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Abstrac t  

In this paper, we propose to deal with the 
UAV airspace conflict resolution problem. We 
propose to search near optimal conflict free 
policies in virtue of the model-based 
reinforcement learning. We first analyze the 
UAV airspace conflict problem and the basic 
conditions in ensuring collision-free planning, 
and then discuss the features that effect the 
optimal action. We then propose the 
reinforcement learning based conflict resolution 
algorithm. In the model-based learning 
structure, we consider the simplified dynamics 
of the UAVS in the model, and employ the 
heuristic method to estimate the state-action 
value. In the multi-dimension, continuous space, 
the optimal policy search method is utilized to 
find the near optimal policy. The experience 
from the real environment is used to criticize the 
model-based learning policy. In the end, we 
apply simulation experiments to demonstrate the 
proposed algorithm. 

1 Introduction 

With the rapid increase of UAV applications, 
there will be a great number of UAVs in the air 
in the near future. The UAV airspace 
management problem is becoming more and 
more crucial in terms of airspace safety[1]. The 
primary problem for UAV airspace management 
is airspace conflict resolution[2]. In this paper, 
we propose to study the UAV conflict resolution 
prob lem in virtue of model-based reinforcement 
learning. 

Since there are no pilots in the cabins, 
additional measures should be taken to ensure 
the safety of the UAVs. As there will be plenty 
of UAVs in the airspace, the global centralized 
management is impractical. In this paper, it is 
proposed to search for the near optimal policy 
for the conflict resolution problem by local 
centralized coordination. In the local airspace, 
the involved planes would be limited, which 
would facilitate the processing. However, the 
local perspective may also induce some 
problems such as the hor izontal restriction 
problem. 

In the reinforcement learning, the agents 
often know nothing about the environment, and 
they learn the environment by trial and error. It 
will be inefficient in dynamic environment. The 
conflict resolution scenery includes more than 
one UAV in the environment, which means the 
state space is multi-dimensiona l and continuo us. 
It is impractical to apply the trial and error 
training method in the whole space. On the 
other hand, in the real environment, the 
experiences acquired by interacting with the 
environment are limited. So we propose the 
mod el-based reinforcement learning method. 
The Dyna architecture can improve the learning 
efficiency of real knowledge. The architecture 
integrates the model learning, planning and 
direct learning. We build the model for 
participant UAVs and try to search a near 
optimal policy by model learning, and then 
modify the control parameters by learning the 
real experiences. 

In continuous space, the tabular method 
cannot store all the states. We use the 
approximation method to estimate the 
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approximate state-action value. To find the 
optimal policy, we consider several essential 
features about the state-action value function, 
namely safety, planned routes, and cost. In 
add ition, as different UAVs are differently 
prioritized, the costs of route change are also 
different. All these factors will be taken into 
account for the near optimal policy. 

In the Dyna structure, the learning 
efficiency depends on the learning method and 
the model itself. In this paper we use the 
approximate policy search method.  The 
dynamic constraints are considered to ensure the 
approximation of the real environment. We 
establish the airspace conflict model based on 
the real circumstance, and plan the optimal 
policy by interacting with this model. In 
add ition, the optimal policy search algorithm is 
designed in the model based learning. 

The remainder of this paper is organized as 
follows. Section 2 scrutinizes related works; the 
model based reinforcement learning conflict 
resolution algorithm is presented in Section 3. 
In Section 4 we demonstrate the algorithm by 
experiments; and conc lusions on our works are 
presented in section 5. 

2 Related works 

2.1 Study on conflict resolution  
The literature that deals with the conflict 
detection and resolution problem is rapidly 
growing [3] in volume. The hybrid fuzzy 
potential field method is proposed for 
autonomous mobile robot motion planning with 
dynamic environments. It overcomes the local 
minimum problem by setting fuzzy rules and 
using Adaptive Neuron Fuzzy Inference System 
(ANFIS) [4]. An approach for navigation and 
collision detection based on the kinematic 
equations is introduced in [5]. This approach 
employs the notion of collision cones (CCs). 
The concept of velocity obstacles is introduced 
in [6], which takes the velocity of moving 
obstacles into account. By using the local 
observer, the method in [7]constructs the virtual 
plane, which is an invertible transformation 
equivalent to the workspace. The conflictions 

detection process is performed based on this 
virtual plane. 

