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Abstract

The study of propagation of non-linear sound
waves in relaxing media [1-3] shows that two
kinds of solutions are possible: (i) if non-
linearity predominates over relaxation it cannot
prevent the front steepening which leads to
shock formation, (ii) if non-linearity is weaker
then continuous finite permanent waveforms
with finite amplitude are possible. In the present
paper it is shown that for a certain range of
parameters both ‘shock’ type (i) and ‘wave’ like
(ii) solutions can coexist. The implication is that
starting from a non-linear wave in a relaxing
medium it may or may not develop into a shock.
This implies the existence of bifurcations in
parameter space, with range for which both
‘wave” and ‘shock’ solutions are possible. The
bifurcations are extensively described in the
literature for non-linear dynamical systems
described by ordinary differential equations
(o.d.e.s). Waves are described by partial
differential equations (p.d.e.s.); in the case of
non-linear waves with permanent wave forms
the solution of the p.d.e. reduces to an o.d.e., so
bifurcations are possible. The bifurcations do
not occur for the non-linear sound waves
without (with) dissipation specified by Riemann
invariants (the Burger’s equation), because they
have a unique solution associated with a single
sound speed. In a relaxing medium there is
more than one sound speed, which combined
with non-linearity can be expected to lead to
bifurcations, this is demonstrated in the present

paper.

A prototype problem for the bifurcations of
non-linear waves is thus large amplitude
acoustics of relaxing media. The latter are

important in high-temperature gas dynamics,
also in non-linear acoustics in other media
subject to combustion, chemical reactions,
ionization, radiation and other non-equilibrium
conditions. The starting point is the wave
equation for weakly non-linear sound waves in
a medium with a single relaxation time (§2); in
the non-dissipative case non-linear waves with
permanent wave form exist (§3). They
correspond to four cases of ’‘shock’ and/or
‘wave’ like solutions with three transition
conditions (§4). It is shown that relaxation
opposes non-linear shock formation by limiting
front steepening (§5). For a range of non-
linearity and relaxation parameters, 'shock’
and ‘wave’ like solutions can coexist, implying
the existence of bifurcations (§6). The latter can
be expected for non-linear waves of permanent
waveform in media with multiple wave speeds
(s7). This is demonstrated in Figures [ to 5 for
the non-linear acoustics of relaxing media.

1 Non-linear waves with permanent form

The velocity perturbation of weakly non-linear
acoustic waves satisfies the wave equation:

AV/ot+cydV/ox+ BV IV/dx + (§/2)0V?/dx? (1)
=¢coV/ox,

where are assumed: (i) unidirectional
propagation in the positive x-direction with
equilibrium sound speed ¢, for a linear non-
dissipative wave; (ii)) weak convective non-
linearity factor (2a)=(2b) for an arbitrary
substance:



B = (V03/2C§)(62p0/0V02)S (2a-c)
= (66‘/2Vo3)(0V02/0P02)s
=@ +1)/2

where (3a) is the specific volume; (iii) it
simplifies to (2¢) for a perfect gas with adiabatic
exponent (3b), which is the ratio of the specific
heats at constant pressure and temperature; (iv)
linear dissipation with diffusivity (3c):

Vo=1/py,y =C,/C, 1 & (3a-c)
= [n+k(1/C, +1/C,)]/po,

due to the shear viscosity m and thermal
conductivity k, where p is the mean state mass

density and V, the specific volume (3a); (v) the
bulk viscosity absent in (3c) is due to a single
relaxation process with frozen sound speed c_

appearing in (4a):

c=c%/co—Co>0:(1—90/9t)V (4a-b)
=9adV/ot

and relaxation time 9 appearing in (4b) together
with the relaxation velocity perturbation V.

