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Abstract

The  three-dimensional arrangement
represents a solution of a elastic problem
concerning the determination of a deflected
mode of an arbitrary cross-section solid
restrained bar deformation, loaded with
concentrated torque at the free end.

1 General Introduction

The movement limits available in a
torque bar cross-section recall a local stress
burst and are known as Saint Venant’s effect.
As this area viewing the structural strength as
the more dangerous one so the stress level
determination needs to raise bearing strength of
such details. There are a considerable number of
such areas in the aircraft structure, but the area
of the torque box-to-wing connection is the
most dangerous and high-loaded in the centre-
section. Because there is a considerable change
of the deflection rate in this area, so a singular
stress burst is observed. The precise
acknowledgement of the stresses is needed to
choose a constructive decision correctly. The
existing calculation methods can give only an
approximated valuation of it. The numerical
methods just give only a fluctuating solution for
this area. Quite a simple reliable solution shall
be available to choose an optimal decision
which could permit to evaluate the stresses and
deformations picture.

As a three-dimensional deflected mode
(DM) arises explicitly in this area, so in the first
approximation let us consider the model as a
solid elastic bar and evaluate DM near the
restricted cross-section during the torsion by the
concentrated moment.

2Problem definition

Let the bar have an arbitrary cross-
section. The lateral surface is free of external
stresses. One bar butt is completely
unchangeable. Another butt applied an arbitrary
force system which is statically equivalent to the
torque action M,. The commencement of
Cartesian coordinate system x0y is in the centre
of gravity of the unchangeable section while z
axis is rectilinear and passes throughout the
centres of gravity of the cross-sections.

In the absence of body forces the
movements of an arbitrary point of the body
shall satisfy Lame’s equations
my +(A+u; =0, 0,j=123, (21)

were Ui is an arbitrary bar point movements
induced by its deformation;
A=Ev/Q+v)([1-2v),
Lame’s ratios;

E, v are a modulus of elasticity and Poisson’s
ratio.

Boundary conditions shall be satisfied both on
the lateral surface

o;n.=0,i, j=123 (2.2)

|
and the bar butts:
z=0; u,=0 ,i,j=123

z=1, ” X0, dQ =M, ﬂ(x% ~yo,)dQ =0, (2.3)
Q Q

u=E/2L+v) are

.U you,dQ = ﬂ o, dQ = J‘J. 0,00 = ﬂ 0,,0Q=0,
0 0 A

Q
where oy are stress tensor components, nj are

normal directional cosines to the surface; Q is
the cross-section area, and | is the bar length.

The strained and deformed bar condition
is to be determined.

3 Method of solution



The tension burst having a damping
exponential character along the longitudinal
coordinate z is known to surge near the
restricted section. There is a homogeneous
stress faraway from the restricted section.
Therefore, using the boundary layer conception,
an asymptotic solution called an internal one
can be achieved near the restricted section and
be jointed to the external solution by van
Dyke’s method for a homogeneous stress. As an
external solution any known one can be used for
a free bending of the given geometry bar.

Let us enter an internal variable to construct an
internal resolution

=i l-em) (3.1)

where k is the small parameter characterizing
the bar contraction ratio; n is a constant.

Let us write the internal resolution of the
movements as a series designating
Uu=u,V=uU,,W=U,:

u' =kuy (X, y, ) + KUy (x, v, 1),
V=KV (X, Y, ) HKAVE (X, Y, 7)), (3.2)

=kwi (X, y, 1) + K W, (%, ¥, 2)-
Thereupon, having substituted the variables in
equations (2.1) and resolutions (2.2) and
equating like powers terms we will have a
system of six equations:
o’u, 0%, 0w,

=0; 3.3
oy: oy’ 8;(2 (33)
2
i 2u, 2,un a""l—ﬂng”l:o;
X
82 2w ov
,una;(j—Zyna 2;(+(/‘L+/1) /ma—);:o;
o°w. 2W
A+2u)n Z_2(A+2u)n 1_
(A +2u) o7 (A +2p) o7

L
(B3

The solution of the first three equations
(3.3) satisfying the boundary conditions (2.3) at
z=0 will be of the following form
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u=a,(x,y)x v,=b(x,y)z

W, =C (X, ¥) ¥

Substituting (3.4) into the remained
system equations (3.3) and when satisfying the
boundary conditions (1.3) on the butt z=0 we
shall have

(3.4)

2 nu OX

—l[b (X, y)_uw

jzz +a,(xY)r ;

jzz +b,(x,y)x :(3.5)

ng oy
Mooy Ari () YY)
2 n(A+2u) X oy
+¢,(X,Y)x
Unknown transverse coordinates

functions a1, a2 ,bs, b, ¢1, c2 can be determined
according to the conditions of the internal and
external (2.2)resolutions jointing:
W) =P i) =0 () =(w' ] 36)
where “I” index means the resolution on
the internal coordlnate (3.1), while “0” on the
external coordinate z.