In the Reciprocal collision avoidance 
method, both robots are assumed to select a 
veloc ity outside the RVO induced by the other 
robot [8]. Each robo t takes half of the 
responsibility for collision avoidance. 

The reinforcement learning is an 
unsupervised learning method. There are many 
classical reinforcement learning methods, e.g. 
Q-learning, TD learning, and Sarsa- learning [9]. 
Numerous researches have been done in path 
planning and conflict resolution by integrating 
the reinforcement learning [10][11][12][13]. In 
paper [10], the Cell-mapping method is 
integrated with reinforcement learning to find 
the optimal path. It uses the online learning 
method to improve the control policy. In paper 
[11], the potential method and reinforcement 
learning method are integrated to generate an 
optimal maneuver policy to avoid the obstacle. 
The Dyna-Q based method is presented for 
navigation problem in unknown environments 
[14]. 

2.2 Model based reinforcement learning  
Sutton proposes the architecture of Dyna-Q 
learning to improve the efficiency of learning, 
which is model based learning. In the following 
researches, the dyna-H(heur istic) algor ithm is 
proposed by Matilde Santos et.al[15], and a 
version of Dyna based on approximations in the 
form of dynamic Bayes networks and decision 
trees is developed by Sigaud and Wuillemin 
(2006). Paper [16] studies the Dyna architecture. 
In the UAVs conflict resolution problem, the 
UAVs are in a dynamic environment. In the real 
environment the safety of each UAV should be 
guaranteed, and it is impractical to learn the 
optimal policy by the trial and error method.  In 
this paper the model-based reinforcement 
learning method is proposed. At every step, the 
system searches the neat optimal policy by 
mod el based learning. The most frequently used 
mod el-based learning architecture is Dyna 
architecture, as shown in Fig 1. 

As illustrated in Fig 1, the Dyna structure 
combines direct learning, model learning and 
planning together. 
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Fig 1 Dyna learning model 

In case of any airspace conflicts, the 
system first builds the conflict model which 
concern on the states and performances of 
involved UAVs, and then the model begins to 
learn the optimal policy th  for confliction 
resolut ion. By executing the po licy th  we have 
the next state 1ts +  and get the reward 1tr + . The 
tuple 1 1( , , , )+ +t t t ts a s r  is the experience from the 
real environment, which can be learned by the 
system to modify the model. Furthermore, the 
experience can be used to update other state 
values. 

Tab 1 Dyna-Q algorithm [9] 
Algorithm 1：Dyna-Q algorithm 
1: Initialize Q(s,a),Model(s,a) ,s S a A∀ ∈ ∈  
2: repeat 
3:      s←current(non terminal)state 
4:      a← ( , )greedy s Qε −  
5:      execute a; observe s and r 
6:     '

' '( , ) ( , ) [ max ( , ) ( , )]
a

Q s a Q s a r Q s a Q s aα γ← + + −  
7:     '( , ) ,Model s a s r←  
8:     for i = 1 to N do 
9:        s←random previously observed state 
10:      a←random action previously taken in s 
11:      ' , ( , )s r Model s a←  
12:      ' '( , ) ( , ) [ max ( , ) ( , )]Q s a Q s a r Q s a Q s aα γ← + + −  
13:    end for 
14:until 's is terminal 

The Dyna-Q algor ithm is shown as Tab 1, 
it shows the possible relationship between 
experience, model and values for Dyna-Q. In 
Algorithm 1, Model(s,a) denotes the contents of 
the model (predicted next state and reward, 
respectively) for state-action pair (s,a). Direct 
reinforcement learning, model- learning, and 
planning are implemented by steps 6, 7 and 8, 
respectively. The Dyna-Q learning is tabular-
based learning method, which carry on model-
based learning by recording and backward 

propagation. The Dyna-Q structure is a referable 
model, we consider the inner structure of the 
model when dealing with the practical problem. 
In this paper, we deal with the airspace conflict 
resolution prob lem by using heuristic search 
method[15]; which combines with domain 
specific knowledge, so we first focus on the 
theoretical analysis of UAV conflict resolution 
problem. 

3 UAVs conflict resolution  

3.1UAV airspace conflict analysis 
In this paper, the coo rdination method  is used to 
deal with multi-UAV conflict detection and 
resolution. The involved UAVs may get rid of 
the dangerous situation in a cooperative manner. 
Suppose that there is a ground station, which 
manages the territorial  airspace traffic and 
surveillances the UAVs that are close to each 
other, when they are too close and may collide  
in the mid-air, the station will take coordination 
measures to eliminate the risks. 