The latter can be eliminated between (4b) and
(13) leading to:

(1—90/0t) [0V /0t +co 0V /dx + BV aV/dx  (5)
+(£/2) V2 /0x?
= ¢ 902V /0xdt

as the wave equation for the velocity
perturbation:

OV /0t +cy 0V /dx — (cy + )9 0%V /0xdt (6)
— 902V /0t?
+(£/2) 92V Jox?
— (£9/2) 93V Jox?at
+ BV — 99V /at) aV /ox
— BOV IV /dxdt = 0
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In the derivation of (1) are assumed weak non-
linearity and dissipation, that is small § and ¢&.
The relaxation time in (4b) need not be small,
and this 9, &9 are not negligible though S¢&
would be. The solution is sought as a waveform
with permanent shape (7a) convected at a
velocity w; the latter is not known ‘a priori’

since several wave speeds exist in a relaxing
medium. Substitution of (7a) in (6) yields (7b):

V(x,t) = f(x —wgt): (7a,b)

(co —wodf' +[£/2 —wed(wg — co — D"
+ &/ 2Dwedf"" + Bf'f
+Bwed(f2+f"f) =0.

The first integration is immediate:

(co —wo)f + /2 —wed(wy — ¢o — ©)] (8)
'+ E/2)wedf" + (B/2)f2 + Bwo Of'f = A

where 4 is a constant of integration.

Neglecting dissipation (9a) but not relaxation
the order of the equation drops from two to one
(9b):

§ =0:(co —wo)f —wod(wg — ¢ — O)f' (9a,b)
+ (B/2)f*+ Bwo Of'f = A

Choosing the convection velocity (10a) to be the
sound speed plus the relaxation velocity
simplifies (9b) to (10b):

Wo =Co+C=c2/cy> Cp Cos: (10a,b)

Bf?—2¢cf +2B9(co +Of'f
= 2A

The convection velocity (10a) always exceeds
both the equilibrium ¢, and frozen ¢, sound
speeds appearing in (4a). The arbitrary constant
in (10b) can be determined (11c) from an
asymptotic velocity (11a) assuming it is uniform
(11b):

flo) =V f'(0) = 0:24= V> —2CV.  (]la-c)

Substituting (11c¢) in (10b) yields (12b):
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y=Ex—wot =x—c2t/cy:

=209 c&/co)f df /dy = f2 = V2 =2(¢/B)(f — (12a,b)
V)= -V +Vo-2¢/p),
which is a separable equation in the: (i)
convected coordinate (12a); (10a); (i1) the wave
form (7a).

2 Two regimes of propagation of relaxation
waves

Separating the variables in (12b) leads to
(13b):
2e =V /(V.—-¢/B):
(29)71d(t — cox/c&)

=[(f -V + V. —2¢/BI fdf
=le/(f-VI)+A-8)/(f+V—-2¢/B

(13a,b)

in (13b) appears the parameter (13a). Integrating
(13b) leads to:

logV, + (t — cox/c%)/(20) (14)
=celog(f —V.)+ (1 —¢)
xlog(f +V.—2¢/B) ;

the constant of integration V, is the amplitude of
the velocity perturbation (7a) of the relaxation
wave:

V-V)EWV+V.—2¢/p)¢ (15
=V, exp[(t — ¢ x/c&)/(29)].

This specifies the velocity perturbation of a
weakly non-linear acoustic wave in a relaxing
medium, for which there are four cases.

The first case (I) is € > 1 in (13a) which
(16a) implies (16b):

e>1: Vi =2¢/p>V.>¢/f =V, (l6a-c)
=V/2;

the condition (16¢) is required so that & >
0, since for 0 <V_< ¢/B then (13a) is
negative; also I < 0 would lead to € < 1so it
is excluded from this case I. The condition
€ > 1 thus requires V_ to lie between the critical
velocities V; and V, . In this case € > 0 and
1—e<0in (15), so far downstream x—+o0

(upstream x—-0) as the r.h.s vanishes
(diverges), then V' must tend to (17a) [(17b)]:

e>1:

Vi(+0) = xlirzlm Vix,t)=V>c/f>0 (17a)
Vi(~) = lim V(x,t)=2¢/B—V =V, >00re. (17b)

The downstream velocity (17a) confirms the
asymptotic boundary condition (11a). From
(16b,c) it follows that the velocity perturbation
1s a compression both upstream and downstream
Vi > 0. Also:

