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Abstract  

Aiming to design the shape of SST fuselages of 
good aerodynamic performance, an efficient 
design system using personal level computers 
has been developed. This consists of CFD 
solvers and an inverse problem for shape design. 
The design system works well on SST nose of 
axisymmetric fuselage design as well as non- 
axisymmetric  case. 

1  Introduction  

In supersonic flight, high fuel-efficiency and the 
reduction of sonic boom at cruising are crucial 
issues. Both phenomena are primarily connected 
with the pressure distributions on airplanes. In 
these two decades, a lot of work has been done 
for supersonic wing design to attain good 
aerodynamic performance [1, 2]. On the other 
hand, the design of fuselage is not well studied. 
In this article, considering important effects of 
pressure distribution on supersonic fuselage 
performance, an inverse problem is formulated 
and utilizing the inverse problem, a simple and 
efficient aerodynamic design system for 
supersonic fuselage shape is developed. The 
design system works well on SST nose design 
problems. The turn-around time to complete a 
design is short. 

In Section 2, the formulation of an inverse 
problem is discussed. In Section 3, a design 
system is constructed to utilize the formulated 
inverse problem. To examine the ability of the 

design system, the design problems are solved 
in Sections 4 and 5. Section 4.  

2  Formulation of an Inverse Problem for 
Slender Bodies of revolution in Supersonic 
Flows         

2.1 The Perturbation Potential Equation in  
Cylindrical Coordinates 

The formulation starts with a body of revolution 
located on a supersonic flow field which might 
follow the axially symmetric potential equation 
of Eq. (1) in cylindrical coordinates (x, r, ). 
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In Eq.(1),  is the perturbation potential for 
perturbation velocity u, v, w, where M denotes 

the uniform flow Mach number. Its velocity 
speed is U. As for perturbed velocities, u, v, w 
correspond to x, r,  coordinates, respectively. 
Here, the axial velocity w is 0, because we are 
thinking axially symmetric flow fields.  
       For the supersonic flows, introducing the 

notation, 2 1M   > 0, Eq.(1) could be 

solved to be the integral equation form[3]; 
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where,   is a integral variable along the x-axis. 
In Eq.(2), ( )f  is unknown and should be 
determined  by using a boundary condition, Eq. 
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(3). When the axisymmetric body surface 
contour is given by  r = R(x) , the slip conditions 
there are described as  

               (3)s
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vdR

dx U u
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where subscript s indicates physical quantity at 

the body surface. As readers know v
r




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Function of ( )f x , Eq.(3) relates ( )f x to 
velocity components. It also relates the fuselage 
geometry and velocity.       

2.2 Pressure as a Function of Velocity 

Let us define the relation between pressure 
distributions and velocity. First, we consider 
isentropic relation between pressure and 
velocity. Then, normalizing pressure by the free 
stream dynamic pressure and applying the first-
order small perturbation theory, it yields the 
pressure coefficient.      
 
 
 

2.3 Slender Body Approximation 

For the supersonic flows about a slender body, 
Eq.(2) is to be transformed into the following 
form [1]. 
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Using Eq.(5), the radial velocity component is 
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On the body surface, Eq.(6) is expressed 
( )
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Multiplying R(x) and Eq.(3) and using Eq. (7),  
we obtain the concrete form of f.  
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Furthermore, the polynomial expansion of su is 

applied to Eq(8)  and take the first order 
approximation. Then, the area distribution 
function S(x) of cross-flow sectional plane along 
the x axis is introduced. Finally, the equation of 
pressure coefficients yields the function of 
geometrical parameter that might be primitive 
equation of an inverse problem. 
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2.4 Solution for Slender Cone  

Eqs. (8) and (9) is applied to the flow field 
about a slender cone whose nose angle is 2In 
this case,  

3( ) tan            (10)
3

x
R x x x x        

2 2 2( )                               (11)S x R x     

        
2( )                                        (12)f x xU  

 

Therefore, an equation to relate the pressure 
coefficient (Cp) and the nose angle parameter  
is formulated. It is one of essential equations in 
this article. 
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2.5 Inverse Problem for Slender Cone 

This section discusses the differential form of 
Eq.(13). The differential form is needed for the 
iterative residual correction design method that 
is explained later in Chapter 3.  The idea is 
based on Taylor series expansion of Eq.(13) in 
terms of   , difference in  . Neglecting  
second and higher order terms, we obtain simple 
mathematical model of Eq.(14). 
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Accordingly, to compensate the Cp difference 
between a target and a current states, the nose 
angle should be changed by the following  .  
          

/ ( )                                 (15)Cp g    　  

2.5 Inverse Problem for General  Slender 
Bodies of Revolution 

The Inverse problem in this article determines 
geometry correction to update a baseline shape 
so that the updated shape realizes a target Cp 
distribution on its surface. Therefore, a design 
using the inverse problem here starts with a 
baseline shape and its surface Cp distribution. 
The idea is as follows to design the shape of 
general slender bodies.  

