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Abstract

The comparison of the experimental and
numerical results is presented for the free
oscillation pendulum problem in a water tank.
The results to be compared include pendulum
dynamics information, in particular the
evolution of the amplitude of oscillation, and
velocity and vorticity fields that can be provided
with the help of Particle Image Velocimetry
(P1V) technology. The dynamics of the
pendulum, which represent a classical Fluid-
Structure Interaction (FSI) problem, is directly
characterised by the system of vortexes and
coherent vortex structures, which are created in
the process. The main aim of the paper is to
compare these coherent structures, provided by
the experiments and by those obtained using a
chosen FSI numerical method.

1 Introduction

Bluff body dynamics are particularly
challenging to reproduce both experimentally
and computationally due to the extensive
regions of unsteady separated flow and complex
vortex shedding structures. Indeed, it is
fundamental to understand the role of the
different variables, and the problem is bilateral
between the unsteady flow induced by a moving
body (forced oscillations) and the flow induced
oscillations as in vortex-induced vibrations,
(VIV), [1].

In this paper, a forced oscillation is induced
to a cylindrical pendulum geometry placed in a
water tank. The pendulum movement induces a
complex flow and vortex shedding within the

tank, that is monitored using a PIV system
(LaVision),

The computational method used in this
paper is based on a Finite Volume Method
(FVM) with deformable meshes whose main
benefit is their simple realisation on the basis of
existing CFD codes that work on fixed meshes.
However, it is not free from disadvantages
imposed by the use of the computational mesh
itself. Furthermore, large displacements of the
immersed body can cause mesh degeneration
and distortion, which results in compatibility
and convergence problems. Although such
techniques induce high computational cost and
high disk memory requirements they remain the
most widely used ones for FSI problems. A
vortex method has also been developed. These
techniques preserve the bilateral nature of the
phenomena and remain close to the true induced
forces. These results are presented in [2].

The more classical FVM computational set-up
here is made using the open-source toolbox
OpenFOAM.

The numerical and experimental results are
discussed for the pendulum problem in a water
tank, and conclusions are made on the
effectiveness of the underlying mesh methods
for an FSI problem.

2 Problem description

The problem of free pendulum oscillations in
initially static viscous medium is a classical
Fluid-Structure Interaction (FSI) problem. In
conjunction with its relative intuitive simplicity
it represents a sufficiently complex problem to
study and to verify numerical methods of FSI.



Fig. 1. 3D-model of the pendulum test rig

The experimental test rig is depicted in the
Figure 1.

The simplicity of the pendulum test rig
makes it possible to provide an experiment, in
which both pendulum dynamics and valuable
information about the coherent vortex structures
can be studied. All these information can be
obtained using Particle Image Velocimetry
(PIV) technology [3], being one of the most
effective means to study velocity and vorticity
fields in flows of different nature.

The 3D-model of the test rig is illustrated
above in the Figure 1. In this study a cylinder
(050mm x 150mm) plays role of a ‘bluff” body
that oscillates in an aquarium with water (see
Figure 2); a standard balance load is used to
change the inertia of the system.

To avoid unnecessary friction in supports,
special ‘knife’ joints were used.

The mechanical and geometrical parameters
of the pendulum system are given in Table 1.

A typical experimental test supposes an
initial inclination of the pendulum at angle of
30° and free oscillations for a period of 30
seconds.

The same mechanical parameters, initial
inclination and duration are chosen for
numerical simulation.
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Fig. 2. Aquarium installation; note the controlling mirror
for shadow effects.

Table 1. Pendulum parameters

Total mass M, g: 3511

Moment of inertia with respect to axis of 366.2
rotation /, g - mm?: '

Buoyancy force, F,, N 3.155

Distance to the center of mass from axis of

: 229
rotation [., mm.:
Distance to the center of bluff body from

. . ) 0.279

axis of rotation [,,, mm:
Distance to the center of buoyancy force

. . . 0.274
application from axis of rotation l,, mm:
Proper frequency v, Hz: 0.74

3 PIV set-up description

To study the structure of the vortexes
systems, their origin, emission and evolution,
requires the knowledge of the velocity field of
the induced flow around the bluff body. For
these purposes PIV stays one of the most
promising non-intrusive measurement
technologies. The idea of this method is to add
some ‘seeding’ into the flow in the form of
small particles (around 10um in diameter),
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which follow the streamlines. They are
illuminated two times within a short delay of
time by a laser sheet. These two illuminations
are photographed, and two acquired images are
then processed using statistical cross-correlation
methods to find the particles displacement
between the first and the second illumination. In
this way, the complete velocity field is provided
within the region of interest.