Having written the joining condition
(3.6) and equating the terms of the same order k,
we receive six equations relative to six unknown
functions the solution of which will be the
internal resolution.

Then, a compound, evenly suitable for
all bar solution can be achieved by the joining
procedure [1]. However, the compound solution
cannot be the single one. The solutions can
differ in the joining area. A specified choice of
n constant input into the internal variable (3.1)
enables to determine the compound resolution
in just only way.

It is logical to use for it the principle of
the bar strain potential energy minimum [2]

aE/an—o 3.7)
where E = I ﬂ Za, &,dQdl is the bar
0 Q 'l—

strain potential energy; &ij are components of the
tensor of strain.

Equation (3.7) determines explicitly the
n constant which characterizes the constraint
effect.
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4 Solution

The three-dimensional problem of the
free torsion of solid slightly conic bars with an
arbitrary cross-section was solved by D.Yu.
Panov [3] within the method of small parameter.
So, let this solution be used as an external
resolution.

As well as in the works [3] a bar which
lateral surface is determined by equation

f(x(1—kz), y1—kz))=
will be considered.

Otherwise, f(£,7)=0 if auxiliary
variables &=x(1-kz) and n=y(l—kz) are
entered. The third auxiliary variable { coincides
with axis z.

Either a wvalue of cross-sectional
dimensions relative change per a unit of bar
length or relative bar k tapering is used as the

> 1 A+uoc(XYy)

a, (X, y)(l—e‘”z)+1al(x, y)(l—e‘”z) ——77(1—e‘”2) +ka, (x, y)(l e‘"z)
)7

b,(x, y)(L—e™)+ 2

:%zx(l—enz)+ kP, (%, Y),

where 1t is relative bar torsion per a unit of

length;

P(x y)= —% y(xz + y2)+ XD(x, y)—([1- ZV)U ddx + hl(y)J ;

P, (X y) = —% X(x2 +y2 )+ yd(x, y) - (1- 21/)(..‘ ®dy +h, (X)J ;

d(x,y) is the torsion function.
Functions h,(y) and h, (x) are selected
from the condition

o7 o
5([@@, y)dx + hl(y)J+&UCD(x, y)dy+h2(x)j -0

(4.3)
Let us consider that in transitional area

where occurs joining (1+ e‘”z)zl. Insuch a
case the equations (4.2) cold be re-written as

Ly f-ef - LA 25000

small parameter. Further let the value k be
considered so small that value k® can be
neglected relative to k in the first power.

Let us write an internal resolution of
movements like (3.7), considering second-order
of smallness of k in it.

ut =kuy (%, Y, z) +k2uy(x, v, 1),
Vi =kv (X, Y, 2) + K25 (X, Y, 2),

w' =kw (X, Y, 2) +K*W; (%, Y, 7).

Putting components of movements (3.4)
and (3.5) into (4.1), an internal resolution result.
The joining conditions (3.6) shall be used to
determine six unknown functions az, bi, c1, az,
b2, c2. To the effect let the internal resolution
(4.1) expressed through the external variable z
be equal to the external resolution [3] with
internal variable y (3.5).

(4.1)

i zy(l—e‘”Z )+ kP, (x,y),

(1 e’”z)2 ++kb, (x, y)(l— e’”z):

(4.2)

3 a(x y) LA EE(Y) 1
—a,(X, k X y)=—2 P ‘
AN Al = kAR Y)
2ty ) Kby (X, ) = - = o kePy (x,Y)
2 2 nu "

gcl(X,y 1 A+u [6a1(x,y)+5bl(x,y)J+

2 2n(a+2m| o oy

+ke, (X, y) = 7@(X, y)

Equating terms with like powers k, the
unknown functions will be found:

21 1/1+yac (X, y)
"3n 3 nu OX
a, (% y) =P (x,y);
21 14+ ac, (X,
)= o g A S0

b,(X, y) =, (X, ¥); C,(xy)=0
To determine ci(x,y) there is an equation

2 2
§C1_1 2(/1+,u) 6c21+ac _0(x,y)
2 enfu(A+2u)\ ox* oy’

a,(x,y)=

3



2 2
o' +a_q>, there
XZ 2

dy
will be found that c, =§1CD and accordingly

Considering that

21, .2, Atudd,

Q=———y+=1

1= 7307 g nu ox '

o 2L, 2 Aruid
3n 9 nu oy

The compound solution satisfying the
problem alongside all the segment [0,1] will be
determined as following [4].

u=u’+u' —(ui)o ,

v=v0 +v! —(vi)0 ,

w=w’ +w' —(Wi)o .

