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Abstract

In this paper, we propose to deal with the
UAV airspace conflict resolution problem. We
propose to search near optimal conflict free
policies in virtue of the model-based
reinforcement learning. We first analyze the
UAV airspace conflict problem and the basic
conditions in ensuring collision-free planning,
and then discuss the features that effect the
optimal action. We then propose the
reinforcement learning based conflict resolution
algorithm. In  the model-based learning
structure, we consider the simplified dynamics
of the UAVS in the model, and employ the
heuristic method to estimate the state-action
value. In the multi-dimension, continuous space,
the optimal policy search method is utilized to
find the near optimal policy. The experience
from the real environment is used to criticize the
model-based learning policy. In the end, we
apply simulation experiments to demonstrate the
proposed algorithm.

1 Introduction

With the rapid increase of UAV applications,
there will be a great number of UAVS in the air
in the near future. The UAV airspace
management problem is becoming more and
more crucial in terms of airspace safety[1]. The
primary problem for UAV airspace management
is airspace conflict resolution[2]. In this paper,
we propose to study the UAV conflict resolution
problem in virtue of model-based reinforcement
learning.

search

Since there are no pilots in the cabins,
additional measures should be taken to ensure
the safety of the UAVs. As there will be plenty
of UAVs in the airspace, the global centralized
management is impractical. In this paper, it is
proposed to search for the near optimal policy
for the conflict resolution problem by local
centralized coordination. In the local airspace,
the involved planes would be limited, which
would facilitate the processing. However, the
local perspective may also induce some
problems such as the horizontal restriction
problem.

In the reinforcement learning, the agents
often know nothing about the environment, and
they learn the environment by trial and error. It
will be inefficient in dynamic environment. The
conflict resolution scenery includes more than
one UAV in the environment, which means the
state space is multi-dimensionaland continuo us.
It is impractical to apply the trial and error
training method in the whole space. On the
other hand, in the real environment, the
experiences acquired by interacting with the
environment are limited. So we propose the
mod el-based reinforcement learning method.
The Dyna architecture can improve the learning
efficiency of real knowledge. The architecture
integrates the model learning, planning and
direct learning. We build the model for
participant UAVs and try to search a near
optimal policy by model learning, and then
modify the control parameters by learning the
real experiences.

In continuous space, the tabular method
cannot store all the states. We use the
approximation method to estimate the
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approximate state-action value. To find the
optimal policy, we consider several essential
features about the state-action value function,
namely safety, planned routes, and cost. In
addition, as different UAVs are differently
prioritized, the costs of route change are also
different. All these factors will be taken into
account for the near optimal policy.

In the Dyna structure, the learning
efficiency depends on the learning method and
the model itself. In this paper we use the
approximate policy search method. The
dynamic constraints are considered to ensure the
approximation of the real environment. We
establish the airspace conflict model based on
the real circumstance, and plan the optimal
policy by interacting with this model. In
add ition, the optimal policy search algorithm is
designed in the model based learning.

The remainder of this paper is organized as
follows. Section 2 scrutinizes related works; the
model based reinforcement learning conflict
resolution algorithm is presented in Section 3.
In Section 4 we demonstrate the algorithm by
experiments; and conc lusions on our works are
presented insection 5.

2 Related works

2.1 Study on conflict resolution

The literature that deals with the conflict
detection and resolution problem is rapidly
growing [3] in volume. The hybrid fuzzy
potential field method is proposed for
autonomous mobile robot motion planning with
dynamic environments. It overcomes the local
minimum problem by setting fuzzy rules and
using Adaptive Neuron Fuzzy Inference System
(ANFIS) [4]. An approach for navigation and
collision detection based on the kinematic
equations is introduced in [5]. This approach
employs the notion of collision cones (CCs).
The concept of velocity obstacles is introduced
in [6], which takes the velocity of moving
obstacles into account. By using the local
observer, the method in [7]constructs the virtual
plane, which is an invertible transformation
equivalent to the workspace. The conflictions
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detection process is performed based on this
virtual plane.

