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Abstract  
The comparison of the experimental and 
numerical results is presented for the free 
oscillation pendulum problem in a water tank. 
The results to be compared include pendulum 
dynamics information, in particular the 
evolution of the amplitude of oscillation, and 
velocity and vorticity fields that can be provided 
with the help of Particle Image Velocimetry 
(PIV) technology. The dynamics of the 
pendulum, which represent a classical Fluid-
Structure Interaction (FSI) problem, is directly 
characterised  by the system of vortexes and 
coherent vortex structures, which are created in 
the process. The main aim of the paper is to 
compare these coherent structures, provided by 
the experiments and by those obtained using a 
chosen FSI numerical method. 

1 Introduction 
Bluff body dynamics are particularly 
challenging to reproduce both experimentally 
and computationally due to the extensive 
regions of unsteady separated flow and complex 
vortex shedding structures. Indeed, it is 
fundamental to understand the role of the 
different variables, and the problem is bilateral 
between the unsteady flow induced by a moving 
body (forced oscillations) and the flow induced 
oscillations as in vortex-induced vibrations, 
(VIV), [1]. 

In this paper, a forced oscillation is induced 
to a cylindrical pendulum geometry placed in a 
water tank. The pendulum movement induces a 
complex flow and vortex shedding within the 

tank, that is monitored using a PIV system 
(LaVision),  

The computational method used in this 
paper is based on a Finite Volume Method 
(FVM) with deformable meshes whose main 
benefit is their simple realisation on the basis of 
existing CFD codes that work on fixed meshes. 
However, it is not free from disadvantages 
imposed by the use of the computational mesh 
itself. Furthermore, large displacements of the 
immersed body can cause mesh degeneration 
and distortion, which results in compatibility 
and convergence problems. Although such 
techniques induce high computational cost and 
high disk memory requirements they remain the 
most widely used ones for FSI problems. A 
vortex method has also been developed. These 
techniques preserve the bilateral nature of the 
phenomena and remain close to the true induced 
forces. These results are presented in [2].  
The more classical FVM computational set-up 
here is made using the open-source toolbox 
OpenFOAM. 

The numerical and experimental results are 
discussed for the pendulum problem in a water 
tank, and conclusions are made on the 
effectiveness of the underlying mesh methods 
for an FSI problem. 

2 Problem description  
The problem of free pendulum oscillations in 
initially static viscous medium is a classical 
Fluid-Structure Interaction (FSI) problem. In 
conjunction with its relative intuitive simplicity 
it represents a sufficiently complex problem to 
study and to verify numerical methods of FSI.  
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Fig. 1. 3D-model of the pendulum test rig 
The experimental test rig is depicted in the 

Figure 1. 
The simplicity of the pendulum test rig 

makes it possible to provide an experiment, in 
which both pendulum dynamics and valuable 
information about the coherent vortex structures 
can be studied. All these information can be 
obtained using Particle Image Velocimetry 
(PIV) technology [3], being one of the most 
effective means to study velocity and vorticity 
fields in flows of different nature. 

The 3D-model of the test rig is illustrated 
above in the Figure 1. In this study a cylinder 
(ø50mm x 150mm) plays role of a ‘bluff’ body 
that oscillates in an aquarium with water (see 
Figure 2); a standard balance load is used to 
change the inertia of the system. 

To avoid unnecessary friction in supports, 
special ‘knife’ joints were used. 

The mechanical and geometrical parameters 
of the pendulum system are given in Table 1.  

A typical experimental test supposes an 
initial inclination of the pendulum at angle of 
30° and free oscillations for a period of 30 
seconds.  

The same mechanical parameters, initial 
inclination and duration are chosen for 
numerical simulation.  

 
Fig. 2. Aquarium installation; note the controlling mirror 

for shadow effects. 
 