€>1: V(=) = Vi(+00) =V, -V (18)
=2(c/B-V.) <0,

shows that the upstream velocity is smaller; thus
this case I corresponds to a compression wave
Vi(+0) > V(=c0) > 0.
The second case Il is € <0 in (19a)
implying (19b) by (13a):
e<0:0<V.</p=V,=V,/2. (19ab)
In this case € <0 and 1 — ¢ >0 so that far
downstream x—+oo (upstream x—-0) the r.h.s.

of (15) vanishes (diverges) implying that V
tends to (20a) [(20b)] :

e<0:
Vi (+e) = xl_i}Poo Vix,t) =V, = (202)
=2¢/B-V>c/B=V,>0,
V(=) = lim V(x,t) =V <¢/B=V,.  (20b)

In this case II the asymptotic limits (20a,b)
interchange those (17a,b) of case I: (i) the
asymptotic velocity (1la) is the upstream
velocity (20b); (ii) the upstream velocity (20a)
is smaller than the downstream velocity in this
case III:

£<0: V(=) =Vy(+0) =V =V, (21)
=2(V-¢/B)<0;

again this is an compression wave Vj;(+o0) >
V;;(—0), as in case 1.

The remaining cases satisfy (22a) which is
met (13a) by two distinct conditions (22b) and
(22c¢):

O<e<l: V.>2¢/B=V, or V.<NO. (22a-c)



Thus case III involves a compression (22b) and
case IV a rarefaction (22c). In both cases ¢ > 0
and 1—&>0, so far downstream x—+oo
(upstream x—-00) as the r.h.s. of (15) vanishes
(diverges), then V must tend to (23a)

[(23b)]:

0<e<l:
Vi (+0) = lim V(x,t) =V ou V,, (23a)
Vi (=) = lim V(x,t) = o. (23b)

In the preceding cases I (II) in (16b)[(19b)] the
non-linearity parameter was small f <2¢/V
(B < c/V), so relaxation dominates and limits
the amplitude of the wave form. In the case III
the non-linearity parameter (22b) is large
f>2c/V, and relaxation is insufficient to
prevent shock formation, so a continuous
solution does not exist for all space, viz. there is
a upstream divergence (23b). The same
conclusion applies to case IV.

3 Regimes of propagation and transition
velocities

In the cases III and IV there are in each
two sub-cases for the downstream condition
(23a) combined with (22b,c):

0<e<1, V<0,
Viia(+o0) = ligl V(x,t) =V <0, (24a,b)
X—+00 -

0<e<l1 V>2c/p,

Vipa(+o0) =V >2¢/B >0, (25a,b)

0<e<1, V<0,
Vipg(+0) =V, =2¢/B—V_ >0, (26a)b)

0<e<1lV>2¢/B,

Vipp(+0) =V, =2¢/—V.<0. (27a)b)

Thus two sub-cases include an initial
compression [(25a,b);(26a,b)] and rarefaction
[(24a,b);(27a,b)]. From the point-of-view of
non-linearity parameter there are two regimes:
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, {ﬁ >2¢/V = B : shock, (282)
regime: - —
B<2¢/V=p:wave. (29b)

From the point-of-view of the parameter (13a)
there are three cases:

(s > 1: wave |, (30a)

regime: 4 0 < & < 1:shock 111 or 1V, (29b)

wave 1. (29¢)

From the point-of-view of the velocity V there
are four ranges:

(V < 0: shock IlIAorIIIB, (31a)

e<0:

o<vV<ce/B: wavell, (32b)
regime: <
c/B<V<2¢c/B:wavel, (30c)

V > 2¢/B shock IVA or IVB, (30d)

this leads to three transition velocities, namely
V =0,Vy, V, with (V1, V, ) appearing in (16b,c).