In the Reciprocal collision avoidance
method, both robots are assumed to select a
velocity outside the RVO induced by the other
robot [8]. Each robot takes half of the
responsibility for collision avoidance.

The reinforcement learning is an
unsupervised learning method. There are many
classical reinforcement learning methods, e.g.
Q-learning, TD learning, and Sarsa- learning [9].
Numerous researches have been done in path
planning and conflict resolution by integrating
the reinforcement learning [10][11][12][13]. In
paper [10], the Cell-mapping method is
integrated with reinforcement learning to find
the optimal path. It uses the online learning
method to improve the control policy. In paper
[11], the potential method and reinforcement
learning method are integrated to generate an
optimal maneuver policy to avoid the obstacle.
The Dyna-Q based method is presented for
navigation problem in unknown environments
[14].

2.2 Model based reinforcement learning

Sutton proposes the architecture of Dyna-Q
learning to improve the efficiency of learning,
which is model based learning. In the following
researches, the dyna-H(heuristic) algorithm is
proposed by Matilde Santos et.al[15], and a
version of Dyna based on approximations in the
form of dynamic Bayes networks and decision
trees is developed by Sigaud and Wuillemin
(2006). Paper [16] studies the Dyna architecture.
In the UAVs conflict resolution problem, the
UAVs are in a dynamic environment. In the real
environment the safety of each UAV should be
guaranteed, and it is impractical to learn the
optimal policy by the trial and error method. In
this paper the model-based reinforcement
learning method is proposed. At every step, the
system searches the neat optimal policy by
mod el based learning. The most frequently used
mod el-based learning architecture is Dyna
architecture, as shown inFig 1.

As illustrated in Fig 1, the Dyna structure
combines direct learning, model learning and
planning together.



A REINFORCEMENT LEARNING BASED UAVS AIR COLLISION AVOIDANCE

Value function Acting

» Environment

Plannin Direct

learning

Model < Experience

Model learning
Fig 1 Dyna learning model

In case of any airspace conflicts, the
system first builds the conflict model which
concern on the states and performances of
involved UAVs, and then the model begins to

learn the optimal policy h for confliction
resolution. By executing the policy h we have
the next state s, and get the rewardr,,,. The

tuple (s,, &S, 1,,) is the experience from the

real environment, which can be learned by the
system to modify the model. Furthermore, the
experience can be used to update other state
values.

Tab 1 Dyna-Q algorithm [9]

Algorithm 1: Dyna-Q algorithm

1: Inttialize Q(s,a),Model(s,a) Vs S,ae A

2: repeat

3:  S«—current(non terminal)state

4 a<— g—greedy(s,Q)

5. execute a;obsrvesand r

6. Q(s,a) « Q(s,a)+afr+ymax_ Q(s,a)-Q(s,a)]
7. Model(s,a) «<s,r

8 fori=1toNdo

9 s«random previously observed state

10:  a«<random actionpreviously taken in S
11: s, r < Model(s,a)

12:  Q(s,a) « Q(s,a) +afr + ymaxQ(s,a)—Q(s,a)]
13: end for

14:until s is terminal

The Dyna-Q algorithm is shown as Tab 1,
it shows the possible relationship between
experience, model and values for Dyna-Q. In
Algorithm 1, Model(s,a) denotes the contents of
the model (predicted next state and reward,
respectively) for state-action pair (s,a). Direct
reinforcement learning, model-learning, and
planning are implemented by steps 6, 7 and 8,
respectively. The Dyna-Q learning is tabular-
based learning method, which carry on model-
based learning by recording and backward

propagation. The Dyna-Q structure is a referable
model, we consider the inner structure of the
model when dealing with the practical problem.
In this paper, we deal with the airspace conflict
resolution problem by using heuristic search
method[15]; which combines with domain
specific knowledge, so we first focus on the
theoretical analysis of UAV conflict resolution
problem.