The meridian plane shape of a general 
slender body is divided into N intervals and its 
contour curve is expressed by the connection of 
N+1 grid points. The nose leading edge is 
located at (0, 0) and its grid coordinate is 
identified as ( x0 , R0). The coordinates of the 
“ i” th grid point is ( xi, Ri) as shown in Fig. 4. 
Then, we regard the meridian plane shape as the 
integration of triangles each of which is 
constructed by the grid points of ( xi-1, Ri-1), ( xi , 
Ri ) and ( xi, Ri-1) where i = 1, N+1. It is called 
“triangle i” and the angle at ( xi-1, Ri-1) is i. We 
assume that Eq.(15) should hold for the Cpi 
relation to  on the piecewise “triangle i” 
because the triangle could be a meridian plane 
of a cone. Cpi is the difference in surface Cp 
values between the target and current ones, 
calculated as 
  Cpi = Cpi (target)- Cpi (current)     (16) 
 
Cpi is the surface Cp at the midpoint of the edge 
line, ( xi-1, Ri-1) and ( xi , Ri ), i.e. Cp( xi-1/2 ). 

Once Cpi is obtained, the shape Ri
new to 

realize the target Cpi is designed by using 
following equations for i = 1, N+1. Graphs in 
Fig. 4 show the updating process. 
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3 Design System using the Inverse Problem   

In this section, a design system is built using the 
inverse problem formulated in 2.4-2.5. The 
system is for general fuselage geometries 
including axisymmetric and quasi-axisymmetric 
bodies. Figure 5 illustrates the iterative process 
of the method. We start with an arbitrary 
baseline slender body shape and target Cp 
distributions. The shape is discretized in the 
radial () direction into jmax intervals. For each 
station, one meridian plane exists, then totally 
there are jmax+1 planes. As one can see, when  a 
axisysmmetric body  is to be designed, jmax is 0. 

After CFD flow analysis about the baseline 
shape, Cp is calculated. At every meridian 
plane, the inverse problem of Eq. (1) is solved 
to obtain the geometry change (f) to 
compensate the Cp difference. After updating 
all the geometry of meridian planes, we obtain a 
modified shape of the slender body. Using this 
new shape, the CFD analysis and the inverse 
problem process is sequentially iterated until the 
surface Cp distributions of the new shape agree 
with the target ones. 

For the flow analysis of the method, a 
linearlized potential flow code [4] is used at the 
present. Thus the total time for one design 
problem is about two hours with an ordinary 
personal computer. When one prefers high 
fidelity in analysis and simulation instead of 
quick turn-around of design, one can conduct 
Navier-Stokes (N-S) flow simulation. Even if 
we do N-S simulation, the cost and time is not 
so heavy comparing with common optimization. 
Actually, the number of flow analysis 
simulation required to converge the present 
design process is merely up to thirty for usual 
design cases. Therefore, the simple and low-cost 
design for fuselages can be realized. 
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4 Design for the Nose of an Axisymmetric 
Fuselage 

To examine the ability of the design system, an 
axisymmetric design has been firstly conducted. 
The target Cp distributions are those of a known 
shape which is the nose of the Sears-Haak body. 
A baseline (initial) geometry is one of trial 
products of a SST nose examined in JAXA. It is 
called “ FC “ which indicates a flared cone [5,6]. 
It is three-dimensionally displayed in Fig. 6. 
The Mach number is 1.6 and the speed of 
uniform flows (U) is normalized to 1. The 
fuselage has no angles of attack. The scaled 
nose length is 0.5. 
     Figure 7 shows the meridian plane contour of 
the baseline (initial) and target nose shapes as 
well as their Cp distributions along the x-axis 
coordinates, the plane contour curves are 
identical to radius distributions along the x-axis, 
R(x). The max difference in Cps is 0.0896 in the 
vicinity of the leading edge while that in R(x) is 
0.0105 at the rear. 
      For design process, x-axis of the body is 
divided into 800 non-uniform intervals.  The 
leading edge has finer grid distribution than the 
other parts. After the first iteration of the 
proposed design system, we obtain results 
shown as “current R” and “Current Cp” in Fig. 
8. Though the first iteration of design gives 
almost converged solutions, we continue the 
design iterations until the fifth. Finally we 
obtain the shape which realizes the identical Cp 
distributions to the target as shown in Fig. 9.  
The designed shape also agrees to the target. 
The errors between Cps and R(xi) at each 
iteration step are listed in Tables 1 and 2. It 
takes only twenty minutes for a student to finish 
designing this example using a corei7 PC. 
 