The first transition (31a) is between a
shock (30a) and a wave (30b) and simplifies
(13b) to (31b):

V. =0(29)7td(t — cox/ct) (33a,b)
=(f -2¢/p)~df.
This corresponds to:
e=0:
Vix,t) =2¢/p (34a,b)

+V, exp[(t — cox/c%)/(209)],

implying a finite velocity far downstream (33a)
and divergence (33b) upstream:

e=0:
V(4o) = xl—i>Too Vix,t) =2¢c/B, (35a)

V(—) = Jim V(x,t) = . (33b)

The third transition (34a) is also between wave
(30c) and shock (30d) and simplifies (13b) to
(34b):

V. =2¢/B:(29)71d(t — cyx/c?)
=(f —2¢/p)7df;

(36a,b)
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this leads to:
e=1:
V(x,t) =2¢/B +V.expl(t — cox/c2)/29];  (37a,b)

thus the wave form is the same (35a,b)=(32a,b)
in the two cases €e=0 and e=1 of transition
between wave and shock. The result
(32b)[(35b)] could be obtained from (15) with
=0 (e=1) using (31a) [(34a)]; both cases imply
(33a,b). The second transition velocity V_ =
¢/p corresponds to =0 in (13a) and limit is
less obvious from (15).

The second transition (36a) is between
waves (30b,c) and simplifies (13b) to (36b):

V. =¢/B:(29)7d(t — cox/c2)
= (f —¢/B)2fdf
=[(f-¢/B)7!

+ (/B
—¢/B)21df.

(38a,b)

This integrates:

logV, + (t — cox/c2)/(29)
= log(f — ¢/B) (39)
—(/B)/(f —¢/B),

and leads to:
£ = oo;
V. exp[(t — cox/c&)/(29)] = (40a,b)
(V —c/B)exp[(1—pV/e)™']

far downstream x—+oo (upstream x—-c0) the
Lh.s. of (38b) vanishes (diverges) and the r.h.s.
implies that 1 — gV /c <0 (1 —pBV/c > 0) so
that it tends to (39a) [(39b)]:

g = oo:

V(400) = xl—i>I-|I-looV(x' t)=¢/B+0, (4la)
V(=o0) = lim V(x,t)=¢/B—0. (39b)

In this case the upstream and downstream
velocities are close on opposite sides of (36a).

4 Centre velocity and slope of wavefront

All the preceding solutions, e.g. (15)
involve an arbitrary amplitude V,. The latter can

be replaced by the velocity at a given point;
choosing V,, at the ’‘centre” of the waveform
(40a), the velocity perturbation (15) satisfies
(40b):

cit = cox: (Vo — VO)E(Vp — V)17€  (42a,b)
= V.

It reduces to (41c) [(42c)] in the case
(31a)=(32a)=(41a,b)[(34a)=(35a)=(42a,b)] of
transition between wave and shock:

e=0V_=c/B:
Vo=V.+V, =V, +2¢c/B—-V_. (43a-c)
=V.+¢/B,
e=1LV.=2¢/B: Vo=V, +V_ (44a-c)

=V, +2¢/B.

In the case (38a)=(36a)=(43a,b) of transition
between waves (38b) leads to (43c):

e =0,V =c¢/B:
V.= Vo —c¢/B)exp[(1 (45a-c)
— BVo/O)7].

The relation (43c) between V,, and V, can be put
in the form:

X =pV,/c—1:
BV./c = X exp[—1/X],

(46a,b)

which involves the two velocities (V,, V,) made
dimensionless dividing by (43b).

The slope of the waveform is given (12b)
in all space by:

f'V =—(co/c)(V (47)
-V (v =V,)/(2).

In particular it takes the value (46b) at the centre
(46a):
cit=cox: f,

—(co/c) Vo = Vo = Vi + V_V, /V,)/(20)
—(co/cE) Vo — 26 = V_ (26 = V_B)/V,1/ (29 B)

(48a,b)

where was used (17b). The slope of the wave
form varies inversely with the relaxation time,
1.e. the wave front is steep (shallow) for short
(long) relaxation time, corresponding to an
almost discontinuous (mostly blurred) shock

5



wave. This demonstrates that a long relaxation
time is the dominant time scale for a relaxation
wave with a shallow front like a “blurred
shock”. The negative sign conforms that the
amplitude decreases across the front. The
present problem has a solution with permanent
wave form (15) which involves or leads to ten
velocities: (i) the velocity (10a) of convection of
the wave form; (ii) the asymptotic velocity (11a)
as a boundary (or initial) condition; (iii) the
other boundary velocity (17b) related to (ii);
(iv/v) the upper and lower transition velocities
(16b,c) (vi) the wave amplitude V, in (15) which
is arbitrary; (viii) the middle velocity V, in
(40a,b) and (43c¢); (viii-x) the preceding involve
the equilibrium ¢, and frozen ¢, sound speed
appearing in the relaxation speed ¢ in (4a)

