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Abstract

In this paper, multi-objective, multidisciplinary
design optimization is conducted on the first
stage vehicle of a horizontal takeoff and land-
ing two-stage-to-orbit (TSTO) space plane with
rocket-based combined cycle (RBCC) engines.
A design optimization framework considering
the interdependence among analysis disciplines
(i.e., flight trajectories, propulsion, vehicle ge-
ometries, and aerodynamics) is constructed, and
the vehicle design and the trajectory prior to the
separation of the second stage vehicle are opti-
mized simultaneously aiming to maximize the fi-
nal velocity, minimize the gross mass of the first
stage vehicle, and minimize the takeoff veloc-
ity. By solving this multi-objective optimization
problem using a newly developed method, a set
of pareto optimal solutions with a good spread is
obtained. In addition to the discussions on some
representative solutions, knowledge discovery in
all the obtained solutions is performed via data
mining techniques.

1 Introduction

Huge improvement to space transportation sys-
tems must be achieved in terms of cost efficiency,
operability, and reliability in order to make the
space industry profitable. Reusable launch ve-
hicles or space planes with airbreathing engines
are expected to satisfy this requirement and have
been studied for years. Japan Aerospace Explo-
ration Agency (JAXA) is currently working to

design a ‘reference system’ of reusable launch
vehicles for the future space transportation [1, 2].
This is a challenging task due to the presence of
complex interdependence among its design dis-
ciplines (e.g., flight trajectories, propulsion, ve-
hicle geometries, aerodynamics, and structures).
One of the approaches for this kind of multidis-
ciplinary optimization (MDO) problem is to for-
mulate it as an augmented trajectory optimization
problem [3, 4, 5] and to subsequently solve it us-
ing direct trajectory optimization techniques [6].
While this framework enables simultaneous op-
timization of the vehicle and the trajectory effi-
ciently, it has only been applicable to problems
with a single design objective. It is difficult to es-
tablish a single design criterion in the early stage
of design studies.

In other areas of optimal design methodolo-
gies, on the other hand, more than one objec-
tive function is frequently considered. In multi-
objective optimization, evolutionary algorithms
(EAs) are usually employed to numerically find
a set of pareto optimal solutions. After the so-
lution, it is possible to extract useful knowl-
edge on the optimally designed system via ap-
plying data mining techniques to the obtained so-
lutions. Whereas these procedures are success-
fully used mainly in aerodynamic design prob-
lems [7, 8], they are not as well suited to tra-
jectory design problems because multi-objective
EAs have some weaknesses in parameter interac-
tions and equality constraints that are inherent in
trajectory design problems [9, 10].
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In order to overcome this difficulty, the author
has developed an algorithm for obtaining uni-
formly spread pareto optimal solutions of multi-
objective trajectory optimization problems [11].
In this paper, this method is applied to a con-
ceptual design study of the first stage vehicle
(booster) of a horizontal takeoff and landing
TSTO space plane with RBCC engines. Three
design objectives are considered together, and
the booster design and the trajectory prior to the
separation of the second stage vehicle (orbiter)
are optimized simultaneously. By applying data
mining techniques to the obtained set of pareto
optimal solutions, correlation of objective func-
tions and design variables (including static and
dynamic ones) is revealed. The result is helpful
not only for establishing design guidelines for the
‘reference system’ of space planes but also for fu-
ture design studies using higher fidelity numeri-
cal models.

The remainder of this paper is organized as
follows: Section 2 describes an MDO frame-
work and numerical models therein. In Section 3,
the multi-objective MDO problem is formulated,
and the employed optimization methodology is
briefly explained. The obtained set of pareto op-
timal solutions is shown, and knowledge discov-
ery is performed in Section 4. Finally, Section
5 summarizes this paper and gives some future
work.

2 MDO Framework and Numerical Models

In this paper, an MDO framework for the booster
of a TSTO system consists of analysis disci-
plines of propulsion system, vehicle design and

dry mass, aerodynamic forces, and the flight tra-
jectory, as outlined in Fig. 1. Design variables
include trajectory design parameters zt, vehicle
design parameters zv, and auxiliary parameters
za. zv and za are composed of static parame-
ters enumerated in Table. 1. Broadly speaking,
zt specifies the time history of flight conditions
and will be further described in Section 3. A nu-
merical model in each discipline calculates out-
put values from the design variables and/or input
values from other disciplines. As a consequence
of these interactions, objective values and con-
straint values are produced. In the analyses of
propulsion system and aerodynamic forces, sur-
rogate models are utilized rather than numerical
models themselves so as to reduce the computa-
tional burden and to enhance the numerical sta-
bility of optimization computation.