3 UAVs conflict resolution

3.1UAV airspace conflict analysis

In this paper, the coordination method is used to
deal with multi-UAV conflict detection and
resolution. The involved UAVs may get rid of
the dangerous situation in a cooperative manner.
Suppose that there is a ground station, which
manages the territorial airspace traffic and
surveillances the UAVs that are close to each
other, when they are too close and may collide
in the mid-air, the station will take coordination
measures to eliminate the risks.

As shown in Fig 2, when one UAV is
flying in the air, there should be a safe region
around it based on its dynamic characteristics.
In this space, any kind of invasion is extremely
dangerous for the safety of the UAV. The region
can be defined as:

D (1) ={plll b, =%, B, = Y, lI< .| B, = 2, < 2}(2)

Although conflict resolution maneuwers
contain attitude modifications and horizontal
maneuvers, in this paper, we consider the

conflict resolution by horizontal modification of
the direction of UAVs elocities.

Fig 2 UAV safe region

We first describe the dynamic multi-UAV
environment, as illustrated in Fig 3. The UAVs



in Fig 3 move according to the following
equations:
X, =V, C0S ¢,
Yi =V;sing,
i a )
¢i =W
Where ¢ is the motion direction of UAV
Aiand v,and w, represent the linear and angular
velocities respectively.
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Fig 3 Multi-UAV environment

When there is a conflict between two
UAVs, the crises is resolved by changing the
magnitude or direction of the velocity. In the
airspace, the change of speed may lead to
unstability of the involved UAVs. In this paper,
we mainly consider the direction modification
of UAV welocity.

We study the conflict detection and
resolution between different UAVS by using
related velocity and position between UAVS, as
shown inFig 4
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Fig 4 relative displacementand velocity

As shown in Fig 4, for the analysis on the
relationship between UAVs A; and A;, we take
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the position of A; as the original point in the

local coordinates frame and suppose A; is static.

The relative position and or ientation of A; are:
Pij:(xi_xj’yi_yj) (3)

The wvelocity and wvelocity attitude of Aj
relative to A;are givenas:

Vjizvj_viz(xj_XiIYj_Yi) (4)

The related safe region can be expressed
as:

Dy () ={PIll P =%, Py = Yo II< s | Py — 2
Now = Max{r,, 1}, 2., = max{z;,z;}

When A is supposed to enter the related
safe region D,;(r) intime window (0—7), there
is a potential conflict between these two
participants.

< Zmax}l ( 5)

3.2Conflict resolution

Fig5 UAV motion modification

In a multi-UAV coordination confliction
resolution problem, all the involved UAVs
would take measures to avoid collision, as
shown in Fig 5. The UAVSs turn in circles when
they change the direction of their velocities, and
the radius is ¢, which can be expressed as

\
SZE (6)

If the angular velocity is determined, the
turn radius will be determined based on (6).

Supposing A is static relate to A; , the
velocity of A; is the vector sum of v, and V,.
By rotating the X-Y coordinate system, the
position of A, and A; can be altered onto Y axis,
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as shown in Fig 5. Supposing that the motion
angular of A¢is ¢ and A; is ¢,, then the motion
differential units can be expressed as (7):
AX; =Ccos(¢ —g)v,dT )
Ay, =sin(¢ —gr)vdr =12
Therefore, the differential unit position of
A relative to Agis
AX = (coS(¢, — &)V, —COS(¢, — £,7)V,)d 7 (®)
Ay = (sin(¢, — &)V, —sin(g, — &,7)v,)dr
The motion of the UAV is integrable, and
the displacement can be expressed as:

X = | (cos(¢, — &,7)v, — C0S(d, — &,7)v,)dr
! 9
=~ YL (sin(g, - ,7) —sin(4)) + 2 (sin(g, - £,7) —sin(4,)

& &

y =j;(sin(¢1 — &)V, —Ssin(g, — &,7)v,)dr (10)

= %(cos(;él —gt)—cos(4)) - Z—Z(n:os((;b2 —&,t)—cos(4,))
Therefore we can draw a conclusion that
the solution to UAV conflict (g,&,) should
meet the following conditions.
1.d,(AA) =JX=x)+(y -y)? >R te(0,7)(11)
2. After r time, the modified velocities may
guarantee it is collision free.

