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Abstract

Aiming to design the shape of SST fuselages of
good aerodynamic performance, an efficient
design system using personal level computers
has been developed. This consists of CFD
solvers and an inverse problem for shape design.
The design system works well on SST nose of
axisymmetric fuselage design as well as non-
axisymmetric case.

1 Introduction

In supersonic flight, high fuel-efficiency and the
reduction of sonic boom at cruising are crucial
issues. Both phenomena are primarily connected
with the pressure distributions on airplanes. In
these two decades, a lot of work has been done
for supersonic wing design to attain good
aerodynamic performance [1, 2]. On the other
hand, the design of fuselage is not well studied.
In this article, considering important effects of
pressure distribution on supersonic fuselage
performance, an inverse problem is formulated
and utilizing the inverse problem, a simple and
efficient aerodynamic design system for
supersonic fuselage shape is developed. The
design system works well on SST nose design
problems. The turn-around time to complete a
design is short.

In Section 2, the formulation of an inverse
problem is discussed. In Section 3, a design
system is constructed to utilize the formulated
inverse problem. To examine the ability of the

design system, the design problems are solved
in Sections 4 and 5. Section 4.

2 Formulation of an Inverse Problem for
Slender Bodies of revolution in Supersonic
Flows

2.1 The Perturbation Potential Equation in
Cylindrical Coordinates

The formulation starts with a body of revolution
located on a supersonic flow field which might
follow the axially symmetric potential equation
of Eq. (1) in cylindrical coordinates (x, r, 6).
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In Eq.(1), ¢ is the perturbation potential for
perturbation velocity u, v, w, where M _ denotes

the uniform flow Mach number. Its velocity
speed is U. As for perturbed velocities, u, v, w
correspond to x, 7, @ coordinates, respectively.
Here, the axial velocity w is 0, because we are
thinking axially symmetric flow fields.

For the supersonic flows, introducing the

notation, fS=+M>-1 > 0, Eq.(1) could be
solved to be the integral equation form[3];
f /@
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where, & is a integral variable along the x-axis.
In Eq.(2), f(¢) is unknown and should be

determined by using a boundary condition, Eq.
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(3). When the axisymmetric body surface
contour is given by 7 = R(x) , the slip conditions
there are described as

dR v

= Cl 3
dx U+u, )
where subscript s indicates physical quantity at
the body surface. As readers know v=68—¢ =
r

Function of f(x) , Eq.(3) relates f(x) to

velocity components. It also relates the fuselage
geometry and velocity.

2.2 Pressure as a Function of Velocity

Let us define the relation between pressure
distributions and velocity. First, we consider
isentropic  relation between pressure and
velocity. Then, normalizing pressure by the free
stream dynamic pressure and applying the first-
order small perturbation theory, it yields the
pressure coefficient.

Cp=—%’—(5} @)

2.3 Slender Body Approximation

For the supersonic flows about a slender body,
Eq.(2) is to be transformed into the following
form [1].

p(x.r) =~ (M) log——— [ f'(&)log(x~E)dE (5)
proi

Using Eq.(5), the radial velocity component is

YR
or r

On the body surface, Eq.(6) is expressed

=L ke o)

Multiplying R(x) and Eq.(3) and using Eq. (7),
we obtain the concrete form of /.
dR VRO f()

R
dc U+u, U-+u,
or
d f(x)
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Furthermore, the polynomial expansion of %, is
applied to Eq(8) and take the first order
approximation. Then, the area distribution
function S(x) of cross-flow sectional plane along
the x axis is introduced. Finally, the equation of
pressure coefficients yields the function of
geometrical parameter that might be primitive
equation of an inverse problem.

2
Cp= —(d—R] +lS”(x)logL+
dx V4 PR
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2.4 Solution for Slender Cone

Egs. (8) and (9) is applied to the flow field
about a slender cone whose nose angle is 20. In
this case,

R(x)=xtan s zx§+§53zx5 (10)

S(x)=7R* = 1x°6> (11)
f(x)=xUS" (12)

Therefore, an equation to relate the pressure
coefficient (Cp) and the nose angle parameter o
is formulated. It is one of essential equations in
this article.