2.1 Propulsion System

The propulsion system installed in the booster is
an ethanol-fueled RBCC engine which has been
researched and developed in JAXA [12]. The
RBCC engine combines the rocket and the air-
breathing engine (ram/scramjet) into a unified en-
gine cycle, leading to superior performance to
conventional rockets. The engine is operated by
successively switching three modes: ejector-jet
(the rocket chamber pressure = 6 MPa), ramjet
(0.6 MPa), and scramjet + rocket (6 MPa). Per-
formance data of RBCC engines calculated by an
analytic method [13] is provided by JAXA. For
the following input conditions: Mach number M,
angle of attack α, and dynamic pressure q; the
following three output datasets are available: net
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Fig. 1 An MDO framework for the booster of a TSTO system.
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Table 1 Vehicle design parameters zv and auxiliary parameters za in the MDO problem.

Parameter Description Unit Associated constraints

zv bll Length of the fuselage m 30 ≤ bll ≤ 60
bw Width of the fuselage m 0.1 ≤ bw/bll ≤ 0.4
bhu Height of the fuselage m 0.02 ≤ bhu/bll ≤ 0.05
bwed Inclination of the lower surface of the fuselage nose deg 0.0 ≤ bwed ≤ 10
bln Length of the fuselage nose m 0.1 ≤ bln/bll ≤ 0.4
bwn Width of the fuselage nose m 0.4 ≤ bwn/bw ≤ 0.8
wf Front position of the exposed wing m 0.5 ≤ wf/bll ≤ 0.8
wchrd Root chord length of the exposed wing m 0.1 ≤ wchrd/bll ≤ 0.5, (wf +wchrd)/bll ≤ 0.95
wΛ Sweepback of the wing leading edge deg 45 ≤ wΛ ≤ 70
tlof Front position of the LO2 tank m 0.0 ≤ tlof
tlor Rear position of the LO2 tank m tlof ≤ tlor
teaf Front position of the ethanol tank m tlor +0.02bll ≤ teaf
tear Rear position of the ethanol tank m teaf ≤ tear ≤ bll
el Length of the engines m 0.5 ≤ el/bll ≤ 0.8
ew Width of the aggregate engines m 0.1 ≤ ew/bw ≤ 1.0

za aamax Maximum axial acceleration – aamax ≤ 3.0
l fmax Maximum load factor – l fmax ≤ 1.5
qmax Maximum dynamic pressure kPa qmax ≤ 50
thmax Maximum thrust N –
mboo

gt Tentative gross mass of the booster kg Agreement to actual gross mass mboo
g

mboo
dryt Tentative dry mass of the booster kg Agreement to actual dry mass mboo

dry

thrust T , mass flow rate of ethanol fuel Gea, and
mass flow rate of liquid oxygen (LO2) Glo.

In the MDO framework, thrust and propel-
lant consumption rates are calculated from the
engine operating mode, flight conditions, and the
intake area of engines. This is done by evaluating
kriging surrogate models [14] of the engine data
assuming that thrust and propellant consumption
rates are proportional to the intake area. The de-
tailed engine design and the interaction between
propulsion and airframe are not handled in this
paper.

2.2 Vehicle Design and Dry Mass

The basic configuration of the booster is based
on that of NASA’s X-43A. RBCC engines are in-
stalled on the lower surface of the fuselage. Two
tanks are inside the fuselage to load ethanol fuel
and LO2. Vehicle design parameters zv define
geometries of the airframe, tanks, and engines as
shown in Fig. 2. The intake area of engines and
the volume of tanks [Vea and Vlo (m3)] are calcu-
lated and are passed to other analysis disciplines.
Volume efficiency of tanks is 80 %, the wing ta-

Ethanol tank

Engines

LO2 tank

Fig. 2 The configuration and design parameters of the
booster.

per ratio is 0.25, and the area of tails is 17 % of
the wing area.

Dry mass of the booster mboo
dry is computed

from zv and za. HASA [15], a statistical method
for predicting the weight of hypersonic vehicles,
is applied to estimate the dry mass excluding en-
gines. The calculation of the engine mass is
based on the data provided by JAXA. Conse-
quently, the gross mass of the booster mboo

g is
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obtained as follows: mboo
g = mboo

dry +Vea/729 +

Vlo/1140 (kg), where 729 and 1140 are the den-
sity of ethanol fuel and LO2 in kg/m3, respec-
tively.

The orbiter has a wave-rider configuration
and is loaded on the upper surface of the booster.
Design optimization of the orbiter is not con-
ducted in this paper, and its gross mass morb

g is
the constant value, 75 t.