Putting the resolutions of movements

into (4.4) an evenly suitable solution of the
problem will be achieved accurate within k?

axz
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2 A+ puod -nz |,-nz
U=—-yZ+—|Y+— — |Ll-e +
¥ Sn(y 3 u aXJ( )9

+ 2kzyz? +krP1(1—e’“Z)
v:—zxz+—(x 21+ﬂ6®}(1—e‘”z)e‘”z
anl” 3 4 oy
— 2koa? +kiP, (- ™)

w-Soh-ov): Joh-e o F o

T

(4.5)

where P;(x, y) = —20(X, y) — x%— y%.

Using the known formulae of the linear
theory of elasticity, the stresses corresponding
to the received system of movements (4.5)will

be found.

2
o1 == 4 /1”1 0 cD(l e’”z)e ”Z+z/1mc1>(2—e’”z)e’”z+2kmx ai)—y (1—e’”z)—k/1r xaﬁ+ y@ e ™" —2kArde ™,
9 n 3 ox x oy

4& 0 —nz\ -nz 0 0 -nz
o1 =g Jr:ﬂ ax;;/(l e )a +ky{(£+x}x+(6—cf—yjyj(l—e ) (4.6)

Oy = 44+ (1 e‘”z}%‘”z +g/1md>(2—e‘”z}e‘”z +2kuy ai)+x (l—e‘”z)— kir xai)+ yai) e " —2kArde ™",
9 n 3 oy oX oy

023—/‘”7((1 € nz) 2 o

+ 2 A+ ,u)z'ag (ZG_HZ
9 oy

3 o

,urag(l— e_nz)+ l,urag(l— e_nz)z

+ %;m((z -e™ )3‘”2 +

oxoy

2 2
_1)9‘”Z +kpmP,e ™ —3kmz(%) + x] - kmz[x 00, yaay—(fj —kuoz,

2 oD oo
=—(A4+2)mD(12-e ™™ - 2kut| X—+y— |—2kut® + 2k At d2v{l—e™ )—kAzr| X—+ y—
3( H)yma( Je m( ™ y@yj u v )- T( x yay

Condition (3.7) enables to determine n
constant explicitly.

Thereby, the solution of the given
geometry bar bending torsion problem is
determined by expressions (4.5) and (4.6)
completely.

PRISMATIC BAR

The received solutions (4.5) and (4.6)
show that at the bending torsion of small
tapering bars all stresses and movements are
nonzero ones. Let us consider now an extreme

oD aq>) .

case of the pass of a slightly tapering bar into a
prismatic one. l.e., parameter k in solutions (4.5)
and (4.6) is vanishing.

So, the stresses and movements for
prismatic bars are as following

u=-77z +if(y— 2 ﬂ"",u GQJ(:I__e—nz)%—nz

3 u ox
v=—zxz—3—lnr(x—§/1;”§j(l e‘”z)e " (4.7)
w=§z¢(1—e‘”z)+%z®(l—e‘“z)2
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41+y o)
n 6x
+,u RN

"o

11

O =

n
O13=—H (

2
+=(A+u)yr—\2e™" -1,
S+ ) aX( k

)
42
9
1
3

1

023 Z,MX(l—e‘“Z)+%uraﬁ(l—e_”z)+§yr% _

oy
+—= (ﬂ-i—,u)r—( e 1)9 n

s =§(,1 + 22 —e " .

It is obtained that the prismatic bar all
the same has a compound stress. Faraway from
this area e™ is vanishing and expressions (4.7)
and (4.8) give the Saint-Venant’s solution.

When considering the fixed section as
z=0 it turns out that the normal stresses can even
exceed tangents here, and the tangent stress o12,
as supposed, equals to zero. And the biggest of
the normal stresses will be the longitudinal
stress o33 because

933 _988 140K

011 Oz A

For example, at Poisson’s ratio v=1/3 the
longitudinal normal stress o33 will be twice more
than transversal ones.

BARS OF SOME KINDS OF CROSS-
SECTIONS

Let us consider a solution of the
problem for some cross-section Q specific areas
in detail.

