
 

 

 

Abstract  

The three-dimensional arrangement 

represents a solution of a elastic problem 

concerning the determination of a deflected 

mode of an arbitrary cross-section solid 

restrained bar deformation, loaded with 

concentrated torque at the free end.  

 

1 General Introduction 

The movement limits available in a 

torque bar cross-section recall a local stress 

burst and are known as Saint Venant’s effect. 

As this area viewing the structural strength as 

the more dangerous one so the stress level 

determination needs to raise bearing strength of 

such details. There are a considerable number of 

such areas in the aircraft structure, but the area 

of the torque box-to-wing connection is the 

most dangerous and high-loaded in the centre-

section. Because there is a considerable change 

of the deflection rate in this area, so a singular 

stress burst is observed. The precise 

acknowledgement of the stresses is needed to 

choose a constructive decision correctly. The 

existing calculation methods can give only an 

approximated valuation of it. The numerical 

methods just give only a fluctuating solution for 

this area. Quite a simple reliable solution shall 

be available to choose an optimal decision 

which could permit to evaluate the stresses and 

deformations picture.  

As a three-dimensional deflected mode 

(DM) arises explicitly in this area, so in the first 

approximation let us consider the model as a 

solid elastic bar and evaluate DM near the 

restricted cross-section during the torsion by the 

concentrated moment. 

 

2 Problem definition  
Let the bar have an arbitrary cross-

section. The lateral surface is free of external 

stresses. One bar butt is completely 

unchangeable. Another butt applied an arbitrary 

force system which is statically equivalent to the 

torque action Mz. The commencement of 

Cartesian coordinate system х0y is in the centre 

of gravity of the unchangeable section while  z 

axis is rectilinear and passes throughout the 

centres of gravity of the cross-sections. 

In the absence of  body forces the 

movements of an arbitrary point of the body 

shall satisfy Lame’s equations 

3,2,1,,0)( ,,  jiuu jijjji  ,   (2.1) 

were ui  is an arbitrary bar point movements 

induced by its deformation; 

)21()1(   E , )1(2   E  are 

Lame’s ratios;  

E,  are a modulus of elasticity and Poisson’s 

ratio. 

Boundary conditions shall be satisfied both on 

the lateral surface 

3,2,1,,0  jin jij  (2.2) 

and the bar butts: 
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where  ij  are  stress tensor components, nj  are 

normal directional cosines to the surface;  is 

the cross-section area, and  l is the bar length. 

The strained and deformed bar condition 

is to be determined. 

3 Method of solution 
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The tension burst having a damping 

exponential character along the longitudinal 

coordinate z is known to surge near the 

restricted section. There is a homogeneous 

stress faraway from the restricted section. 

Therefore, using the boundary layer conception, 

an asymptotic solution called an internal one 

can be achieved near the restricted section and 

be jointed to the external solution by van 

Dyke’s method for a homogeneous stress. As an 

external solution any known one can be used for 

a free bending of the given geometry bar. 

 

Let us enter  an internal variable to construct an 

internal resolution 

 nze
k

 1
1

                                       (3.1) 

where k is the small parameter characterizing 

the bar contraction ratio; n is a constant. 

Let us write the internal resolution of the 

movements as a  series designating 

321 ,, uwuvuu  : 
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Thereupon, having substituted the variables in 

equations (2.1) and resolutions (2.2) and 

equating like powers terms we will have a 

system of six equations: 
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The solution of the first three equations  

(3.3) satisfying the boundary conditions (2.3) at 

z=0 will be of the following form 
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Substituting (3.4) into the remained 

system equations (3.3) and when satisfying the 

boundary conditions (1.3) on the butt z=0 we 

shall have 
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 Unknown transverse coordinates 

functions a1, a2 ,b1, b2, c1, c2 can be determined 

according to the conditions of the internal and 

external (2.2)resolutions jointing: 

            ,;;
000000 iiiiii

wwvvuu  (3.6) 

where “i” index means the resolution on 

the internal coordinate (3.1), while  “0” on the 

external coordinate z. 

Having written the joining condition 

(3.6) and equating the terms of the same order k, 

we receive six equations relative to six unknown 

functions the solution of which will be the 

internal resolution. 