2.3 Aerodynamic Forces

In the aerodynamic analysis, lift force L and drag
force D acting on the combined vehicle (booster
plus orbiter) are calculated from the airframe ge-
ometries and flight conditions in the following
manner:

L = q
{

Sboo
ref (zv)

[
Cboo

L2 (zv,M)α2

+Cboo
L1 (zv,M)α+Cboo

L0 (zv,M)
]

+Sorb
ref

[
Corb

L0 (M)cosα

−Corb
D0 (M)sinα

]}
, (1)

D = q
{

Sboo
ref (zv)

[
Cboo

D2 (zv,M)α2

+Cboo
D1 (zv,M)α+Cboo

D0 (zv,M)
]

+Sorb
ref

[
Corb

L0 (M)sinα

+Corb
D0 (M)cosα

]}
, (2)

where Sboo
ref (zv) is the reference are of the booster,

and Cboo
· (zv,M) is a radial basis function sur-

rogate model [14] of the corresponding aerody-
namic coefficient of the booster. Gaussian and
thin plate spline are adopted for the basis func-
tions in zv and M, respectively. As for the orbiter,
Sorb

ref , Corb
L0 , and Corb

D0 are the reference area, the lift
coefficient at α = 0, and the drag coefficient at
α = 0, respectively, which are the constant val-
ues provided by JAXA.

In order to train the radial basis function
models, an aerodynamic database with differ-
ent sample values of zv and flight conditions
is constructed in advance. 200 sample points
of zv are elaborated using the method pro-
posed in [4] so that they uniformly fill the de-

sign space. For each sample point, aerody-
namic forces acting on the booster are calcu-
lated in 32 flight conditions (combinations of
M ∈ {0.3, 0.6, 1.1, 3.0, 4.0, 7.0, 11.0, 15.0} and
α ∈ {0.0, 5.0, 10.0, 15.0} deg). For aerodynamic
computations, a program that generates vehicle
surface panels is used, and two types of simple
CFD methods are applied. For the subsonic or
supersonic conditions (M < 2.0), the PAN AIR
code [16], a linear potential flow solver using
panel methods, is employed. For the hypersonic
conditions (M ≥ 2.0), the tangent cone method
[17] and the Prandtl-Meyer expansion flow the-
ory are applied to the impact flow region and the
shadow flow region, respectively. Additionally,
skin friction is estimated using van Driest’s equa-
tion [18]. By integrating the pressure coefficient
and the friction coefficient over all the panels,
aerodynamic forces are obtained.

2.4 Flight Trajectory

For trajectory computations, the 2-DoF vehicle
dynamics in the longitudinal plane is employed,
and the trajectory prior to the separation of the
orbiter is considered. State variables x(t) include
altitude h, velocity v, flight path angle γ, ethanol
fuel mass mea, and LO2 mass mlo; and control
variables u(t) comprise angle of attack α and
throttle τ. State equations are described as fol-
lows:

ḣ = vsinγ, (3)

v̇ =
T τcosα−D

m
−gsinγ, (4)

γ̇ =
T τsinα+L

mv
+

(
v

h+R0
− g

v

)
cosγ, (5)

ṁea =−Geaτ, (6)
ṁlo =−Gloτ, (7)

where

m = mboo
dry +mea +mlo +morb

g , (8)

g = g0

(
R0

h+R0

)2

. (9)

R0 (= 6.378× 106 m) is the mean radius of the
Earth, and g0 (= 9.801 m/s2) is the gravitational

4



KNOWLEDGE DISCOVERY IN CONCEPTUAL DESIGN OF SPACE PLANES
USING MULTI-OBJECTIVE OPTIMIZATION AND DATA MINING

acceleration at the sea level. T , Gea, and Glo are
calculated in the analysis of the propulsion sys-
tem; L and D are provided by the analysis of
aerodynamic forces; and mboo

dry and morb
g are the

output from the analysis of vehicle design and
dry mass. In order to handle switchovers be-
tween engine operating modes, the flight trajec-
tory is divided into three phases to which differ-
ent modes are assigned: the ejector-jet mode in
phase 1 (t ∈ [0, tram]), the ramjet mode in phase 2
(t ∈ [tram, tscram]), and the scramjet + rocket mode
in phase 3 (t ∈ [tscram, tf]).