The pulsed laser is placed below the
aquarium, which has transparent bottom to let
laser beam pass through. If the bluff body is
illuminated from below, a shadow is created
above with the water surface reflections.
Therefore, a mirror is installed above the
pendulum (fig. 2), to illuminate the pendulum
from the top to avoid this shadow.

The experiments have been conducted
using LaVision PIV system, which included
two-pulsed Nd:YAG laser with the maximum
frequency of 15 Hz, one or two double shutter
cameras Imager SX 4M, a synchronization
system and the DaVis 8.2 software, used both to
acquire and to process PIV-images. In these
experiments a single camera was used.

4 Numerical methods: The deformable mesh
approach, implemented in OpenFOAM

Actually, a wide range of different numerical
approaches is used to simulate FSI problems;
see for example [4],[5],[6]. Among them one
can mainly emphasise FVM with deformable
meshes[4], moving ‘CHIMERA’ meshes,
immersed boundary method (IBM) [7], vortex
element methods and others. In this paper
commonly used FVM-based method with
deformable mesh is used [4].

The Partitioned approach [6] for FSI
problems consists in the decomposition of the
solution process into the fluid simulation block
and the solid simulation block, which evolve
along their own time iterative procedures and
are updated together at the same equivalent
physical time step, as the mechanism of their
coupling.

The deformed time dependant mesh
approach requires introduction of a third block
in this sequence, which treats mesh deformation
that “follows” the moving body. [8]- It should

be noted that this is automatically satisfied if the
unsteady fluid equation system takes into
account the mesh movement using an ALE
approach into its numerical fluxes, and that the
energy and geometric conservation is enforced.
The algorithm can be represented as a sequence
on three blocks being calculated iteratively:

1. Fluid domain block
e Solution of Navier-Stokes equations using
aFVM;
e C(Calculation of the forces, distributed on
the surface of a body.
2. Solid domain block
e Solution of the elasticity equations;
e (alculation of the displacement field of
the immersed body’s surface.
3. Mesh deformation block
e Solution of the mesh deformation
equation;
e Reconstruction of the mesh in
correspondence with new body position.

In the present application, the mesh
deformation equation to be solved is a Laplace
equation for the new position of the mesh nodes
after deformation.

Mesh  deformation  imposes  major
difficulties in itself for FVM. The main problem
consists in the over distortion of the individual
control finite volumes, which results in loss of
quality and precision of gradient terms when the
body moves with a large amplitude. Not only
this results in loss of convergence rate, but also
can render inconsistent the FVM. To avoid such
mesh distortion a simple remedy is to enlarge
the calculation domain to be much larger than
the dimensions of aquarium.

This algorithm has been implemented on
the basis of the C++ code OpenFOAM [9]. This
code has modular structure, which simplifies
coupling of fluid and solid solvers, as well as
the mesh deformation block.

For the unsteady fluid system, the solver is
based on the PIMPLE (merged PISO-SIMPLE
[9]) algorithm, and for the mesh deformation
part, the Laplace equation is solved as in [4, 8,
6]. Both parts are taken from the
pimpleDyMFoam solver. The solid dynamics



part is written explicitly as a separate block and
embedded into the solution scheme as explained
before.

For the current pendulum problem, depicted
schematically in Figure 3, the solid domain
block 1is represented by a simple linear
differential equation of the pendulum as given
by Eq.(1), whose solution is well known Eq.(2):

W:b 1)

Fig. 3. Pendulum principal scheme

@(t) + w*e(t) = M(t,) (1)
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where M(t,) stands for the moment of the force
loading the pendulum, divided by its moment of
inertia J, and taken at a time ¢,; w 1s the naturel
frequency; ¢, and ¢, are the initial inclination
and angular velocity respectively.