As shown in Fig 2, when one UAV is 
flying in the air, there should be a safe region 
around it based on its dynamic characteristics. 
In this space, any kind of invasion is extremely 
dangerous for the safety of the UAV. The region 
can be defined as: 

( ) { ||| , || , }i x o y o i y o iD r p p x p y r p z z= − − < − < (1) 
Although conflict resolution maneuvers 

contain attitude modifications and hor izontal 
maneuvers, in this paper, we consider the 
conflict resolution by horizontal modification of 
the direction of UAVs velocities. 

 

Fig 2 UAV safe region 
We first describe the dynamic multi-UAV 

environment, as illustrated in Fig 3. The UAVs 
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in Fig 3 move according to the following 
equations: 

cos
sin

i i i

i i i

i i

i i
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y v
v a
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φ
φ

φ

=
=
=

=
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



                   (2) 

Where iφ is the motion direction of UAV 
Ai and iv and iw  represent the linear and angular 
velocities respectively.  

 
Fig 3 Multi-UAV environment 

When there is a conflict between two 
UAVs, the crises is resolved by changing the 
magnitude or direction of the velocity. In the 
airspace, the change of speed may lead to 
unstability of the involved UAVs. In this paper, 
we mainly consider the direction modification 
of UAV veloc ity. 

We study the conflict detection and 
resolution between different UAVs by using 
related velocity and position between UAVs, as 
shown in Fig 4 

 
Fig 4 relative displacement and velocity 

As shown in Fig 4, for the analysis on the 
relationship between UAVs Ai and Aj, we take 

the position of Aj as the original point in the 
local coordinates frame and suppose Ai is static. 
The relative pos ition and or ientation of Ai are: 

( , )ij i j i jP x x y y= − −                        (3) 
The veloc ity and veloc ity attitude of Aj 

relative to Ai are given as: 
( , )ji j i j i j iv v v x x y y= − = − −

  

                  (4) 
 The related safe region can be expressed 

as: 
| max max

max max

( ) { ||| , || , },

max{ , }, max{ , }
i j x o y o y o

i j i j

D r p p x p y r p z z

r r r z z z

= − − < − <

= =
 ( 5) 

When Aj is supposed to enter the related 
safe region | ( )i jD r  in time window (0 )τ− , there 
is a potential conflict between these two 
participants. 

3.2Conflict resolution 

 
Fig 5  UAV motion modification 

In a multi-UAV coordination confliction 
resolution problem, all the involved UAVs 
would take measures to avoid collision, as 
shown in Fig 5. The UAVs turn in circles when 
they change the direction of their velocities, and 
the radius is ε , which can be expressed as 

V
R

ε =                              (6) 

If the angular velocity is determined, the 
turn radius will be determined based on (6). 

Supposing A2 is static relate to A1 , the 
veloc ity of A1 is the vector sum of 1v  and 2v . 
By rotating the X-Y coordinate system, the 
position of A2 and A1 can be altered onto Y axis, 
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as shown in Fig 5. Supposing that the motion 
angular of A1is 1φ  and A2 is 2φ , then the motion 
differential units can be expressed as (7): 

cos( )
sin( ) 1,2

i i i i

i i i i

x v d
y v d i

φ ε τ τ
φ ε τ τ

∆ = −
∆ = − =

           (7) 

 Therefore, the differential unit position of 
A1 relative to A2is  

'
1 1 1 2 2 2

'
1 1 1 2 2 2

(cos( ) cos( ) )

(sin( ) sin( ) )

x v v d
y v v d

φ ε τ φ ε τ τ

φ ε τ φ ε τ τ

∆ = − − −

∆ = − − −
     (8) 

The motion of the UAV is integrable, and 
the displacement can be expressed as: 

'
1 1 1 2 2 2

0

1 2
1 1 1 2 2 2

1 2

(cos( ) cos( ) )

(sin( ) sin( )) (sin( ) sin( ))

φ ε τ φ ε τ τ

φ ε τ φ φ ε τ φ
ε ε

= − − −

= − − − + − −

∫
t

x v v d

v v
   (9) 

'
1 1 1 2 2 2

0

1 2
1 1 1 2 2 2

1 2

(sin( ) sin( ) )

(cos( ) cos( )) (cos( ) cos( ))

t

y v v d

v vt t

φ ε τ φ ε τ τ

φ ε φ φ ε φ
ε ε

= − − −

= − − − − −

∫   (10) 

Therefore we can draw a conc lusion that 
the solution to UAV conflict 1 2( , )ε ε  should 
meet the following conditions. 