Table 1. Pendulum parameters 
 

Total mass !, !: 3511 
Moment of inertia with respect to axis of 
rotation !, ! ∙!!!: 

366.2 

Buoyancy force, !!,!! 3.155 
Distance to the center of mass from axis of 
rotation !!, !!: 

229 

Distance to the center of bluff body from 
axis of rotation !!, !!: 0.279 

Distance to the center of buoyancy force 
application from axis of rotation !!, !!: 0.274 

Proper frequency !, !": 0.74 
 

3 PIV set-up description 
To study the structure of the vortexes 

systems, their origin, emission and evolution, 
requires the knowledge of the velocity field of 
the induced flow around the bluff body. For 
these purposes PIV stays one of the most 
promising non-intrusive measurement 
technologies. The idea of this method is to add 
some ‘seeding’ into the flow in the form of 
small particles (around 10µm in diameter), 
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which follow the streamlines. They are 
illuminated two times within a short delay of 
time by a laser sheet. These two illuminations 
are photographed, and two acquired images are 
then processed using statistical cross-correlation 
methods to find the particles displacement 
between the first and the second illumination. In 
this way, the complete velocity field is provided 
within the region of interest.  

The pulsed laser is placed below the 
aquarium, which has transparent bottom to let 
laser beam pass through. If the bluff body is 
illuminated from below, a shadow is created 
above with the water surface reflections. 
Therefore, a mirror is installed above the 
pendulum (fig. 2), to illuminate the pendulum 
from the top to avoid this shadow. 

The experiments have been conducted 
using LaVision PIV system, which included 
two-pulsed Nd:YAG laser with the maximum 
frequency of 15 Hz, one or two double shutter 
cameras Imager SX 4M, a synchronization 
system and the DaVis 8.2 software, used both to 
acquire and to process PIV-images. In these 
experiments a single camera was used. 

4 Numerical methods: The deformable mesh 
approach, implemented in OpenFOAM 

Actually, a wide range of different numerical 
approaches is used to simulate FSI problems; 
see for example [4],[5],[6]. Among them one 
can mainly emphasise FVM with deformable 
meshes[4], moving ‘CHIMERA’ meshes, 
immersed boundary method (IBM) [7], vortex 
element methods and others. In this paper 
commonly used FVM-based method with 
deformable mesh is used [4]. 

The Partitioned approach [6] for FSI 
problems consists in the decomposition of the 
solution process into the fluid simulation block 
and the solid simulation block, which evolve 
along their own time iterative procedures and 
are updated together at the same equivalent 
physical time step, as the mechanism of their 
coupling. 

The deformed time dependant mesh 
approach requires introduction of a third block 
in this sequence, which treats mesh deformation 
that “follows” the moving body. [8]- It should 

be noted that this is automatically satisfied if the 
unsteady fluid equation system takes into 
account the mesh movement using an ALE 
approach into its numerical fluxes, and that the 
energy and geometric conservation is enforced.  
The algorithm can be represented as a sequence 
on three blocks being calculated iteratively: 
 
1. Fluid domain block  

• Solution of Navier-Stokes equations using 
a FVM; 

• Calculation of the forces, distributed on 
the surface of a body. 

2. Solid domain block 
• Solution of the elasticity equations; 
• Calculation of the displacement field of 

the immersed body’s surface. 
3. Mesh deformation block 

• Solution of the mesh deformation 
equation; 

• Reconstruction of the mesh in 
correspondence with new body position. 

 
In the present application, the mesh 

deformation equation to be solved is a Laplace 
equation for the new position of the mesh nodes 
after deformation.  

Mesh deformation imposes major 
difficulties in itself for FVM. The main problem 
consists in the over distortion of the individual 
control finite volumes, which results in loss of 
quality and precision of gradient terms when the 
body moves with a large amplitude. Not only 
this results in loss of convergence rate, but also 
can render inconsistent the FVM. To avoid such 
mesh distortion a simple remedy is to enlarge 
the calculation domain to be much larger than 
the dimensions of aquarium.  

This algorithm has been implemented on 
the basis of the C++ code OpenFOAM [9]. This 
code has modular structure, which simplifies 
coupling of fluid and solid solvers, as well as 
the mesh deformation block. 

For the unsteady fluid system, the solver is 
based on the PIMPLE (merged PISO-SIMPLE 
[9]) algorithm, and for the mesh deformation 
part, the Laplace equation is solved as in [4, 8, 
6]. Both parts are taken from the 
pimpleDyMFoam solver. The solid dynamics 



O. Kotsur, G. Scheglov, P. Leyland 

4 

part is written explicitly as a separate block and 
embedded into the solution scheme as explained 
before. 