The following path constraints are imposed:

3 ≤ M ≤ 6 for phase 2, (10)
−aamax ≤ aa ≤ aamax for all phases, (11)
−l fmax ≤ l f ≤ l fmax for all phases, (12)
0 ≤ q ≤ qmax (kPa) for phase 1 & 3, (13)
10 ≤ q ≤ qmax (kPa) for phase 2, (14)
T τ ≤ thmax (N) for all phases, (15)

where aa and l f are the axial acceleration and the
load factor, respectively. Note that aamax, l fmax,
qmax, and thmax are included in za.

A simplified takeoff analysis [19] is con-
ducted assuming that the angle of attack at the
takeoff is 15 deg, and the following values are
calculated: takeoff speed vto, takeoff length ℓto,
and propellant consumption during the takeoff
phase meato, mloto.

3 Multi-Objective MDO Problem Formula-
tion and Optimization Methodology

Objective functions to be considered include 1)
the maximization of the final velocity vf

..= v(tf)
(i.e., ∆V attained by the booster), 2) the mini-
mization of the gross mass of the booster mboo

g ,
and 3) the minimization of the takeoff velocity
vto. These objectives are not handled separately
but collectively. The multi-objective MDO prob-
lem can be formulated as a trajectory optimiza-
tion problem as follows:

find x(t), u(t), tram, tscram, tf, zv, za (16)
such that

min. F1
..=−vf (m/s),

F2
..= mboo

g (t),

F3
..= vto (m/s) (17)

s.t. Eqs. (3–7), (18)
Eqs. (10–15), (19)
0 ≤ α ≤ 15 deg, 0.1 ≤ τ ≤ 1, (20)
h(0) = 0, v(0) = vto, γ(0) = 0,
mea(0) =Vea/729−meato (kg),
mlo(0) =Vlo/1140−mloto (kg), (21)
0 ≤ tram ≤ tscram ≤ tf, (22)
ℓto ≤ 4000 m, (23)
Table 1. (24)

Additionally, the following bounds are intro-
duced in order to limit the design search space
to an interesting area: vf ≥ 3500 m/s, vto ≤
200 m/s.

The formulated problem is numerically
solved using the method developed in [11]. In
this method, a new pareto optimal solution is
searched sequentially so that the resulting set
of solutions has a good spread in the objec-
tive space. This iteration is terminated when
the geodesic distance to the nearest solution be-
comes no more than the user-supplied toler-
ance dtol for any point on the pareto front. In
this paper, let the objective space is defined as
[0.2F1, 0.1F2, 2F3], and dtol = 12.5. At each iter-
ation, the multi-objective trajectory optimization
problem is transformed into a single-objective
problem using min-max goal programming [20].
Parameters used in goal programming are deter-
mined so that the solution will be located near
the farthest point from the solutions obtained
so far. Then, dynamic variables [i.e., x(t) and
u(t)] are parameterized, and the trajectory opti-
mization problem is transcribed into a nonlinear
programming (NLP) problem via the Legendre-
Gauss pseudospectral method [21] with adaptive
mesh refinement [22]. zt includes these parame-
terized dynamic variables and {tram, tscram, tf}. It
should be mentioned that the NLP problem con-
sists of large numbers of design variables and
constraints when it becomes a good approxima-
tion to the original continuous-time trajectory op-
timization problem. For solving NLP problems,
SNOPT [23], an off-the-shelf solver based on an
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SQP algorithm, is employed.
The primary advantages of this approach over

EAs are as follows:

1) The search region of a pareto optimal solution
in the objective space can be explicitly spec-
ified by the goal-programming parameters,
leading to a good spread among solutions
regardless of the nonlinearity and convexity
of the pareto front.

2) Optimization problems with a huge dimen-
sional parameter space and a tiny feasible
region can be solved efficiently.

3) It is mathematically guaranteed that all the
obtained solutions have local pareto optimal-
ity within the tolerance of numerical errors.

Numerical models in the MDO problem and
the above optimization methodology are imple-
mented in MATLAB R⃝ 2007b with some time-
consuming components in C++ MEX. Computa-
tions are performed on a Windows R⃝ 7 machine
with an Intel R⃝ Core TM i7-4930K CPU and 32 GB
RAM.

4 Results and Discussions

4.1 Pareto Optimal Solutions

Figure 3 depicts the obtained 225 solutions in
the objective space. Computation time is about
7 hours, which is short enough to handle addi-
tional design variables and to adopt more com-
putationally expensive numerical models in the
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Fig. 3 Obtained 225 solutions in the objective space.

Table 2 Details of the representative solutions.