Cp=26° log%—52 (13)

2.5 Inverse Problem for Slender Cone

This section discusses the differential form of
Eq.(13). The differential form is needed for the
iterative residual correction design method that
is explained later in Chapter 3. The idea is
based on Taylor series expansion of Eq.(13) in
terms of Ao , difference in 6 . Neglecting
second and higher order terms, we obtain simple
mathematical model of Eq.(14).
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ACp = g'(6)AS (14)

2
where ¢(8)=26log— -6 and
g(d) gw

g'0)= 45(log% -1)

Accordingly, to compensate the Cp difference
between a target and a current states, the nose
angle should be changed by the following 4¢'.

AS =ACp ! g'(5) (15)

2.5 Inverse Problem for General Slender
Bodies of Revolution

The Inverse problem in this article determines
geometry correction to update a baseline shape
so that the updated shape realizes a target Cp
distribution on its surface. Therefore, a design
using the inverse problem here starts with a
baseline shape and its surface Cp distribution.
The idea is as follows to design the shape of
general slender bodies.

The meridian plane shape of a general
slender body is divided into N intervals and its
contour curve is expressed by the connection of
N+1 grid points. The nose leading edge is
located at (0, 0) and its grid coordinate is
identified as ( Xy, Ry). The coordinates of the

“1” th grid point is ( X;, R;) as shown in Fig. 4.
Then, we regard the meridian plane shape as the
integration of triangles each of which is
constructed by the grid points of ( Xi.z, Ri.1), ( Xi,
R;) and ( x;, R;.;) where i = I, N+1. It is called
“triangle i” and the angle at ( X;.;, Ri.;) is 6. We
assume that Eq.(15) should hold for the ACp;
relation to A0, on the piecewise ‘“triangle i”
because the triangle could be a meridian plane
of a cone. ACp; is the difference in surface Cp
values between the target and current ones,
calculated as
ACp; = Cp; (target)- Cp; (current) (16)

Cp; is the surface Cp at the midpoint of the edge
line, (x,-_l, R,'.]) and (x,- , Ri), ie. Cp( Xi-12 )

Once ACp; is obtained, the shape R/ to
realize the target Cp; is designed by using
following equations for i = I, N+/. Graphs in
Fig. 4 show the updating process.
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Ao, =ACp, 1 g'(5) (17)

5" =06,+ A9, (18)
R™ =R +6"" (x; —x)) (19)
AR =R"™ — R (20)

3 Design System using the Inverse Problem

In this section, a design system is built using the
inverse problem formulated in 2.4-2.5. The
system is for general fuselage geometries
including axisymmetric and quasi-axisymmetric
bodies. Figure 5 illustrates the iterative process
of the method. We start with an arbitrary
baseline slender body shape and target Cp
distributions. The shape is discretized in the
radial (6) direction into j,.. intervals. For each
@ station, one meridian plane exists, then totally
there are j,.+1 planes. As one can see, when a
axisysmmetric body is to be designed, jax 1S 0.

After CFD flow analysis about the baseline
shape, ACp is calculated. At every meridian
plane, the inverse problem of Eq. (1) is solved
to obtain the geometry change (Af) to
compensate the Cp difference. After updating
all the geometry of meridian planes, we obtain a
modified shape of the slender body. Using this
new shape, the CFD analysis and the inverse
problem process is sequentially iterated until the
surface Cp distributions of the new shape agree
with the target ones.

For the flow analysis of the method, a
linearlized potential flow code [4] is used at the
present. Thus the total time for one design
problem is about two hours with an ordinary
personal computer. When one prefers high
fidelity in analysis and simulation instead of
quick turn-around of design, one can conduct
Navier-Stokes (N-S) flow simulation. Even if
we do N-S simulation, the cost and time is not
so heavy comparing with common optimization.
Actually, the number of flow analysis
simulation required to converge the present
design process is merely up to thirty for usual
design cases. Therefore, the simple and low-cost
design for fuselages can be realized.



4 Design for the Nose of an Axisymmetric
Fuselage

To examine the ability of the design system, an
axisymmetric design has been firstly conducted.
The target Cp distributions are those of a known
shape which is the nose of the Sears-Haak body.
A baseline (initial) geometry is one of trial
products of a SST nose examined in JAXA. It is

called “ FC “ which indicates a flared cone [5,6].

It is three-dimensionally displayed in Fig. 6.
The Mach number is 1.6 and the speed of
uniform flows (U) is normalized to 1. The
fuselage has no angles of attack. The scaled
nose length is 0.5.