1. ' 2 ' 2( ) ( ) ( )t i j i id A A x x y y R= − + − >  (0, )t τ∈ (11) 
2. After τ time, the modified velocities may 

guarantee it is collision free. 
The (11) can be translated into the solution 

to the following equation: 
' 2 ' 2( ( ) ( )) ( ( ) ( )) , (0, )i ix t x t y t y t R t τ− + − = ∈   (12) 

If ' 2 ' 2( (0) (0)) ( (0) (0))i ix x y y R− + − >  is 
guaranteed and there is no solution for (12) in 
time period (0, )τ , then the angular velocity pair 

1 2( , )ε ε is feasible for conflict resolution. 
For the second condition, we can calculate 

the finish point A1 by (9) and (10): 
1 2

1 1 1 2 2 2
1 2

1 2
1 1 1 2 2 2

1 2

(sin( ) sin( )) (sin( ) sin( ))

(cos( ) cos( )) (cos( ) cos( ))

φ ε τ φ φ ε τ φ
ε ε

φ ε φ φ ε φ
ε ε

= − − − + − −

= − − − − −

x

y

v vE

v vE t t
(13) 

And the veloc ity A1 relate to A2 is  
'

1 1 1 2 2 2
'

1 1 1 2 2 2

cos( ) cos( )

sin( ) sin( )

φ ε τ φ ε τ

φ ε φ ε

= + − +

= + − +
x

y

V v v
V v t v t

        (14) 

By using (13) and (14), we can determine 
whether the angular pair 1 2( , )ε ε is feasible. As 
shown in Fig 6, if two UAVs still come into 
collision at rt , we define this kind of motion as 

safety hazard. The fatalness of the safety hazard 
maneuver can be weighed by rt . 

3.3 Application of reinforcement learning 
To return the ways back to the planned 
waypoints with least cost, rather than to prevent 
UAVs from collision is the ultimate objective of 
conflict resolution. In addition, the policy 
should consider the fairness of costs of all the 
participants. In this paper, a near optimal policy 
in loc al airspace is obtained in virtue of 
reinforcement learning. 
A. States 

The state in the system describes the 
features such as position, orientation and post-
modification of UAVs at the same time. The 
state-space is bounded and holds all possible 
combinations of these features of all involved 
UAVs. A state is represented as a 4n-
dimensional vector 

1 1 1 1[ , , , ..., , , , ]pos pos post pos pos post
n n n nx x y x yφ φ= Φ Φ     (15) 

Where n stands for the number of related 
vehicles, pos

ix and pos
iy are Cartesian coordinates, 

1φ  denotes the direction of motion, and Φ post
i  

represents the post modification of each UAV. 
This paper does not concern the whole state 
space of UAVs, and the searching space is 
mainly the area around the initial state of these 
UAVs, which is defined by the searching depth 
K. 
B. Action 

Actions describe the behavior which the 
system may choos e in a specific situation. In our 
work, each UAV has the minimum turn radius 
constraint, which determines the maximum 
angular velocity of each UAV: 

1 1
imin min

1 2

v v
r r

ε− ≤ ≤                      (16) 

Therefore, one action for the system can be 
described as an action tuple 1 2( , ,..., )ε ε ε= na . 
The action space is an n dimensional continuo us 
space. In order to reduce the computation 
complexity, we use the heuristic po licy search 
method, which will be discussed later. 
C. Reward 

A reward function may be used to define 
the goal in reinforcement learning. It maps 
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perceived states (or state-action pa irs) of the 
environment to a single number, a reward, 
which indicates the intrinsic desirability of the 
state. A reinforcement-learning agent's sole 
objective is to maximize the total reward that 
the agent receives in the long run. The reward 
function defines the good and the bad events for 
the agent. As UAVs are to take detours to avoid 
collision, and then return to their projected paths 
if the crisis is removed, the goals are states 
where both vehicles are on the projected paths 
with appropriate orientations. The closer the 
state is to the goal, the higher reward it will 
receive. The forbidden states are those leading 
to airspace collision so that they have a major 
negative reward. We bring forth the heuristic 
state-action value func tion that can 
appropriately help obtain the near optimal 
policy. In the conflict resolution scene, we take 
the time to the goal state gt  and time to collision 

ct  as the parameters of the value function. The 
purpose is to make the UAVs approach their 
goa ls collision-free respectively. If two UAVs 
are too close to each other, the conflict would be 
unavoidable due to their mobile abilities. In our 
design, the tangential method is proposed to 
estimate the collision risk between involved 
UAVs. 