For the current pendulum problem, depicted 
schematically in Figure 3, the solid domain 
block is represented by a simple linear 
differential equation of the pendulum as given 
by Eq.(1), whose solution is well known Eq.(2):  
 

 
 
 

Fig. 3. Pendulum principal scheme 
 

𝜑(𝑡)+ 𝜔!𝜑(𝑡) = 𝑀 𝑡!  (1) 

𝜑 𝑡 = (𝜑! −
𝑀 𝑡!
𝜔! )  cos  (𝜔𝑡)

+
𝜑!
𝜔   sin  (𝜔𝑡)+

𝑀 𝑡!
𝜔    

(2) 

where 𝑀 𝑡!  stands for the moment of the force 
loading the pendulum, divided by its moment of 
inertia 𝐽, and taken at a time 𝑡!; 𝜔 is the naturel 
frequency; 𝜑! and 𝜑! are the initial inclination 
and angular velocity respectively. 

The naturel frequency is calculated using 
the mechanical and geometrical pendulum 
parameters listed in the table 1 and depicted in 
the Figure 3, following the formula: 

𝜔 =
𝑀𝑔𝑙! − 𝐹!𝑙!

𝐽
 

(3) 

This is then implemented under the 
assumption of linearity of the sine term, i.e. 
sin𝜑 ≈ 𝜑, which assumes small inclination 
angles, and results in the error of 2% for the 
initial inclination angle of 30˚ used in the 
simulation.  

For every time step the fluid solver 
provides the forces, distributed over the surface 
of the bluff body, giving the initial condition 
𝑀 𝑡!  for equation (2), which in its turn 
calculates the angular displacement of the 
pendulum within a time step 𝛥𝑡. These data 
enter into the mesh deformation part to update it 
accordingly 
 

 
Fig. 4. Detail of part of the computational mesh at time t0 
 

The general assumptions and the simulation 
parameters that are taken here are: 
• A simple linear dynamic model of the 

pendulum; 
• The suspension bar is not modelled; 
• The effect of the free water surface and 

proximity of aquarium walls are not taken 
into account; 

• Two options are considered for Turbulence 
modelling:  

a. LES – using a one equation 
model; 

b. Laminar flow; 
• The unstructured mesh is created with the 

blockMesh utility of OpenFOAM (see a 
detail in Figure 4);  

• Computational domain dimensions in mm: 
2400×1600×900  ; 

• Number and type of cells: 338000 cells that 
are mainly hexahedra; 

• Average computation cost: 33 hours on 16 
cores.  
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4. Principal results 
In this section some principal results of the 
numerical simulations; the PIV experiments are 
also given as a comparison.  

4.1 Pendulum dynamics  

The pendulum free oscillation problem is a non-
stationary problem, which acts over a wide 
range of Reynolds numbers. For every period 
the pendulum passes two main specific phases: 
the phase of the maximum linear velocity (A) 
when it passes its equilibrium position (Re is 
maximal); and a stop-phase (B) when the 
pendulum reaches its maximal amplitude (Re is 
minimal). The effective Reynolds number 
evolution in time is presented in the Figure 5. 
Here the number of Reynolds is calculated using 
cylinder diameter as a characteristic length and 
the maximal velocity attained by a lowest point 
of the cylinder during the period, which was 
considered as the characteristic velocity (fig.5). 
Each point here corresponds to the moment 
when pendulum passes the point of equilibrium. 

For the pendulum-fluid model two kinds of 
simulations were made: one using a LES 
turbulence approximation and one using a 
laminar model. On the figures 6 and 7 an 
integral dynamic process of amplitude damping 
is shown; fig. 6 corresponds to the LES model 
and fig. 7  to the laminar model.  

As it can be noticed, the two models work 
differently in different ranges of numbers of 
Reynolds. At the beginning the flow around the 
pendulum can be considered as highly turbulent, 
or even chaotic.  