Let area Q) represent an ellipse with semi
axes a and ¢ in section Z=0 and be determined
by the equation

(En)=5+1 1

a b?
where £=X(1-Kz), n=Y(1-KZ)
The torsion function for this area is
known to appear as

(&, n)=Cne,

l—e™)™ +§,1mq>(2—e"z

7”Z)+ yz’%(l— efnz)+ —yra;j:

o _AAtn R
P9 n axay

~—(1-em

R e

(1—e’”z)2 —g/,zzy<2—e’"z}e’”Z + (4.8)

3

where C =—(a® —b?)/(a® +b?)
And the relative angle of bar torsion per
a unit of length equals to
M !a +b2P
8°b3
Functions hi(#) and hx(&)are taken from

condition (4.3), when opening, it results
oh,

1. .2, 2 oh _
2C(§ +7 )+—aﬂ + o =0.

1. 3 1.3
Hence hl :_ECU y h2 =—€C§ y

otherwise discarding terms which have K
squared or in higher powers, it results

u= —zyZ(1—2KZ)+11y(1+ 2 ““cj(l—e”*Z)e"Z +
3n 3 u

et

—%sz(x2 +y?)-(1-e™), (4.9)

L= 1'XZ(1—ZKZ)—11X(1_ZMC](1_e—nZ)e-nz N
3n 3 U

+ Ksz{y2 —(;—vj(yz —;xzj}(l—e‘“zﬁ
+%sz(x2 +y?)-(1-e™),

- %szy(l— e )+ %szy(l— e ) —4K<Cxyz.
For stresses in formulae (3.9) it results

o1 =§zn10xy(2—e*"2 )e’"z +2Kuny(C —1)(1—e*”Z )—4Kﬂerye’”Z,
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o1y = g ’1:“ zC(l—e’”Z)e’”Z + Km[(c: +1)x% +(C —1)y211—e’”z)

O13= —ﬂf)’(l— e‘”z)+ %,usz(l— e‘”z)+ %mCy(l— e‘”z)2 - %yzy(z - e‘”z)e‘”Z + g(/l + ,Lt)fyC(Ze_nZ _1)5—”2 _

1 1 1 (4.20)
—dkunyz(C 1)+ kﬂmCY{XZ _(E —VJ(XZ 3 yzﬂe”Z —Ekmny(x2 + yz}fnz,

O = %ﬁn szy(Z —e™ )ef"Z +2kumxy(C +1)(1—e*"Z )— 4kArCxye ™,
O3 = yzx(l—e‘”z>+§ysz(1—e‘”z )+%,usz(1—e‘”z)2 +§yrx(2—e‘"z )e‘”z +§(/1 +y)sz(2e‘”Z —1)5‘"Z -

—4kuwz -(C+1)+ k,uanx{y2 —(%—v](yz —% xzﬂenZ +% k,uznx(x2 + yz)e’“z,

Oa3 :%(m Zy)anxy(Z—e’”Z}a’”z —2K7ICxye ™™ + ZkMny[Zv(l—e’"z)—1]—8kr;£xy.
Let us write equation (2.14) to find out the n ratio.
y) 1 1

444 22/ 2 2 2 2 2 2 2 2 l 2 1 2
n aa b’C [ﬂ+2j+n {a [3(0 +1X231—Bz)—aB1 —1882}—4b {(C—1X2A1+A3)+3A1A3 +§A1 +4A3}+(4_11)

+nK{16b2(C ~1)4A + AZ)—g‘;c(flﬂ][aZ(c +1)+b(C —1)]}—;3(“1]20 =0,

where
141 24 1
== C—B—Q#C,AZ = 2(C—1)+vC,
7.2 42

Aj_§C +§+§;C,
81:4C+2{/1+1JC—1;BZ:C+4(/1+1JC—2.

3\ u 3\ u

It is not a difficult task to solve equation
(4.11) relative to n. Only a real positive root
satisfies the problem solution

Parameter n is an  important
characteristic of the constraint effect which
specifies not only magnitude of the boundary
effect area resulted from constraint, but both
intensity and tension change character in the
area as well. Besides, n parameter enables to
make a qualitative analysis of deflected mode of
the material in the area influenced by the
constraint effect linked with geometric
dimensions bar and material characteristics. So,
on the assumption of equation (4.11) one can
conclude that n, and consequently the constraint
effect, in case of a prismatic bar does not
depend on its length that reaffirms ipso facto the
Saint-Venant’s hypothesis. The tapering has
some, but not too strong, influence over n
parameter. It is obvious from the graph of

dependence of dimensionless factor n*=n*a on
the dimensionless factor k*=k*I, at b/a=0.5
(Fig. 1). This dependence has a practically
linear appearance at any Poisson’s ratio value.
A small growth of n with the bar tapering
increase causes a constraint area reduction. The
normal stress o33 reduction in a constraint
section Z=0 with the tapering increase reaffirms
the Ye. P. Grossman’s conclusion [5] about the
constraint effect and the tapering effect creating
normal stresses with different signs at torsion.