 
Fig 6 Action prediction and value evaluation 

When we evaluate each action for two 
involved UAVs, the new state could be 
determined by the policy, as shown in Fig 6. 
The distance between UAVs and their next 

goa ls may vary, and we try to evaluate the 
policy in making the UAVs approach the goal. 
We use the heuristic method to estimate the 
time from the current state to the goal state in 
virtue of their current speeds.  

The estimated time can be expressed as 
(17), which neglects the current direction of the 
velocities of UAVs. 

 
−

=
t
i

goal
i

S Goal
t

V
                   (17) 

D. Approximation value function 
For each policy 1{ ,..., }ε εn , the next state is 

given as: 
1

1 1

1

(sin( ) sin( ))

(cos( ) cos( ))

n n i
i i i i i

i

n n
i i i i i

v
x x

vy y

φ φ ε τ
ε

φ φ ε τ
ε

+

+

= + − −

= − − −
        (18) 

For the non-goal states, their value depends 
on their reward and the discounted value of the 
best following states. With the heuristic method,  
we could estimate the non-goal state values. The 
range of the state-action value is set to be [0, 1], 
and the Q function can be achieved by the 
iteration equation (19). 

1 1( ) max[ ( ( ))]k k ka
Q x r Q fπ γ π+ += +             (19) 

Where γ is the discount factor. The state-
value can be approximated by iteration. In the 
online planning phase, it is impractical to obtain 
the globa l optimal policy. The infinite-horizon 
return is approximated by truncating each 
simulated trajectory after K steps. Supposing 
that the distance between two waypoints is Dw 
and the speed of each UAV is Vi, K should meet 
the following condition: 

max{ , }> ∈w

i

DK i n
V

                 (20) 

The equation (20) indicates that K should 
guarantees the UAVs reach the next waypoints 
from the current states in K steps. 

Because the course of the UAVs is made 
up by many waypoints, if one UAV is far from 
the current target, then it will choose the next 
waypoint as the new goal state at the price of a 
greater los s, and its cost will be higher if it 
maneuvers to escape from collision in the future.  

3.4 Model-based reinforcement learning 
algorithm 
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3.4.1 The problem in conflict resolution  
In the above sections we analyzed the 

airspace conflict resolution problem and defined 
the constraints about collision-free maneuvers. 
The goal states of conflict resolution courses are 
to return to the projected pa ths rather than to get 
rid of the possible collisions. What’s more, the 
time window may induce some unsuspected 
problems. As shown in Fig 7, A1 and A2 are 
about to collide at P , if the local coordinator 
only considers the temporal crisis elimination, it 
can be seen that these two planes will get into a 
more difficult situation after the indicated 
maneuvers. As the conflict would become more 
reluctant, each of them would be closer and 
closer. What worse, one of the participants may 
be far away from its projected path. This kind of 
problems cannot be eliminated even if the time 
window is extended. The reinforcement learning 
method can deal with this problem with the 
heuristic method, because this method would 
take the goal into consideration and estimate 
possible conflicts beyond time window 
limitation. 

 
Fig 7 Prob lem in time window restriction  

3.4.2 Algorithm design 
The model-based reinforcement learning 
structure is shown in Fig 1. It is hard to apply 
the trial and error method in conflict resolution 
in the real environment. In this paper, we 
propose the online planning method to search 
the near optimal policy by model-based 
reinforcement learning. 
1. Value approximation 

In the high dimension cont inuous space, it 
is impractical to search the whole space. As for 
the conflict resolution problem, the initial state 
of the system is fixed in each case, so it is 
possible for us to search around the initial state 
for the near optimal policy. As mentioned above, 
we could search for the near optimal policy in K 
steps. Each state-action value is approximated 

by approximation function. In this paper, we 
consider the linear approximation method, in 
which state-action pairs are mapped first to 
feature vectors and then to value in a linear way 
with learned parameters [17].  