Table 1     

# Ave ERR Cp  Max ERR Cp 

0 1.52.E-02 8.96.E-02 

1 2.65.E-03 5.65.E-03 

2 6.78.E-04 2.91.E-03 

3 2.97.E-04 1.40.E-03 

4 1.58.E-04 6.70.E-04 

5 9.00.E-05 3.50.E-04 

 

Table 2 

# Ave ERR in R Max ERR in R

0 2.33.E-03 1.05.E-02 

1 3.68.E-04 1.75.E-03 

2 2.51.E-04 7.08.E-04 

3 2.86.E-05 2.15.E-04 

4 2.72.E-05 3.31.E-04 

5 1.41.E-05 1.26.E-04 

 

It should be concluded that the design system 
using the inverse problem formulated here is 
promising as a quick and precise design tool for 
SST noses and fuselages. 

5 Design for the Laminar Nose of a SST 
Fuselage 

The laminar SST nose has been designed using 
the inverse design system. This design handles a 
non-axisymmetric body as well as a body which 
has the angle of attack of 2 degrees. The body 
length is scaled to 0.33 by the length of a whole 
fuselage. It is rather a realistic design problem. 
The free stream Mach number was 2.0. The 
baseline nose shape was a cone. The shape was 
discretized into 36 intervals in the radial 
direction ( 0    ) and 800 intervals in the x-
axis direction. We have 37 meridian planes to 
design, thus we specify 37 target Cps for each 
plane. Figure 10 shows the three of specified 
target Cps, which are for the plane of  =0, /2 
and . The Cp distributions were devised by the 
SST R&D team of JAXA to attain large laminar 
flow region on a SST nose [7]. The initial Cp 
distributions are also there. They are the ones on 
the top line which means the contour line of the 
meridian plane of  =0. Because the baseline 
shape is a cone, the initial Cps are constant on a 
straight line. 
      After 14 times of inverse design iteration, 
the design looks to almost reach a convergence 
state. The design results after the 10th iteration 
are exposed in Figs. 11-13.  Figure 11 shows the 
resulting Cps and geometry as well as the target 
ones for the meridian plane at  =0. So do Figs. 
12 and 13 for the planes at  = /2 and 
respectively. The results indicate the inverse 
design system proposed here is promising for 
the design of quasi axisymmetric body, too. 
However, small amount of discrepancy remains 
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in the vicinity of the leading edge on every 
plane. The maximum error is on the top line. 
We think that the discrepancy could be settled 
by using Euler or Navier-Stokes calculation 
instead of the linearlized potential code in the 
design system. 

The longitudinal section shape of the 
designed nose is shown in Fig. 14 as well as the 
cross section shape at x= 0.18 is in Fig. 15. In 
both figures axially symmetric Sears-Haack 
body shape is plotted to check the asymmetry of 
the designed shape.  
 

6 Conclusions 

Aiming to computationally design the shape of 
SST fuselages of good aerodynamic 
performance, an efficient design system has 
been developed. For the system the inverse 
problem based on the axisymmetric slender 
body theory has been newly formulated. The 
concept of the design system is iterative residual 
correction methodology which utilize the 
inverse problem to let it possible to design non-
axisymmetric fuselages. The design system 
works well on SST nose design problems. The 
turn-around time to complete a design is short. 
It has been shown the system can handle axi-
symmetric nose as well as non-axisymmetric 
one.   
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Fig. 1 
Body of revolution and cylindrical coordinates. 
 
 
 
 
 
 
 
 
 
Fig.2 Cross-sectional plane. 
 
 
 
 
 
 
 
 
Fig.3 Longitudinal (meridian) section。 

Fig. 4 Piecewise linear approximation of the 
current (thin lines) and updated (thick lines) 
shape of a meridian geometry R(x). 

 
Fig. 5 Design system of iterative residual 
correction method using the inverse problem. 
 
 

 
Fig. 6  The “ FC ” nose shape in the 3D space. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7 Initial and target radius R and Cp 
distributions. 
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Fig. 8 Current and target radius R and Cp 
distributions after 1st iteration. 
 

 
Fig. 9 Converged radius R and Cp distributions 
after 5th iteration. 
 

 
Fig. 10 Target Cps for quasi axi-symmetric 
shape design with initial Cps of a cone. 
 

 
Fig. 11 Inverse design results for quasi axi-
symmetric shape at . 

 
Fig.12 Inverse design results for quasi axi-
symmetric shape at  
 

 
Fig. 13 Inverse design results for quasi axi-
symmetric shape at . 
 

Fig. 14 Longitudinal plane of a designed nose 
compared with Sears-Haak  and cone  shapes. 
 
 
 
 
 
 
 
 
 
 
Fig. 15 Cross section shape of a designed nose  
compared with Sears-Haak at x=0.18 of 0.33. 

Current R 
Target R 
 
 
 
 
R(1→2) 

Current Cp 
Target Cp 

 
Current R 
Target R 
 
 
 
 
 
 
Current Cp 
Target Cp 

Initial CP