The (11) can be translated into the solution
to the following equation:

JXO-%0) +(y ©-% 1)’ =Rte©7) (12)

If JxO-x0)+(y©-y )} >R
guaranteed and there is no solution for (12) in
time period (0,7), then the angular velocity pair

(&, ¢,)is feasible for conflict resolution.

For the second condition, we can calcukte
the finish point A; by (9) and (10):

E. = —ﬁ(Sin(% —&7) —sin(4)) + V*Z(Sin(¢z —&7) —sin(g,))
& &

(13)
E, =(cos(¢; — &) ~ 008(#)) —~2 (c0s(g, — £,t) ~€os(¢}))
& &
Andthe velocity A; relate to A is
V', =V, Cos(¢, +&,)—V,Cos(¢, + &,7) (14)

V', =v;sin(g +&t) - v, sin(g, + &,t)

By using (13) and (14), we can determine
whether the angular pair (g,¢,)is feasible. As
shown in Fig 6, if two UAVs still come into
collision at t_, we define this kind of motion as

safety hazard. The fatalness of the safety hazard
maneuver can be weighed byt .

3.3 Application of reinforcement learning

To return the ways back to the planned
waypoints with least cost, rather than to prevent
UAVs from collision is the ultimate objective of
conflict resolution. In addition, the policy
should consider the fairness of costs of all the
participants. In this paper, a near optimal policy
in local airspace is obtained in virtue of
reinforcement learning.
A. States

The state in the system describes the
features such as position, orientation and post-
modification of UAVs at the same time. The
state-space is bounded and holds all possible
combinations of these features of all involved
UAVs. A state is represented as a 4n-
dimensional vector

X=X Y, d, DL, X2,y g o8] (15)

n

Where n stands for the number of related
vehicles, x"*and y*are Cartesian coordinates,

¢, denotes the direction of motion, and ®"*

represents the post modification of each UAV.
This paper does not concern the whole state
space of UAVs, and the searching space is
mainly the area around the initial state of these
UAVs, which is defined by the searching depth
K.
B. Action

Actions describe the behavior which the
system may choos e in a specific situation. Inour
work, each UAV has the minimum turn radius
constraint, which determines the maximum
angular velocity ofeach UAV:

AN (16)

min 1 min

rl r2

Therefore, one action for the system canbe
described as an action tuple a=(g,¢,,....&,) -
The action space is an ndimensional continuo us
space. In order to reduce the computation
complexity, we use the heuristic policy search
method, which will be discussed later.
C. Reward

A reward function may be used to define
the goal in reinforcement learning. It maps




perceived states (or state-action pairs) of the
environment to a single number, a reward,
which indicates the intrinsic desirability of the
state. A reinforcement-learning agent's sole
objective is to maximize the total reward that
the agent receives in the long run. The reward
function defines the good and the bad events for
the agent. As UAVs are to take detours to avoid
collision, and then return to their projected paths
if the crisis is removed, the goals are states
where both vehicles are on the projected paths
with appropriate orientations. The closer the
state is to the goal, the higher reward it will
receive. The forbidden states are those leading
to airspace collision so that they have a major
negative reward. We bring forth the heuristic
state-action  value  function that can
appropriately help obtain the near optimal
policy. In the conflict resolution scene, we take

the time to the goal state t; and time to collision

t. as the parameters of the value function. The
purpose is to make the UAVs approach their
goals collision-free respectively. If two UAVsS
are too close to each other, the conflict would be
unavoidable due to their mobile abilities. In our
design, the tangential method is proposed to
estimate the collision risk between involved
UAVs.
Next
*, waypoint

Fig 6 Action predictionand value evaluation

When we evaluate each action for two
involved UAVs, the new state could be
determined by the policy, as shown in Fig 6.
The distance between UAVs and their next
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goals may vary, and we try to evaluate the
policy in making the UAVs approach the goal.
We use the heuristic method to estimate the
time from the current state to the goal state in
virtue of their current speeds.