Then, a compound, evenly suitable for 

all bar solution can be achieved by the joining 

procedure [1]. However, the compound solution 

cannot be the single one. The solutions can 

differ in the joining area. A specified choice of 

n constant input into the internal variable (3.1) 

enables to determine the compound resolution 

in just only way. 

It is logical to use for it the principle of 

the bar strain potential energy minimum [2] 

0 n ,                                     (3.7) 
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  is the bar 

strain potential energy; εij are components of the 

tensor of strain. 

Equation (3.7) determines explicitly the 

n constant which characterizes the constraint 

effect. 
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4 Solution 

The three-dimensional problem of the 

free torsion of solid slightly conic bars with an 

arbitrary cross-section was solved by D.Yu. 

Panov [3] within the method of small parameter. 

So, let this solution be used as an external 

resolution.   

As well as in the works [3] a bar which 

lateral surface is determined by equation  

     01,1  kzykzxf  

will be considered. 

Otherwise,   0, f  if auxiliary 

variables )1( kzx   and )1( kzy   are 

entered. The third auxiliary variable ζ coincides 

with axis z. 

Either a value of cross-sectional 

dimensions relative change per a unit of bar 

length or relative bar k tapering is used as the 

small parameter. Further let the value k be 

considered so small that value k2 can be 

neglected relative to k in the first power. 

Let us write an internal resolution of 

movements like (3.7), considering second-order 

of smallness of k in it. 
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         (4.1) 

Putting components of movements (3.4) 

and (3.5) into (4.1), an internal resolution result.      

The joining conditions (3.6) shall be used to 

determine six unknown functions a1, b1, c1, a2, 

b2, c2.   To the effect let the internal resolution 

(4.1) expressed through the external variable z 

be equal to the external resolution [3] with 

internal variable χ (3.5). 
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where  τ is relative bar torsion per a unit of 

length; 
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Ф(x,y) is the torsion function. 

Functions )(1 yh  and )(2 xh  are selected 

from the condition  
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Let us consider that in transitional area 

where occurs  joining   11  nze . In such a 

case the equations (4.2) cold be re-written as 
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Equating terms with like powers k, the 

unknown functions will be found: 
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Considering that  
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The compound solution satisfying the 

problem alongside all the segment [0,l] will be 

determined as following [4]. 
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Putting the resolutions of movements 

into (4.4) an evenly suitable solution of the 

problem will be achieved accurate within k2  
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Using the known formulae of the linear 

theory of elasticity, the stresses corresponding 

to the received system of movements (4.5)will 

be found. 
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Condition (3.7) enables to determine n 

constant explicitly. 

Thereby, the solution of the given 

geometry bar bending torsion problem is 

determined by expressions (4.5) and (4.6) 

completely. 

 

PRISMATIC BAR 

 

The received solutions (4.5) and (4.6) 

show that at the bending torsion of small 

tapering bars all stresses and movements are 

nonzero ones. Let us consider now an extreme 

case of the pass of a slightly tapering bar into a 

prismatic one. I.e., parameter k in solutions (4.5) 

and (4.6) is vanishing.  

So, the stresses and movements for 

prismatic bars are as following 
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It is obtained that the prismatic bar all 

the same has a compound stress. Faraway from 

this area e-nz   is vanishing and expressions (4.7) 

and (4.8)  give the Saint-Venant’s solution. 

When considering the fixed section as 

z=0 it turns out that the normal stresses can even 

exceed tangents here, and the tangent stress σ12, 

as supposed, equals to zero. And the biggest of 

the normal stresses will be the longitudinal 

stress σ33 because 
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For example, at Poisson’s ratio v=1/3 the 

longitudinal normal stress σ33 will be twice more 

than transversal ones. 

 

BARS OF SOME KINDS OF CROSS-

SECTIONS 

Let us consider  a solution of the 

problem for some cross-section Ω specific areas 

in detail. 