These results agree with the experiment 
quite well during the first two periods of 
oscillation. However, subsequently, the LES 
model imposes an excessive viscosity in the 
flow, which results in increased pendulum 
damping. Whereas with the laminar model we 
observe that the opposite phenomena occur. The 
amplitude evolution curves diverge in the 
beginning phase (1st-4th periods), where 
neglecting the effect of turbulence results in a 
lack of drag. However, when the amplitude 
angle is less than 8˚-9˚, then this model works 
better than taking an LES one. 
 

 

 
Fig. 5. Maximal linear velocity and  

Reynolds number evolution 

 
 

Fig. 6. Pendulum amplitude evolution using a LES-model 

 
  

Fig. 7. Pendulum amplitude evolution using a laminar 
model 

4.2 Regular flow structures  
First, a system of big coherent vortex structures 
is generated through the pendulum oscillating 
motion. During the creation process, the 
vortexes accumulate a considerable amount of 
energy, which is transferred directly from the 
pendulum. Then, after separation, these vortexes 
act like independent energy and flow sources 
which interact, until they dissipate, with the 
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bluff body. Hence, the dynamics of the 
pendulum are mostly determined by these 
coherent structures, generated by the pendulum 
itself rather than the viscous friction on the 
surface. Therefore, the study of these structures, 
as well as their correct simulation is essential. 
In order to visualize the results, two section 
planes were chosen (fig. 8). The first one 
corresponds to the midsection of the cylinder 
(z=0 mm), where the velocity field exhibits "in-
plane" characteristics, and a second one (z=58 
mm), which shows the 3D-boundary effects 
occurring at the end of the cylinder. 

Further, as the pendulum oscillation is a 
periodic process, one can divide a period into 
phases which correspond to specific angular 
positions of the pendulum. As a result, one can 
emphasize two specific positions of the 
pendulum which are of particular interest (fig. 
9). The first one, denoted as "Phase A", 
corresponds to the equilibrium point where the 
maximum velocity is reached, and the second 
one, denoted as "Phase B", corresponding to the 
maximum angular position of the pendulum. In 
this study the "Phase A", corresponds to the first 
quarter of the first period (i.e. t=0.36s), and 
"Phase B" corresponds to the end of the first 
period of oscillation (i.e. t=1.41s). 

The results of the numerical simulations 
and the experimental studies in both section 
planes are presented in figures 10-17 for Phase 
A, and in figures 18-25 for Phase B. The 
visualisation of the flow structure is obtained 
using a velocity magnitude colour-map and the 
local mean of the velocity vector field. 
Furthermore, one can use the streamlines to 
approximate the position of the vortexes cores 
centre, which can be used as a criterion to 
compare both experimental and numerical 
studies.  

Figures 22 and 23 show vortex positions on 
a more wide area around the cylinder than 
shown on figures 20 and 21. 

One should notice that, for zones close to 
the cylinder tip, the "out of plane" component is 
predominant, which is one of the limits of the 
2D-PIV encountered in this study. The resulting 
streamlines for Phase A, presented in fig. 16-17, 

 
Fig. 8. Section planes for visualization of the results 

 
Fig. 9. Phase A and phase B where the flow was studied 

 
are based on that in-plane velocity component 
and one can clearly see the presence of an in-
plane vortex tip in the wake of the cylinder (fig. 
17). Regarding Phase B, the streamline are not 
clearly visible as the flow following the 
pendulum searches a way to "continue" its 
movement while the pendulum has already 
stopped. This results traduces a high "out of 
phase" velocity component, and in this 
particular case the use of in-plane streamline to 
visualise the flow is meaningless.  

Streamlines, based on the in-plane velocity 
components, are shown (fig. 16-17). On the 
figure 17 an in-plane vortex tip can be clearly 
seen in the wake of the cylinder, which reaches 
with its maximal speed.  