The estimated time can be expressed as
(17), which neglects the current direction of the
velocities of UAVS.

. ||Sit -Goal ||
=M
D. Approximation value function
For each policy{¢,,...,&,}, the next state is
givenas:

(17)

)(in+1 = Xin +i(sin(¢i)—8in(¢i -&7))
&

(18)
Y =y =2 (cos(gh) — cos(d — &7)

&

For the non-goal states, their value depends
on their reward and the discounted value of the
best following states. With the heuristic method,
we could estimate the non-goal state values. The
range of the state-action value is set to be [0, 1],
and the Q function can be achieved by the
iteration equation (19).

Q¥ =1, +7maaX[Qk(f(”))] (19)

Where y is the discount factor. The state-
value can be approximated by iteration. In the
online planning phase, it is impractical to obtain
the global optimal policy. The infinite-horizon
return is approximated by truncating each
simulated trajectory after K steps. Supposing
that the distance between two waypoints is Dy
and the speed of each UAV is V;, K should meet
the following condition:

K> max{%,i en} (20)

The equation (20) indicates that K should
guarantees the UAVs reach the next waypoints
from the current states in K steps.

Because the course of the UAVS is made
up by many waypoints, if one UAV is far from
the current target, then it will choose the next
waypoint as the new goal state at the price of a
greater loss, and its cost will be higher if it
maneuvers to escape from collision inthe future.

3.4 Mocel-based reinforce ment learning
algorithm
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3.4.1 The problem in conflict resolution

In the above sections we analyzed the
airspace conflict resolution problem and defined
the constraints about collision-free maneu\ers.
The goal states of conflict resolution courses are
to return to the projected paths rather than to get
rid of the possible collisions. What’s more, the
time window may induce some unsuspected
problems. As shown in Fig 7, A; and A, are
about to collide at P, if the local coordinator
only considers the temporal crisis elimination, it
can be seen that these two planes will get into a
more difficult situation after the indicated
maneuvers. As the conflict would become more
reluctant, each of them would be closer and
closer. What worse, one of the participants may
be far away from its projected path. This kind of
problems cannot be eliminated even if the time
window is extended. The reinforcement learning
method can deal with this problem with the
heuristic method, because this method would
take the goal into consideration and estimate
possible conflicts beyond time window
limitation.

Fig 7 Prob lem in time window restriction

3.4.2 Algorithm design
The modelbased reinforcement learning
structure is shown in Fig 1. It is hard to apply
the trial and error method in conflict resolution
in the real environment. In this paper, we
propose the online planning method to search
the near optimal policy by model-based
reinforcement learning.
1. Value approximation

In the high dimension continuous space, it
is impractical to search the whole space. As for
the conflict resolution problem, the initial state
of the system is fixed in each case, so it is
possible for us to search around the initial state
for the near optimal policy. As mentioned above,
we could search for the near optimal policy in K
steps. Each state-action value is approximated

by approximation function. In this paper, we
consider the linear approximation method, in
which state-action pairs are mapped first to
feature vectors and then to value in a linear way
with learned parameters [17].