The velocity perturbation satisfies (15) in
dimensionless form:

g# 0,00:(W—1(W —1+1/¢)17¢ (49a,b)
= W.e",

where: (i) the velocity is made dimensionless
dividing by V_ in (48a,b); (ii) the convected
coordinate (48b) combines position and time:

W=V/V_,T=(t—cox/c’)/(29). (50a,b)

For fixed time z — —oo downstream and
Z = +oo upstream, and z = 0 corresponds to
the mid-point (40a). The expression (47b) does
not hold (47a) for € = 0, which corresponds
(13a) to V_ = 0, invalidating the choice (48a) of
dimensionless velocity. In the case € = 0, the
velocity  perturbation  (32b)  takes the
dimensionless form (49¢c):

e=0:W=BV/2c,IW =1+ W.e", (5la-c)
using (49b) instead of (48a). The expression

(47b) also does not hold for &=
corresponding (13¢) to V. = ¢/ in (38b):
V_=¢/B:
V(1) =¢/B+Vexpl= (t ~ cox/cz)/ @] exp-(1 (52a,b)
-BV/O; ’

the corresponding dimensionless (49b) form is:
e =o00:W = BV/T, (53a-c)
W=1+We exp[—-(1 —-—W)1].
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In all three cases [(47a,b);(48a,b)], [(49a-c);
(48b)] and [(51a-c);(48b)] there are two
dimensionless variables: (i) the amplitude V
normalized W in different ways (48a), (49b) and
(50b); (ii) the same (48b) convected coordinate
z. There are two dimensionless parameters: (i)
the normalized amplitude W,; (ii)) the
dimensionless combination (13a) of non-
linearity and relaxation effects

5 Bifurcations due to the combination of non-
linearity and relaxation

Each of the seven cases is illustrated in figures 1
to 5, for unit amplitude (52a) and seven values
(52b) of the parameter (13a):

W,=1¢e=-1,0,1/4,1/2,3/4,1,2. (54a,b)

These correspond to: (i) the initial velocities
relative to V, in (16¢):

V[V, =BV./c=¢/(e—=1/2)  (55)
={2/3,0,-1,,3,2,4/3};

(i1) the ratio of non-linearity parameter to the
critical value (28a,b):

Y =pB/B=pV./2¢ (56)
=V /Vi=¢/QRe—-1)
={1/3,0,—1/2,,3/2,1,2/3},

coincides with the ratio V_ to V, in (16b), i.e.
one-half of (53). In all cases the same
dimensionless similarity variable (48b) is used.
Since it is a combined space-time variable
corresponding to a waveform convected at a
constant velocity, it has two interpretations: (i)
before (§3-5), it was considered at a fixed time,
specifying the waveform as a function of
position, so that T — oo upstream x — —oo and
T = —oo downstream x — oo; (ii) in the sequel
(§6 and Figures 1 to 5) it is considered at a fixed
position, specifying the waveform as a function
of time so that T — oo for late time t — oo and
T —> —oo for early time t — —oo. Thus the
correspondence (i) and (ii) is: (i) upstream
x — —oo and late time t = oo for T — oo; (ii)
downstream x — oo and early time t - —oo for
T —» —oo. The solutions bounded for all time
T — too are waves. The solutions unbounded

6
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for T - 4o or T —» —oo show that a bounded
continuous solution is not possible; a bounded
solution is possible if it is discontinuous,
corresponding to a shock. The two transition
cases (55a) both correspond a single solution
(55¢):

e=0,1;V.=0,2c/p: W
=1+ W.e",

(57a-c)

for the initial velocities (55b), with distinct
normalizations: (i) for € =1 in [(47b);(48a)];
(i1) for € = 0 in (49a-c). The plots in Figure 1,
for distinct amplitudes W, = —1, 0, +1 show: (i)
constant velocity for zero amplitude; (ii)
divergence W, = oo at late time 7 — o
starting from unity W, =1 at early time
T — —oo, In the remaining figures 2 to 5, of
non-transition cases, the unit amplitude is used
(56a), so that only the dimensionless ratio of
non-linearity and relaxation is varied.