Dimensionless ratio n* dependences on
semi axes ellipse ratio at the prismatic bar
torsion enable to make some qualitative
conclusions: firstly, ratio n* has the minimum
value at b/a=0.85-0.9, i.e. the bars with such
semi axes ratio has the biggest extension area of
the boundary effect caused by constraint;
secondly, on increasing the Poisson’s effect the
boundary effect area reduces because of the n*
increasing, and normal stresses slightly grow
up; thirdly, the constrain effect vanishes for a
round bar (b/a—1) and a very thin plate
(b/a—0), as it was expected because ratio
n*—oo,

Comparing normal dimensionless stress
distribution graphs

o33 = o33*a3IM;
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along line AB of the elliptic section
prismatic bar at the following calculated data:

v=0.32, b/a=0.5, a/b=0.25, x/a=0.75, y/a=-0.33

n*
4
/
——‘(
35 —
3 0,37
D= y /
’///
. — | ,-03 /4
| /¢,//
=0,28
2 / v K*
0 0,25 0,5 0,75 1

Fig. 1 Dependence of dimensionless parameter n* = na on the bar tapering

(Fig.2) shows that o33* has the same
character of behavior in all the three comparable
solutions. The divergence is observed in
numerical values and reaches difference of 25%
between the solution presented in this work and
the N.V. Zvolinsky’s solution [6] in the
constrained section. The Foeppl’s results differ
essentially less.

The N.V. Zvolinsky’s, Foeppl’s and
S.P. Timoshenko’s [7] solutions do not satisfy
all elastostatics equations. In the first solution
do not satisfy precisely the equilibrium
equations, two other solutions do not satisfy
Saint Venant identity, i.e. those are approximate
solutions. The solution given in this work has a
more common character because it is true for
arbitrary cross-section bars bothprismatic ones
and those having deflection from prismaticity.

The longitudinal normal stress overstating as
compared with other solutions is explained,
perhaps, by non-complete satisfaction of the
boundary conditions on the lateral surface of the
bar near the constrained section z=0,

The comparative graphs for the
distribution of dimensionless normal and
tangent stresses oy =0y -a®/M, along axis z at

prismatic elliptic bar torsion are given in fig.3.
The calculated data are the same. The normal
lateral stress o*22 will be equal to ¢*11 because
the bar has a constant section alongside.

The extreme case of the ellipse
degeneracy into a circle is important practically.
The solution for the round section can be
obtained supposing C=0 in (4.9) and (4.10).
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3
2,5 \
2 .
—&— solution (3.10)
[12]
£ 15 - :
o} solution A.Foeppl’s
1 S
solution N.V.
Zvolinsky’s
0,5
0 == |
0 025 05075 1 15 2 25 3
z/a

Fig.2 Comparative graphs for the distribution of dimensionless longitudinal normal stress
o33* at the elliptic bar torsion

033

2,25

1,5

0,75

zla

0,75 1,5 2,25 3

Fig.3 Comparative graphs for the distribution of normal and tangent stresses
along axis z at the elliptic bar torsion
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—-nz

u=-yz + izy(l— e ")e™,
3n (4.12)

1 g
v=mxz——wx(l-e ™)e™,
3n
w=0,
o11=022=012=033=0,

nz —nz

e 2 _
Oy3 =—H1y + uzye —Emy(Z—E”Z)e :

(4.13)

n —Nnz

Op3 = MIX — UTXE™

Expressions (4.12) and (4.13) depend on
the constraint. However, as it was mentioned
previously for the round section case n— oo,
therefore expressions (4.12) and (4.13) are
reduced to a free torsion solution. It is affirmed
completely in practice.

Thereby, as torsion function @(&) is
known for many kinds of cross-sections,
therefore expressions for movements and
stresses an constrained torsion can be written
down easily.

The given solution permits to assess the
level of all stresses and deformations depending
on section form and material elastic responses.
As the elastic problem solution has been
received, the solution for a real stress case will
be obtained by writing an analogous solution for
other stresses and applying the principle of
superposition.

24 %yzx(2 —-e™)e
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