The naturel frequency is calculated using
the mechanical and geometrical pendulum
parameters listed in the table 1 and depicted in
the Figure 3, following the formula:
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This is then implemented under the
assumption of linearity of the sine term, i.e.
sing = ¢, which assumes small inclination
angles, and results in the error of 2% for the
initial inclination angle of 30° used in the
simulation.

For every time step the fluid solver
provides the forces, distributed over the surface
of the bluff body, giving the initial condition
M(t,) for equation (2), which in its turn
calculates the angular displacement of the
pendulum within a time step At. These data
enter into the mesh deformation part to update it
accordingly

Fig. 4. Detail of part of the computational mesh at time t,

The general assumptions and the simulation
parameters that are taken here are:

e A simple linear dynamic model of the
pendulum;

e The suspension bar is not modelled;

e The effect of the free water surface and
proximity of aquarium walls are not taken
1nto account;

e Two options are considered for Turbulence
modelling:

a. LES — using a one equation
model;
b. Laminar flow;

e The unstructured mesh is created with the
blockMesh utility of OpenFOAM (see a
detail in Figure 4);

e Computational domain dimensions in mm:
2400x1600%x900;

e Number and type of cells: 338000 cells that
are mainly hexahedra;

e Average computation cost: 33 hours on 16
cores.
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4. Principal results

In this section some principal results of the
numerical simulations; the PIV experiments are
also given as a comparison.

4.1 Pendulum dynamics

The pendulum free oscillation problem is a non-
stationary problem, which acts over a wide
range of Reynolds numbers. For every period
the pendulum passes two main specific phases:
the phase of the maximum linear velocity (A)
when it passes its equilibrium position (Re is
maximal); and a stop-phase (B) when the
pendulum reaches its maximal amplitude (Re is
minimal). The effective Reynolds number
evolution in time is presented in the Figure 5.
Here the number of Reynolds is calculated using
cylinder diameter as a characteristic length and
the maximal velocity attained by a lowest point
of the cylinder during the period, which was
considered as the characteristic velocity (fig.5).
Each point here corresponds to the moment
when pendulum passes the point of equilibrium.

For the pendulum-fluid model two kinds of
simulations were made: one using a LES
turbulence approximation and one using a
laminar model. On the figures 6 and 7 an
integral dynamic process of amplitude damping
is shown; fig. 6 corresponds to the LES model
and fig. 7 to the laminar model.

As it can be noticed, the two models work
differently in different ranges of numbers of
Reynolds. At the beginning the flow around the
pendulum can be considered as highly turbulent,
or even chaotic.

These results agree with the experiment
quite well during the first two periods of
oscillation. However, subsequently, the LES
model imposes an excessive viscosity in the
flow, which results in increased pendulum
damping. Whereas with the laminar model we
observe that the opposite phenomena occur. The
amplitude evolution curves diverge in the
beginning phase (1%-4™ periods), where
neglecting the effect of turbulence results in a
lack of drag. However, when the amplitude
angle is less than 8°-9°, then this model works
better than taking an LES one.
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Fig. 5. Maximal linear velocity and
Reynolds number evolution
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4.2 Regular flow structures

First, a system of big coherent vortex structures
is generated through the pendulum oscillating
motion. During the creation process, the
vortexes accumulate a considerable amount of
energy, which is transferred directly from the
pendulum. Then, after separation, these vortexes
act like independent energy and flow sources
which interact, until they dissipate, with the
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bluff body. Hence, the dynamics of the
pendulum are mostly determined by these
coherent structures, generated by the pendulum
itself rather than the viscous friction on the
surface. Therefore, the study of these structures,
as well as their correct simulation is essential.

In order to visualize the results, two section
planes were chosen (fig. 8). The first one
corresponds to the midsection of the cylinder
(z=0 mm), where the velocity field exhibits "in-
plane" characteristics, and a second one (z=58
mm), which shows the 3D-boundary effects
occurring at the end of the cylinder.