Let area Ω represent an ellipse with semi 

axes a and в in section Z=0 and be determined 

by the equation 
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The torsion function for this area is 

known to appear as 
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And the relative angle of bar torsion per 

a unit of length equals to 
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Functions h1() and h2()are taken from 

condition (4.3), when opening, it results 
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For stresses in formulae (3.9) it results 
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Let us write equation (2.14) to find out the n ratio. 
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It is not a difficult task to solve equation 

(4.11) relative to n. Only  a real positive root 

satisfies the problem solution  

Parameter n is an important 

characteristic of the constraint effect which 

specifies not only magnitude of the boundary 

effect area resulted from constraint, but both 

intensity and tension change character in the 

area as well. Besides, n parameter enables to 

make a qualitative analysis of deflected mode of 

the material in the area influenced by the 

constraint effect linked with geometric 

dimensions bar and material characteristics. So, 

on the assumption of equation (4.11) one can 

conclude that n, and consequently the constraint 

effect, in case of a prismatic bar does not 

depend on its length that reaffirms ipso facto the 

Saint-Venant’s hypothesis. The tapering has 

some, but not too strong, influence over n 

parameter. It is obvious from the graph of 

dependence of dimensionless factor n*=n*a on 

the dimensionless factor k*=k*l, at b/a=0.5 

(Fig. 1). This dependence has a practically 

linear appearance at any Poisson’s ratio value. 

A small growth of n with the bar tapering 

increase causes a constraint area reduction. The 

normal stress σ33 reduction in a constraint 

section Z=0 with the tapering increase reaffirms 

the Ye. P. Grossman’s conclusion [5] about the 

constraint effect and the tapering effect creating 

normal stresses with different signs at torsion. 

Dimensionless ratio n* dependences on 

semi axes ellipse ratio at the prismatic bar 

torsion enable to make some qualitative 

conclusions: firstly, ratio n* has the minimum 

value at b/a=0.85-0.9, i.e. the bars with such 

semi axes ratio has the biggest extension area of 

the boundary effect caused by constraint; 

secondly, on increasing the Poisson’s effect the 

boundary effect area reduces because of the n* 

increasing, and normal stresses slightly grow 

up; thirdly, the constrain effect vanishes for a 

round bar (b/a→1) and a very thin plate 

(b/a→0), as  it was expected because ratio 

n*→∞. 

Comparing normal dimensionless stress 

distribution graphs 

σ33 
*= σ33*a3/Mz  
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along line AB of the elliptic section 

prismatic bar at the following calculated data: 

ν=0.32, b/a=0.5, a/b=0.25, x/a=0.75, y/a=-0.33  
 

                          
Fig. 1 Dependence of dimensionless parameter n* = na on the bar tapering 

 

 (Fig.2) shows that σ33* has the same 

character of behavior in all the three comparable 

solutions. The divergence is observed in 

numerical values and reaches difference of 25% 

between the solution presented in this work and 

the N.V. Zvolinsky’s solution [6] in the 

constrained section. The Foeppl’s results differ 

essentially less. 

The N.V. Zvolinsky’s,  Foeppl’s and 

S.P. Timoshenko’s [7] solutions do not satisfy 

all elastostatics equations. In the first solution 

do not satisfy precisely the equilibrium 

equations, two other solutions do not satisfy 

Saint Venant identity, i.e. those are approximate 

solutions. The solution given in this work has a 

more common character because it is true for 

arbitrary cross-section bars bothprismatic ones 

and those having deflection from prismaticity. 

The longitudinal normal stress overstating as 

compared with other solutions is explained, 

perhaps, by non-complete satisfaction of the 

boundary conditions on the lateral surface of the 

bar near the constrained section z=0, 

The comparative graphs for the 

distribution of dimensionless normal and 

tangent stresses zijij Ma /3*   along axis z at 

prismatic elliptic bar torsion are given in fig.3. 

The calculated data are the same. The normal 

lateral stress σ*22 will be equal to σ*11 because 

the bar has a constant section alongside. 

The extreme case of the ellipse 

degeneracy into a circle is important practically. 

The solution for the round section can be 

obtained supposing C=0 in (4.9) and (4.10).
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ω=0, 

σ1 1=σ2 2=σ1 2=σ3 3=0, 
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Expressions (4.12) and (4.13) depend on 

the constraint. However,  as it was mentioned 

previously for the round section case n , 

therefore expressions (4.12) and (4.13) are 

reduced to a free torsion solution. It is affirmed 

completely in practice. 

Thereby, as torsion function Φ(ξ,η) is 

known for many kinds of cross-sections, 

therefore expressions for movements and 

stresses an constrained torsion can be written 

down easily. 

The given solution permits to assess the 

level of all stresses and deformations depending 

on section form and material elastic responses. 

As the elastic problem solution has been 

received, the solution for a real stress case will 

be obtained by writing an analogous solution for 

other stresses and applying the principle of 

superposition.  
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