The value (56b) below the lower transition
leads (47b) to (56¢):

W.=1;, e=-1: (W -2)?
=e"(W - 1);

(58a-c)

this corresponds to a quadratic equation (57b) in
the case of relative non-linearity parameter
(57a):

Y=1/3: W2 —(4+e")W + 4 + e’ (59a,b)
= 0.

The roots lead to two solutions (58b) for the
same initial velocity (54)=(58a):

V.=2¢/3B:4+e" + JeT(e" +4) (60ab)
= 2W, = 3BV/V.C.

Both solutions (Figure 2) start at early time
7 — —oo with finite amplitude W, (—o0) = 2;
the solution above W, (—o) = 2 + O diverges
W, (4+00) = oo at late time as T — o, i.e forms a
shock. The solution below W_(—o) =2 -0
tends at late time T — oo to one half of the initial
value W_(4o0) = 1, as follows from:

1
lim W_ = =lim [4 + eT(l —v1+ 4e‘T)]
T—00 21:—>oo 1 61
==lim{4 (61)

- Er—wo

+ eT[l
—(1+2e7"+0(e™ )]}
=1.

This is confirmed by (56c): (i) at early time
T —» —oo then W, — 2; (i1) at late time 7 — oo
either W_ -1 or W, - co. Thus a small
difference in downstream velocity V. =
2¢/3B £ O leads to a shock or a wave.

The value (60b) above the upper transition

leads (47b) to (60c):
W.=1e=2 W-=1)>2
=e"(W —1/2);

(62a-c)

this is again a quadratic equation (61b) for the
case of relative non-linearity parameter (61a):

Y =2/3: W?2—-0Q2+eHW +1 (63a,b)
1
—et=0.
+Ze

The roots (61b) lead to two solutions (62b) for
the initial velocity (62a):

V. = 4¢/3p: (64a,b)

2Wy = 2+e" /e (e" +2)
= 38V/(2V.c).

The asymptotic value (Figure 3) at early time
7 — —oo is the same in both cases W, (—o0)=1.
The upper value W, (+00) = oo forms a shock
at late time T = +o0. The lower value remains a
wave of finite amplitude, with at late time
T — oo value W_(+) = 1/2, as follows from:

lim W. =  lim [24+e7(1+V1+2e77)]
T—00

T—00 2
= % lim {2 (65)

—(1+e"+0(™)]}
-1/2.

This is confirmed from (60c) since: (i) at early
time T - —oo then W, — 1; (ii) as late time

7



T — oo then either W, » o or W_ - 1/2.
Again a small difference in the downstream
velocity V_ = 4c¢/3B + O leads to a shock or a
wave.

In the intermediate range 0 < € < 1 only
shock solutions exists. The cases € =0 and
€ =1 have been considered (55a-c) and the
other transition case:

W.=1¢e=1/2 Pp=ow=V,
e2T=W-1)W+1)=Ww2—1,

(66a-¢)

is (64b), and leads to a large initial velocity
(64d); it corresponds (47b) to a solution (64e)
like (49c) in Figure 1, replacing 7 by 2t and W
by W?2. The ‘unphysical’ case (64a-¢) separates
the remaining two cases with positive or
negative initial velocity, e.g.:

W,=1¢e=1/4, p=—1/2,V. (67a-
= Ze/pw
=—-pV/c:

W —-1)(W —3)3 =e?,
W,=1;e=3/4 ¥=3/2,V. (68af
=35/, W
= —BV/3c:

W —-1)3(W +1/3) =e*,

using (47b). In both cases (65a-f) in Figure 4
and (66a-f) in Figure 5, there is divergence at
late time 7 — +o0 and a shock forms. The shock
arises from distinct early time 7 - —o0
conditions W(—o) =1,3 in (65a-f) and
W(—) =1,—1/3 in (66a,f).