Further, as the pendulum oscillation is a
periodic process, one can divide a period into
phases which correspond to specific angular
positions of the pendulum. As a result, one can
emphasize two specific positions of the
pendulum which are of particular interest (fig.
9). The first one, denoted as "Phase A",
corresponds to the equilibrium point where the
maximum velocity is reached, and the second
one, denoted as "Phase B", corresponding to the
maximum angular position of the pendulum. In
this study the "Phase A", corresponds to the first
quarter of the first period (i.e. t=0.36s), and
"Phase B" corresponds to the end of the first
period of oscillation (i.e. t=1.41s).

The results of the numerical simulations
and the experimental studies in both section
planes are presented in figures 10-17 for Phase
A, and in figures 18-25 for Phase B. The
visualisation of the flow structure is obtained
using a velocity magnitude colour-map and the
local mean of the velocity vector field.
Furthermore, one can use the streamlines to
approximate the position of the vortexes cores
centre, which can be used as a criterion to
compare both experimental and numerical
studies.

Figures 22 and 23 show vortex positions on
a more wide area around the cylinder than
shown on figures 20 and 21.

One should notice that, for zones close to
the cylinder tip, the "out of plane" component is
predominant, which is one of the limits of the
2D-PIV encountered in this study. The resulting
streamlines for Phase A, presented in fig. 16-17,
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Fig. 8. Section planes for visualization of the results
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Fig. 9. Phase A and phase B where the flow was studied

are based on that in-plane velocity component
and one can clearly see the presence of an in-
plane vortex tip in the wake of the cylinder (fig.
17). Regarding Phase B, the streamline are not
clearly visible as the flow following the
pendulum searches a way to "continue" its
movement while the pendulum has already
stopped. This results traduces a high "out of
phase" velocity component, and in this
particular case the use of in-plane streamline to
visualise the flow is meaningless.

Streamlines, based on the in-plane velocity
components, are shown (fig. 16-17). On the
figure 17 an in-plane vortex tip can be clearly
seen in the wake of the cylinder, which reaches
with its maximal speed.

However, the streamlines are not shown for
the phase B, because the flow, following the
pendulum, searches the ways to continue its
movement, while the pendulum has already
stopped. This results in a very high domination
of out-of-plane velocity component. In this case
the use of in-plane streamlines to visualize the
flow is out of sense.
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Fig. 11. PIV experiment. Velocity field. Phase A
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Fig. 15. PIV experiment. Velocity field. Phase A
(t =0.365,z=58mm)

Fig. 17. PIV experiment. Streamlines and vorticity field.
Phase A (t = 0.36 s,z = 58 mm)



Fig. 18. Velocity field. Phase B (t = 1,41 5,z = 0 mm)
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Fig. 22. Two vortexes near the cylinder. Phase B
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5 Numerical aspects of the simulation and
analysis of the results

As it was mentioned before, the dynamics of the
pendulum simulation depend significantly on
correctness of the vortex system description, i.e.
vortex intensity and lifetime. When adopting a
moving FVM method, this requires a very fine
mesh of good quality, refined everywhere where
vortexes exist. Otherwise, only the most
substantial vortexes are captured, whereas the
small ones either are not ‘seen’ by the solver, or
are dissipated rapidly by numerical effects.

However, as practice shows for such
pendulum FSI problem, the use of well-refined
meshes of more than 2 million cells meets two
principal problems. Both of them are connected
to the limitations of FSI problems when solved
with FVM with deformable meshes.

Firstly, when the mesh is too fine, use of an
explicit iterative procedure leads to very low
stability criteria and numerical instabilities
arise. The very small cells have a relative
distortion that can be larger than bigger cells
during the deformation process. This is
particularly the case when boundary layers are
present where the flow gradients are not
optimally approached on such distorted cells.
This results in globally poor mesh quality when
the pendulum reaches its maximal amplitude,
and which results, in its turn, either very slow
convergence to equilibrium, or no convergence
at all.

The second main problem consists in very
high computational costs. When the solution
scheme contains the mesh deformation block, it
takes much more time to deform the mesh as
number of cell grows.