However, the streamlines are not shown for 
the phase B, because the flow, following the 
pendulum, searches the ways to continue its 
movement, while the pendulum has already 
stopped. This results in a very high domination 
of out-of-plane velocity component. In this case 
the use of in-plane streamlines to visualize the 
flow is out of sense. 
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Fig. 10. Velocity field. Phase A (𝑡 = 0.36  𝑠, 𝑧 = 0  𝑚𝑚) 

 
Fig. 12. Streamlines and vorticity field. Phase A 

(𝑡 = 0.36  𝑠, 𝑧 = 0  𝑚𝑚) 

 
Fig. 14. Velocity field. Phase A  

(𝑡 = 0.36  𝑠, 𝑧 = 58  𝑚𝑚) 

 
Fig. 16. Streamlines and vorticity field. Phase A 

(𝑡 = 0.36  𝑠, 𝑧 = 58  𝑚𝑚) 

 
Fig. 11. PIV experiment. Velocity field. Phase A 

(𝑡 = 0.36  𝑠, 𝑧 = 0  𝑚𝑚) 

 
Fig. 13. PIV experiment. Streamlines. Phase A  

(𝑡 = 0.36  𝑠, 𝑧 = 0  𝑚𝑚) 

 
Fig. 15. PIV experiment. Velocity field. Phase A  

(𝑡 = 0.36  𝑠, 𝑧 = 58  𝑚𝑚) 

 
Fig. 17. PIV experiment. Streamlines and vorticity field. 

Phase A (𝑡 = 0.36  𝑠, 𝑧 = 58  𝑚𝑚) 
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Fig. 18. Velocity field. Phase B (𝑡 = 1,41  𝑠, 𝑧 = 0  𝑚𝑚) 

 
Fig. 20. Streamlines and vorticity field. Phase B 

(𝑡 = 1,41  𝑠, 𝑧 = 0  𝑚𝑚) 

 
Fig. 22. Two vortexes near the cylinder. Phase B 

(𝑡 = 1,41  𝑠, 𝑧 = 0  𝑚𝑚) 

 
Fig. 24. Velocity field. Phase B (𝑡 = 1,41  𝑠, 𝑧 = 58  𝑚𝑚) 

 
Fig. 19. PIV experiment. Velocity field. Phase B 

(𝑡 = 1,41  𝑠, 𝑧 = 0  𝑚𝑚) 

 
Fig. 21. PIV experiment. Streamlines and vorticity field. 

Phase B (𝑡 = 1,41  𝑠, 𝑧 = 0  𝑚𝑚) 

 
Fig. 23. PIV experiment. Two vortexes near the cylinder. 

Phase B (𝑡 = 1,41  𝑠, 𝑧 = 0  𝑚𝑚) 

 
Fig. 25. PIV experiment. Velocity field. Phase B 

(𝑡 = 1,41  𝑠, 𝑧 = 58  𝑚𝑚) 
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5 Numerical aspects of the simulation and 
analysis of the results  
As it was mentioned before, the dynamics of the 
pendulum simulation depend significantly on 
correctness of the vortex system description, i.e. 
vortex intensity and lifetime. When adopting a 
moving FVM method, this requires a very fine 
mesh of good quality, refined everywhere where 
vortexes exist. Otherwise, only the most 
substantial vortexes are captured, whereas the 
small ones either are not ‘seen’ by the solver, or 
are dissipated rapidly by numerical effects.  

However, as practice shows for such 
pendulum FSI problem, the use of well-refined 
meshes of more than 2 million cells meets two 
principal problems. Both of them are connected 
to the limitations of FSI problems when solved 
with FVM with deformable meshes.  

Firstly, when the mesh is too fine, use of an 
explicit iterative procedure leads to very low 
stability criteria and numerical instabilities 
arise. The very small cells have a relative 
distortion that can be larger than bigger cells 
during the deformation process. This is 
particularly the case when boundary layers are 
present where the flow gradients are not 
optimally approached on such distorted cells. 
This results in globally poor mesh quality when 
the pendulum reaches its maximal amplitude, 
and which results, in its turn, either very slow 
convergence to equilibrium, or no convergence 
at all. 

The second main problem consists in very 
high computational costs. When the solution 
scheme contains the mesh deformation block, it 
takes much more time to deform the mesh as 
number of cell grows.  