The features of the linear approximation
should make use of the prior knowledge of the
problem. The form of the feature vector can be
expressed as:

@ ={@.(X), 2, (X),.... 0, (X)} (21)
Suppose @ is the parameter vector, so the
state-action value can be expressed as:
V,(7) = o (Zs (22)
Intuitively, the features should correspond
to the natural features of the task, along which
generalization is most appropriate [9]. Four
features are considered for each state. Feature 1
reflects the conflict probability between vehicles,
which helps to filter out motions that lead to
collisions. Feature 2 reflects the overall distance
to the projected path, which helps wehicles
move closer to the temporary goal state. The
third feature is regarding orientation differences
from agents’ projected goal It is helpful to
ensure them return to their intended path in the
appropriate orientation. In the whole flying
course, one UAV may encounter with airspace
conflicts more than once, so we should consider
the post cost of each UAV. Therefore, the last
feature concerns fairness. Our aim is to balance
the cost of conflict resolution between each
participant
2. Heuristic learning
In the real environment, the UAVs often
take several actions to avoid collision, e.g. turn
left in 40 degree, turn left in 20 degree, go
straight, turn right in 20 degree, and turn left in
40 degree. We also discretize the continuo us
action of each UAV into discrete action subsets.
Because of the high dimension continuous
space, particularly when the amount of UAVs
becomes large, the search space would be too
large in a search for the whole tree. In fact, the
change of the motion direction of one specific
UAV may influence only UAVs around it
Therefore, we could reduce the search space by
considering the real situation information. As
shown in Fig 8, each UAV only conflicts with
two other UAVs around it. Therefore, the whole
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space can be decoupled into several subspaces
when the algorithm searches for the optimal
solution, which saves both CPU time and
memory.

(B)

®
AO—©

®
D

@

@

1)

v /

E

Fig 8 Decomposition of conflict connection

In Fig 8, it is supposed that each UAV has
n selectable actions. The original action space is
n®, so we can divide the whole UAVs into four
subsets by cutting the chain, and then the action
space could be reduced to 4n?.

In a heuristic search, for each state
encountered, a large tree of possible alternatives
is considered. The approximate value function is
applied to the leaf nodes, and then backed up at
the previous state towards the root. The backing
up in the search tree is just the same as in the
max-backups. It stops at the state-action nodes
of the current state. Once the backed-up values
of these nodes are computed, the best of them is
chosen as the current action, and the rest of the
values are discarded. In conventional heuristic
search no effort is made to save the backed-up
values and the value function, which once

desigred, never changes as a result of the search.

However, it would be reasonable to allow the
value function to be improved over time using
either the backed-up values computed during
the heuristic search or by any other method.
3. Direct learning from the experience

Each time the system chooses the near
optimal policy by model-based planning, after it
executes this policy, it will get reward from the
environment. In the airspace conflict resolution
problem, the system cannot go back to retry
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from the beginning. Therefore the updating of
the predecessors is useless in the learning. The
experience should be used to facilitate the
decision making in successive states, such as to
improve the model. As the model is a simplified
expression of the real environment, it cannot
mod el the uncertainty of the environment and
may have some errors. We can criticize the
mod el-based learning policy by real results, as

shown in Fig 9.

1+l

Model | Environment

Fig9 Model-based learning architecture
The algorithm is shown in Tab 2.
Tab 2 Model based online planning algorithm

Algorithm: Modelbased reinforcement learning
algorithm

1: Initialize Q(s,a),Model(s,a),Goal state(Sg), initial
state(Sp) Vse S,ac A

2: repeat

3:  s<—current(non terminal)state
4: initial the search tree i=1

5. while i<k
6.