The above simulations were made on the
3D-mesh of 338000 cells, which 1is
insufficiently refined enough to capture very
well the thin vortical structures. However, the
equivalent of 30 seconds of real time took
already over 32 hours of computer time on 16
cores (= 1,1 hour / 1 sec of simulation). For
comparison, the same simulation was made for
a mesh of 1019760 cells, taking 205 hours on 32
cores to model 30 seconds of the pendulum
oscillations (= 6,8 hours / 1 sec of simulation).

These limitations for using the so-called 3-
field approach with the mesh field method for
large deformations and considerable body
displacement are classical. Nevertheless, the
338000 cells mesh show from the figures 6-7
the good agreement of the amplitude damping
between OpenFOAM and the experiments. This
is partially due to the vortex dominance of such
flows, as the vortical core positions correspond
to total pressure ‘“holes”, which can be well
estimated by inviscid approximations, hence the
influence of insufficiently describing the
boundary layer characterisatics is not evident.

As it was assumed before, using a turbulent
model (LES) works well at the beginning phase
of oscillation. In this phase the difference from
the experiments stays up to 6% for the first 5
periods, going up to 25% for the remainder of
the simulation. In fact, for the first two periods
the real pendulum exposes more intensive drag,
than its numerical model for both LES and the
laminar models, which can be partially
explained by presence of the suspension bar, on
which the cylinder is fixed. This creates a small
additional drag, which is significant for the first
periods of an intensive transient process.

Comparison with the PIV-results shows
good agreement. For the middle cylinder section
the wvelocity vector fields have similar
configurations (fig. 18, 19). The streamlines
show quite good coincidence of the vortex cores
position between the experiment and the
simulation (fig. 20, 21). The real flow turns out
to be a little less regular, and more chaotic, than
the simulated one. Small vortexes, small zones
of non-regular, turbulent/chaotic flow can be
distinguished, whereas the simulation captures
only the large-scale structures. Small-scale
objects are cannot be resolved well on the actual
mesh, which is rather coarse as mentioned
above.

The same conclusions can be noticed for
the side section (fig. 22-25). For the phase B a
small difference can be seen between the
experiment and the simulation for the side
section (z = 58 mm). This can be explained by
looking at the out-of-plane velocity, whose in-
plane components have small values, which
increase the error of vector calculation in the
PIV postprocessing phase.



6 Conclusions

In this work, the problem of free pendulum
oscillations was simulated using a FVM with
deformable meshes. This approach was realised
using the OpenFOAM open-source tool. The
existing pimpleDyMFoam solver was adapted
for the pendulum problem with the addition of
pendulum dynamics equation.

This approach has shown good agreement
with the experiment, taking the amplitude
evolution as a main criterion. Some differences
are distinguished between laminar and turbulent
modelling solutions, which can be explained by
a wide range of Reynolds number of the process
with turbulence effects dominating at the
beginning, and the discrepancies between the
mesh resolution and the viscous modelling in
general.

Several important drawbacks of the 3-field
mesh approach were discovered. Among them
there are:

e Necessity to calculate mesh motion every
time step;

e High possibility of mesh degeneration
during its motion when pendulum reaches
its amplitude; this is the main reason that
limits the use of high-resolution meshes;

e (Convergence problems on distorted mesh;

e Very high computational costs and memory
requirement even on coarse meshes, which
also limits the use of such an approach on
real engineering large-scale problems.
Taking in account its benefits and

drawbacks, the so called “mesh” method can

turn to be efficient for small deformation
problems of aeroelasticity, FSI problems where
displacements of body’s surface are small, and
when the computational domain is not too big.

The bodies can be taken to be either rigid, or

elastic, with the boundary surface moving

arbitrarily.

7 Future research

The Vortex Element Method (VEM), which
does not require a computational grid, seems to
be more appropriate for this particular type of
problem, where the correct description of
vorticity and vortexes in the flow is of the most
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importance. Future research consists in
verification of VEM with the same experimental
results. Comparison with FVM approach and
analysis of effectiveness of both mesh and
mesh-free approaches is planned.
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