The features of the linear approximation 
should make use of the prior knowledge of the 
prob lem. The form of the feature vector can be 
expressed as: 

1 2{ ( ), ( ),..., ( )}nx x xϕ ϕ ϕ ϕ=              (21) 
Suppose θ  is the parameter vector, so the 

state-action value can be expressed as:  
( )

T
t stV π θ ϕ=


                     (22) 
Intuitively, the features should correspond 

to the natural features of the task, along which 
generalization is most appropriate [9]. Four 
features are considered for each state. Feature 1 
reflects the conflict probability between vehicles, 
which helps to filter out motions that lead to 
collisions. Feature 2 reflects the overall distance 
to the projected path, which helps vehicles 
move closer to the temporary goa l state. The 
third feature is regarding orientation differences 
from agents’ projected goa l. It is helpful to 
ensure them return to their intended path in the 
appropriate orientation. In the whole flying 
course, one UAV may encounter with airspace 
conflicts more than once, so we should consider 
the post cost of each UAV. Therefore, the last 
feature concerns fairness. Our aim is to balance 
the cost of conflict resolution between each 
participant 
2. Heuristic learning  

In the real environment, the UAVs often 
take several actions to avoid collision, e.g. turn 
left in 40 degree, turn left in 20 degree, go 
straight, turn right in 20 degree, and turn left in 
40 degree. We also discretize the continuo us 
action of each UAV into discrete action subsets. 

Because of the high dimension continuous 
space, particularly when the amount of UAVs 
becomes large, the search space would be too 
large in a search for  the whole tree. In fact, the 
change of the motion direction of one specific 
UAV may influence only UAVs around it. 
Therefore, we could reduce the search space by 
considering the real situation information. As 
shown in Fig 8, each UAV only conflicts with 
two other UAVs around it. Therefore, the whole 
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space can be decoupled into several subspaces 
when the algor ithm searches for  the optimal 
solution, which saves bo th CPU time and 
memor y. 

 
Fig 8 Decomposition of conflict connection 

In Fig 8, it is supposed that each UAV has 
n selectable actions. The original action space is 

5n , so we can divide the whole UAVs into four 
subsets by cutting the chain, and then the action 
space could be reduced to 24n . 

In a heuristic search, for each state 
encountered, a large tree of possible alternatives 
is considered. The approximate value function is 
applied to the leaf nodes, and then backed up at 
the previous state towards the root. The backing 
up in the search tree is just the same as in the 
max-backups. It stops at the state-action nodes 
of the current state. Once the backed-up values 
of these nodes are computed, the best of them is 
chosen as the current action, and the rest of the 
values are discarded. In conventional heuristic 
search no effort is made to save the backed-up 
values and the value function, which once 
designed, never changes as a result of the search. 
However, it would be reasonable to allow the 
value function to be improved over time using 
either the backed-up values computed during 
the heuristic search or by any other method. 
3. Direct learning from the experience 

Each time the system chooses the near 
optimal policy by model-based planning, after it 
executes this policy, it will get reward from the 
environment. In the airspace conflict resolution 
problem, the system cannot go back to retry 

from the beginning. Therefore the updating of 
the predecessors is useless in the learning. The 
experience should be used to facilitate the 
decision making in successive states, such as to 
improve the model. As the model is a simplified 
expression of the real environment, it cannot 
mod el the uncertainty of the environment and 
may have some errors. We can criticize the 
mod el-based learning policy by real results, as 
shown in Fig 9. 

 
Fig 9  Model-based learning architecture 
The algorithm is shown in Tab 2. 