6 Discussion

The plotting of waveforms of the figures 1
to 5 was made as a function of the convected
space-time coordinate (48b) in two ways. At
fixed time as a function of position, finite
amplitude downstream x — 400 corresponds
upstream x — —oo to: (i) a finite amplitude for a
wave; (i) a finite amplitude for a ‘shock’,
meaning that a continuous bounded solution is
not possible, and a shock must form to have a
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bounded discontinuous solution. Bearing in
mind the similarity variable (48b) in space-time,
and entirely equivalent interpretation can be
made at fixed position as a function of time. For
the same amplitude: downstream as x — +oo
corresponds far into the past t = —oo, and the
upstream condition x — —oo corresponds to late
time t — 4+o0o, with two cases: (i) finite
amplitude for a wave; (ii) divergent solution or
‘blow-up’ for a shock, i.e. a discontinuity is
needed to prevent divergence.

The two parameters affecting the
propagation of weakly non-linear sound waves
in a relaxing medium are: (i) the ratio (67a) of
the non-linearity parameter B to the value (28a)
beyond which only shocks exist and below
which waves (28b) are possible:

Y =B/B=V_B/Q20);
2¢ = 1/[1-¢/(V_B)],

(i1) the exponent (13a)=(67b) in the wave form
(15). The two are related by (68a,b):

Y =¢/(2e—-1),
e=1/2-1/W]=v/2Y - 1),

(1) starting with a rarefaction wave downstream
<0 always leads (case III) to a shock
upstream; (i1) starting with a strong compression
downstream y>1 also leads always to a shock
upstream (case IV). A wave is possible as well
as a shock in the bifurcation range O<y<I,
which includes two sub-ranges separated by
y=1/2; for P<I1/2 case Il with €<0 and for
U>1/2 case I with e>1.

There is substantial literature [4-9] on
bifurcations for non-linear dynamical systems
described by ordinary differential equations
(o.d.e). This raises the ‘'mathematical question”:
(1) how can bifurcations occur for waves which
are the solution of partial differential equations?
The waves considered are permanent wave
forms, and thus cases in which the p.d.e. has a
solution depending on a single combination of
space-time variables, corresponding to a
constant propagation speed. In this case the
solution of the non-linear p.d.e. reduces to a
non-linear o.d.e., so bifurcations could occur.

(69a,b)

(70a,b)



ON THE INTERAL STRUCTURAL OF SHOCK WAVE IN RELAXING GAS

The Ilatter remark raises a physical

question: (ii) the non-linear non-dissipative
sound waves described by Riemann invariants
have no bifurcations [10-14]; (iii) nor do the
weakly non-linear dissipative sound waves
described by the Burger’s equation [15-18].
Why then do bifurcations occur for waves in
relaxing media? The answer is that in the case
(ii) the non-linear sound wave is determined
uniquely at all events in space-time by the two
Riemann invariants associated with propagation
in opposite directions at a group velocities
Uy =V £ ¢y associated with a single sound
speed c¢y. Thus there can be no bifurcations. The
inclusion of dissipation does not change the
unicity of solution as shown [15] by the Cole-
Hopf transformation [19-20] of the Burgers [21]
equation into a heat equation.
In the case of a relaxing medium there [1-3,12]
is more than one sound speed, namely: (i) the
frozen sound speed, or instantaneous wave
speed before the medium has relaxed; (ii) the
equilibrium sound speed after the medium has
relaxed. The existence of more than one wave
speed can lead to multiple solutions of the
equations of fluid dynamics, as is well known in
high-temperature gas dynamics [22]. In
conclusion the bifurcations can occur for non-
linear waves in media with more than one wave
speed
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Figure 1- Normalized velocity perturbation
(48a) versus dimensionless similarity parameter
(48a) for three values of amplitude W _=0,%1.

The non-zero values lead to divergent waves,
unless a shock forms.
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Figure 2- As figure 1 for unit amplitude and
parameter range for which there exists a
continuous solution W_ with finite amplitude

everywhere for all time. The other solution W,
diverges or forms a shock.
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Figure 3- As figure 2 in a different parameter range
for which both shock and wave solutions exist.
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Figure 4 As Figures 1-3 for a parameter
range with two divergent or shock type
solutions.
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Figure 5 As figure 4 with a different
parameter value also leading to two divergent or
shock type solutions.
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