The above simulations were made on the 
3D-mesh of 338000 cells, which is 
insufficiently refined enough to capture very 
well the thin vortical structures. However, the 
equivalent of 30 seconds of real time took 
already over 32 hours of computer time on 16 
cores (≈ 1,1 hour / 1 sec of simulation). For 
comparison, the same simulation was made for 
a mesh of 1019760 cells, taking 205 hours on 32 
cores to model 30 seconds of the pendulum 
oscillations (≈ 6,8 hours / 1 sec of simulation).  

These limitations for using the so-called 3-
field approach with the mesh field method for 
large deformations and considerable body 
displacement are classical. Nevertheless, the 
338000 cells mesh show from the figures 6-7 
the good agreement of the amplitude damping 
between OpenFOAM and the experiments. This 
is partially due to the vortex dominance of such 
flows, as the vortical core positions correspond 
to total pressure “holes”, which can be well 
estimated by inviscid approximations, hence the 
influence of insufficiently describing the 
boundary layer characterisatics is not evident.  

As it was assumed before, using a turbulent 
model (LES) works well at the beginning phase 
of oscillation. In this phase the difference from 
the experiments stays up to 6% for the first 5 
periods, going up to 25% for the remainder of 
the simulation. In fact, for the first two periods 
the real pendulum exposes more intensive drag, 
than its numerical model for both LES and the 
laminar models, which can be partially 
explained by presence of the suspension bar, on 
which the cylinder is fixed. This creates a small 
additional drag, which is significant for the first 
periods of an intensive transient process.  

Comparison with the PIV-results shows 
good agreement. For the middle cylinder section 
the velocity vector fields have similar 
configurations (fig. 18, 19). The streamlines 
show quite good coincidence of the vortex cores 
position between the experiment and the 
simulation (fig. 20, 21). The real flow turns out 
to be a little less regular, and more chaotic, than 
the simulated one. Small vortexes, small zones 
of non-regular, turbulent/chaotic flow can be 
distinguished, whereas the simulation captures 
only the large-scale structures. Small-scale 
objects are cannot be resolved well on the actual 
mesh, which is rather coarse as mentioned 
above. 

The same conclusions can be noticed for 
the side section (fig. 22-25). For the phase B a 
small difference can be seen between the 
experiment and the simulation for the side 
section (𝑧 = 58  𝑚𝑚). This can be explained by 
looking at the out-of-plane velocity, whose in-
plane components have small values, which 
increase the error of vector calculation in the 
PIV postprocessing phase. 
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6 Conclusions 
In this work, the problem of free pendulum 
oscillations was simulated using a FVM with 
deformable meshes. This approach was realised 
using the OpenFOAM open-source tool. The 
existing pimpleDyMFoam solver was adapted 
for the pendulum problem with the addition of 
pendulum dynamics equation. 

This approach has shown good agreement 
with the experiment, taking the amplitude 
evolution as a main criterion. Some differences 
are distinguished between laminar and turbulent 
modelling solutions, which can be explained by 
a wide range of Reynolds number of the process 
with turbulence effects dominating at the 
beginning, and the discrepancies between the 
mesh resolution and the viscous modelling in 
general.  

Several important drawbacks of the 3-field 
mesh approach were discovered. Among them 
there are: 
• Necessity to calculate mesh motion every 

time step; 
• High possibility of mesh degeneration 

during its motion when pendulum reaches 
its amplitude; this is the main reason that 
limits the use of high-resolution meshes; 

• Convergence problems on distorted mesh; 
• Very high computational costs and memory 

requirement even on coarse meshes, which 
also limits the use of such an approach on 
real engineering large-scale problems. 
Taking in account its benefits and 

drawbacks, the so called “mesh” method can 
turn to be efficient for small deformation 
problems of aeroelasticity, FSI problems where 
displacements of body’s surface are small, and 
when the computational domain is not too big. 
The bodies can be taken to be either rigid, or 
elastic, with the boundary surface moving 
arbitrarily.  

7 Future research 

The Vortex Element Method (VEM), which 
does not require a computational grid, seems to 
be more appropriate for this particular type of 
problem, where the correct description of 
vorticity and vortexes in the flow is of the most 

importance. Future research consists in 
verification of VEM with the same experimental 
results. Comparison with FVM approach and 
analysis of effectiveness of both mesh and 
mesh-free approaches is planned. 
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