7

8

9

Snote < 0reedy(s,Q) find the expand node

if depth(s,,, )==i
i=i+1;
: end ) )
10: For j=1: Discrete action
11: a; e Actionset
12: s,r =Model(s,a;)
13: Q(s.a) «r+ymax_ Q(s,a) update the value
14: End for
15:  End for

16: a= maxueactionset{Q(s’ a)}
17: execute a in the real environment, observe s and r
18: until s is Goal state

4 Experiments

This section focuses on two experiments. We
use the real dynamic mode | of the UAVS in the
environment, and add the noise into the
input/output information. The noise follows
Gaussian distribution with zero mean. We use
the time variables to estimate the state-action
value function, which can be expressed as (23).
Where t is the collision time if the

maneuver result in collision in 0 —7, tig refers to

collision

8
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the estimated time to the goal state, t, refers to
the time collision after time window 7, t! refers
to the estimated time from current direction to
the planned motion direction, u, refers to the
modification angle of each UAV during the

flight.
t

~collision. g) collision

tse
R= @ 1 (23)
0, 0 es
91+et;ft;+t*3+91 e +6,]U,-U,| nocollision

The state-action value should be positive.
When the invo lved UAVs are about collision,
the state-action value should be small enough to
guarantee the search algorithm not to choose
this policy. Other wise, the state-action value is

determined byt ,t,, tiand U, .

In the first experiment, there are two UAVS
inthe environment, which fly in a rounded trace.
One flies clockwise and the other anticlockwise.
The waypoints are set at every other km, and the
UAYV welocities are set as 0.1km/s. The designed
traces determine there would be airspace
conflicts now and then, as shown in Fig 10(a).
In each conflict resolution course, the system
takes the next waypoint of each UAV as the
temporary goal state and carries on the near
optimal policy search. The result of the
experiment is shown in Fig 10.

29

28 P |

27

Y/km

. ; s
15 (520 25}(;]‘112 ” 20

Fig 10 Two-UAYV conflict resolution

Fig 10 (a) illustrates the result of conflict
resolution all around the experiment. (b) and (c)
demonstrate the effect in detail. As shown in Fig
10, the system can deal with the conflict in the
long period simulation. The system only takes
about 0.07s to find a near optimal policy. The
safe distance is 0.6km, and the minimum
distance between these two UAVs in the

simulation is 0.635km. From Fig 10 we know that
the modifications of these two UAVs are almost
the same.

In the second experiment, the environment
is a square of which the area is 100km?. There
are 25 agents in the environment, which are
uniformly spaced in the square. Their line
velocities are all 0.1km/s and their motion
directions are random. Their maximum angular
velocities are all 0.5 radians/s. The UAVSs in the
environment are flying based on their dynamics
and kinematics. The controller receives the
motion information of the UAVSs, and predicts if
there exist airspace conflicts. The radius of the
safe region is 0.3km, and the experiment runs
250s. Fig 11 shows the minimum distance
between each pair of these agents.

2
— —| —or1 min-distance}- 4
— crresults
=
EHHFH Y —H——H— — — — —
Ry
31
2
]
a
0.4
0

' 10 T 2 p)
0 30 TPmc.r’ sccosn?i 00 30

Fig 11. Minimum distance between agents.

As shown in Fig 11, the original min
distance curve shows that there are many space
conflicts between these UAVs during the
experiment because the red line is often close to
0.3 km. After the conflict resolution, all the
conflicts are resolved by multi-agent
coordination. The minimum distance between
agents is more than 0.3km. The data
demonstrate the ability of the multi-agent
coordination method in dealing with multi- UAV
problems.

5 Conclusions

This paper deals with UAVs conflict detection
and resolution in dynamic environments. The
UAVs are supposed to be managed by the
ground stations, so they can take cooperative
maneuvers to eliminate the airspace conflictions.



The dynamics of UAVs are considered when
dealing with conflict resolution problems.

In this paper, we present a model-based
reinforcement learning method for online
conflict resolution planning. We firstly study the
UAYV airspace conflict problem, and then bring
forth several constraints in keeping off midair
collision, as expressed in math inequalities.
Since the goal of the online conflict resolution is
to return to the projected path, we propose to
search the near optimal policy by reinforcement
learning, and then approximate the value of the
state-action pair in the large and continuo us
space. Furthermore, to reduce the computation
complexity, we propose to apply the heuristic
method. The proposed algorithm exhibits
smooth and convincing behavior in our
experiments.
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