Figure 7 shows the meridian plane contour of
the baseline (initial) and target nose shapes as
well as their Cp distributions along the x-axis
coordinates, the plane contour curves are
identical to radius distributions along the x-axis,
R(x). The max difference in Cps is 0.0896 in the
vicinity of the leading edge while that in R(x) is
0.0105 at the rear.

For design process, x-axis of the body is
divided into 800 non-uniform intervals. The
leading edge has finer grid distribution than the
other parts. After the first iteration of the
proposed design system, we obtain results
shown as “current R” and “Current Cp” in Fig.
8. Though the first iteration of design gives
almost converged solutions, we continue the
design iterations until the fifth. Finally we
obtain the shape which realizes the identical Cp
distributions to the target as shown in Fig. 9.
The designed shape also agrees to the target.
The errors between Cps and R(x;) at each
iteration step are listed in Tables 1 and 2. It
takes only twenty minutes for a student to finish
designing this example using a corei7 PC.

Table 1
# | Ave ERR Cp Max ERR Cp
0 1.52. E-02 8.96. E-02
1 2.65. E-03 5. 65. E-03
2 6. 78. E-04 2.91.E-03
3 2.97.E-04 1. 40. E-03
4 1.58. E-04 6. 70. E-04
5 9.00. E-05 3.50. E-04

Table 2
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# | Ave ERR in R | Max ERR in R
0 2.33.E-03 1.05. E-02
1 3. 68. E-04 1.75. E-03
2 2.51. E-04 7.08. E-04
3 2.86.E-05 2.15.E-04
4 2.72.E-05 3.31.E-04
5 1.41.E-05 1.26. E-04

It should be concluded that the design system
using the inverse problem formulated here is
promising as a quick and precise design tool for
SST noses and fuselages.

5 Design for the Laminar Nose of a SST
Fuselage

The laminar SST nose has been designed using
the inverse design system. This design handles a
non-axisymmetric body as well as a body which
has the angle of attack of 2 degrees. The body
length is scaled to 0.33 by the length of a whole
fuselage. It is rather a realistic design problem.
The free stream Mach number was 2.0. The
baseline nose shape was a cone. The shape was
discretized into 36 intervals in the radial
direction (0 <8 < 7 ) and 800 intervals in the x-
axis direction. We have 37 meridian planes to
design, thus we specify 37 target Cps for each
plane. Figure 10 shows the three of specified
target Cps, which are for the plane of 6=0, w/2
and . The Cp distributions were devised by the
SST R&D team of JAXA to attain large laminar
flow region on a SST nose [7]. The initial Cp
distributions are also there. They are the ones on
the top line which means the contour line of the
meridian plane of € =0. Because the baseline
shape is a cone, the initial Cps are constant on a
straight line.

After 14 times of inverse design iteration,
the design looks to almost reach a convergence
state. The design results after the 10th iteration
are exposed in Figs. 11-13. Figure 11 shows the
resulting Cps and geometry as well as the target
ones for the meridian plane at #=0. So do Figs.
12 and 13 for the planes at & = w/2 and
m, respectively. The results indicate the inverse
design system proposed here is promising for
the design of quasi axisymmetric body, too.
However, small amount of discrepancy remains
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in the vicinity of the leading edge on every
plane. The maximum error is on the top line.
We think that the discrepancy could be settled
by using Euler or Navier-Stokes calculation
instead of the linearlized potential code in the
design system.

The longitudinal section shape of the
designed nose is shown in Fig. 14 as well as the
cross section shape at x= 0.18 is in Fig. 15. In
both figures axially symmetric Sears-Haack
body shape is plotted to check the asymmetry of
the designed shape.

6 Conclusions

Aiming to computationally design the shape of
SST  fuselages of good aerodynamic
performance, an efficient design system has
been developed. For the system the inverse
problem based on the axisymmetric slender
body theory has been newly formulated. The
concept of the design system is iterative residual
correction methodology which utilize the
inverse problem to let it possible to design non-
axisymmetric fuselages. The design system
works well on SST nose design problems. The
turn-around time to complete a design is short.
It has been shown the system can handle axi-
symmetric nose as well as non-axisymmetric
one.
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Fig. 1

Body of revolution and cylindrical coordinates.
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