-linearity parameter β to the value (28a) 
beyond which only shocks exist and below 
which waves (28b) are possible: 

߰ ൌ ߚ ⁄ߚ̅ ൌ ܸି ߚ ሺ2ܿ̅ሻ⁄ ;							 

ߝ2 ൌ 1 ሾ1 െ ܿ̅ ሺܸି ⁄ሻߚ ሿ⁄ , 
(69a,b)

 (ii) the exponent (13a)≡(67b) in the wave form 
(15). The two are related by (68a,bሻ:	

߰ ൌ ߝ ሺ2ߝ െ 1ሻ⁄ ,			

ߝ ൌ 1 ሾ2 െ 1 ሺ߰ሻ⁄ ሿ⁄ ൌ ߰ ሺ2߰ െ 1ሻ⁄ , 
(70a,b)

(i) starting with a rarefaction wave downstream 
ψ<0 always leads (case III) to a shock 
upstream; (ii) starting with a strong compression 
downstream ψ>1 also leads always to a shock 
upstream (case IV). A wave is possible as well 
as a shock in the bifurcation range 0<ψ<1, 
which includes two sub-ranges separated by 
ψ=1/2; for ψ<1/2 case II with ε<0 and for 
ψ>1/2 case I with ε>1. 

There is substantial literature [4-9] on 
bifurcations for non-linear dynamical systems 
described by ordinary differential equations 
(o.d.e). This raises the ´mathematical question´: 
(i) how can bifurcations occur for waves which 
are the solution of partial differential equations? 
The waves considered are permanent wave 
forms, and thus cases in which the p.d.e. has a 
solution depending on a single combination of 
space-time variables, corresponding to a 
constant propagation speed. In this case the 
solution of the non-linear p.d.e. reduces to a 
non-linear o.d.e., so bifurcations could occur. 
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The latter remark raises a physical 
question: (ii) the non-linear non-dissipative 
sound waves described by Riemann invariants 
have no bifurcations [10-14]; (iii) nor do the 
weakly non-linear dissipative sound waves 
described by the Burger’s equation [15-18]. 
Why then do bifurcations occur for waves in 
relaxing media? The answer is that in the case 
(ii) the non-linear sound wave is determined 
uniquely at all events in space-time by the two 
Riemann invariants associated with propagation 
in opposite directions at a group velocities 
ܷേ ൌ ܸ േ ܿ଴ associated with a single sound 
speed ܿ଴. Thus there can be no bifurcations. The 
inclusion of dissipation does not change the 
unicity of solution as shown [15] by the Cole-
Hopf transformation [19-20] of the Burgers [21] 
equation into a heat equation. 
In the case of a relaxing medium there [1-3,12] 
is more than one sound speed, namely: (i) the 
frozen sound speed, or instantaneous wave 
speed before the medium has relaxed; (ii) the 
equilibrium sound speed after the medium has 
relaxed. The existence of more than one wave 
speed can lead to multiple solutions of the 
equations of fluid dynamics, as is well known in 
high-temperature gas dynamics [22]. In 
conclusion the bifurcations can occur for non-
linear waves in media with more than one wave 
speed 
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Figure 1- Normalized velocity perturbation 
(48a) versus dimensionless similarity parameter 
(48a) for three values of amplitude W

*
=0,±1. 

The non-zero values lead to divergent waves, 
unless a shock forms. 

 
Figure 2- As figure 1 for unit amplitude and 
parameter range for which there exists a 
continuous solution W- with finite amplitude 

everywhere for all time. The other solution W
+
 

diverges or forms a shock. 

 
Figure 3- As figure 2 in a different parameter range 
for which both shock and wave solutions exist. 
 

 

Figure 4 As Figures 1-3 for a parameter 
range with two divergent or shock type 

solutions. 
 

 
Figure 5 As figure 4 with a different 

parameter value also leading to two divergent or 
shock type solutions. 
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