Tab 2  Model based online planning algorithm 
Algorithm：Model based reinforcement learning 
algorithm 
1：In itialize Q(s,a),Model(s,a),Goal state(Sg), in itial 
state(S0) ,s S a A∀ ∈ ∈  
2：repeat  
3：  s←current(non terminal)state 
4:    in itial the search tree i=1 
5:    while i<k       
6:       ( , )nodes greedy s Q←           find the expand node 
7:        if depth( nodes )==i 
8:              i=i+1;  
9:         end  
10:       For j=1: Discrete action 
11:           ja Actionset∈  
12:           ' , ( , )js r Model s a=  
13:           '

' '( , ) max ( , )
a

Q s a r Q s aγ← +     update the value  
14:        End for 
15:     End for 
16:    max { ( , )}u actionseta Q s a∈=  
17:    execute a in the real environment, observe 's  and r  
18: until 's  is Goal state 

4 Experiments  

This section focuses on two experiments. We 
use the real dynamic mode l of the UAVs in the 
environment, and add the noise into the 
input/output information. The noise follows 
Gaussian distribution with zero mean. We use 
the time variables to estimate the state-action 
value function, which can be expressed as (23). 
Where collisiont  is the collision time if the 
maneuver result in collision in τ−0 , i

gt refers to 
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the estimated time to the goal state, rt refers to 
the time collision after time windowτ , i

at refers 
to the estimated time from current direction to 
the planned motion direction, iU refers to the 
modification angle of each UAV dur ing the 
flight. 

1
a

1 2 2g g a

collision
1

step

t
T32

1 4 5 1 2t t t
r

t collision
t

R
e

U U nocollision
te e

θ

θθθ θ θ
+





=    + + + +    
-

   (23) 

The state-action value should be positive. 
When the invo lved UAVs are about collision, 
the state-action value should be small enough to 
guarantee the search algorithm not to choose 
this policy. Other wise, the state-action value is 
determined by i

gt , rt , i
at and iU . 

In the first experiment, there are two UAVs 
in the environment, which fly in a rounded trace. 
One flies clockwise and the other anticlockwise. 
The waypoints are set at every other km, and the 
UAV velocities are set as 0.1km/s. The designed 
traces determine there would be airspace 
conflicts now and then, as shown in Fig 10(a). 
In each conflict resolution course, the system 
takes the next waypoint of each UAV as the 
temporary goal state and carries on the near 
optimal policy search. The result of the 
experiment is shown in Fig 10. 

 
Fig 10 Two-UAV conflict resolution 

Fig 10 (a) illustrates the result of conflict 
resolution all around the experiment. (b) and (c) 
demonstrate the effect in detail. As shown in Fig 
10, the system can deal with the conflict in the 
long period simulation. The system only takes 
about 0.07s to find a near optimal policy. The 
safe distance is 0.6km, and the minimum 
distance be tween these two UAVs in the 

simulation is 0.635km. From Fig 10 we know that 
the modifications of these two UAVs are almost 
the same. 

In the second experiment, the environment 
is a square of which the area is 100km2. There 
are 25 agents in the environment, which are 
uniformly spaced in the square. Their line 
velocities are all 0.1k m/s and their motion 
directions are random. Their maximum angular 
velocities are all 0.5 radians/s. The UAVs in the 
environment are flying based on their dynamics 
and kinematics. The controller receives the 
motion information of the UAVs, and predicts if 
there exist airspace conflicts. The radius of the 
safe region is 0.3km, and the experiment runs 
250s. Fig 11 shows the minimum distance 
between each pair of these agents. 

 
Fig 11. Minimum distance between agents. 

As shown in Fig 11, the original min 
distance curve shows that there are many space 
conflicts between these UAVs during the 
experiment because the red line is often close to 
0.3 km. After the conflict resolution, all the 
conflicts are resolved by multi-agent 
coordination. The minimum distance between 
agents is more than 0.3km. The data 
demonstrate the ability of the multi-agent 
coordination method in dealing with multi-UAV 
problems. 

5 Conclusions 

This paper deals with UAVs conflict detection 
and resolution in dynamic environments. The 
UAVs are supposed to be managed by the 
ground stations, so they can take cooperative 
maneuvers to eliminate the airspace conflictions. 
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The dynamics of UAVs are considered when 
dealing with conflict resolution problems.  

In this paper, we present a model-based 
reinforcement learning method for online 
conflict resolution planning. We firstly study the 
UAV airspace conflict problem, and then bring 
forth several constraints in keeping off midair 
collision, as expressed in math inequalities. 
Since the goal of the online conflict resolution is 
to return to the projected path, we propose to 
search the near optimal policy by reinforcement 
learning, and then approximate the value of the 
state-action pair in the large and continuo us 
space. Furthermore, to reduce the computation 
complexity, we propose to apply the heuristic 
method. The proposed algorithm exhibits 
smooth and convincing behavior in our 
experiments. 
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