Parameter Unit
Value in solution

No. 1 No. 2 No. 3 No. 4

vf m/s 4825.5 3500.0 3500.0 4218.9
mboo

g t 2689.6 477.1 997.0 1095.3
vto m/s 200.0 200.0 118.4 161.0

mboo
dry t 481.3 92.9 229.7 207.6

bll m 60.0 42.9 60.0 52.6
bw m 24.0 12.5 19.5 17.0
bhu m 2.5 1.2 1.5 1.6
bwed deg 0.0 0.0 0.0 0.0
bln m 21.6 10.2 10.2 18.3
bwn m 19.2 8.7 8.6 11.7
wf m 30.0 21.4 30.0 26.3
wchrd m 24.1 7.3 27.0 19.3
wΛ deg 45.0 70.0 45.0 45.4
tlof m 0.0 0.0 0.0 0.0
tlor m 27.7 17.8 18.5 24.5
teaf m 28.9 18.7 36.8 25.5
tear m 60.0 42.9 60.0 52.6
el m 30.0 21.6 30.0 26.3
ew m 20.0 7.7 10.6 11.1

aamax – 2.7 3.0 2.9 2.7
l fmax – 1.2 1.3 1.1 1.2
qmax kPa 50.0 50.0 50.0 50.0
thmax MN 23.6 6.5 12.3 11.3
Mram

∗ – 3.0 3.0 3.0 3.0
Mscram

† – 5.3 5.5 4.6 5.2

∗ Switchover Mach number to ramjet mode.
† Switchover Mach number to scramjet + rocket mode.

future work. Note also that all the solutions are
nondominated, and they successfully spread uni-
formly on their underlying surface. The result in-
dicates that three objectives defined in Eq. (17)
are conflicting with each other, and all these so-
lutions are optimal from the viewpoint of these
design criteria. Table 2 and Figure 4 show details
and trajectories of four representative solutions,
respectively.

In the solution No. 1, the booster can acceler-
ate up to v ≈ 4800 m/s whereas its gross mass
is excessively large and the takeoff velocity is
too high. When the minimization of the gross
mass is a primary matter of concern, the optimal
booster shape becomes shorter and much slen-
der as shown in the solution No. 2. In order to
achieve lower takeoff velocity, it is required to
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(a) Solution No. 1 (max. final velocity).
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(b) Solution No. 2 (min. gross mass of the booster).
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(c) Solution No. 3 (min. takeoff velocity).
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(d) Solution No. 4 (in the center of solution distribution).

Fig. 4 Flight trajectories of the representative solutions.
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load less propellants and make the fuel mass ra-
tio of the booster lower as in the case of the solu-
tion No. 3. Vehicle design in the solution No. 4
has intermediate characteristics between that in
extreme solutions (i.e., No. 1–3). The optimal
qmax value is on its upper bound because the per-
formance improvement of engines due to higher
qmax overcomes the increase of the dry mass cal-
culated by the HASA model. The small (el/bll)
value in optimal solutions may result from the ex-
clusion of the scale effect of the RBCC engine
performance (larger engines have higher Isp).

Since the ramjet mode has higher Isp and
lower thrust than the other modes do, the ramjet-
mode duration occupies from one third to half of
the flight while the velocity increment is com-
paratively small. Before the ascent trajectory
smoothly hits the dynamic pressure limit at h ≈
10 km, angle of attack is large, and thrust is throt-
tled. During the flight with the ramjet mode, an-
gle of attack is increased so as to compensate for
small thrust. A small deviation from the maxi-
mum dynamic pressure around the switchover to
the scramjet + rocket mode has an intention to
gain more mechanical energy while suppressing
the increase of the Mach number. Subsequently
to the switchover, dynamic pressure reaches its
upper bound again. In the last stage of the trajec-
tory, it is better to fly in lower dynamic pressure
and thereby reduce the drag force except the so-
lution No. 2. The reason is that, in these flight
conditions, the scramjet has a small contribution
compared to the rocket whose performance is in-
dependent of dynamic pressure.

4.2 Knowledge Discovery in Solutions

A set of solutions of a multi-objective optimiza-
tion problem is a large-scale and high-dimen-
sional dataset (i.e., the number of solutions ×
the number of design variables and objectives
therein) and difficult to understand directly. In
the previous subsection, four representative so-
lutions were picked out, and some discussions
were made on them. In order to extract more
general and useful knowledge from all the ob-
tained solutions, data mining techniques are em-
ployed [7, 8].

For visualizing the correlation between static
variables, a scatter plot matrix can be used. Fig-
ure 5 is the scatter plot matrix of objective func-
tions and some parameters. Diagonal elements
indicate parameter names, upper-triangular ele-
ments depict scatter plots, and lower-triangular
elements show Pearson product-moment correla-
tion coefficients. When inspecting the correla-
tion coefficients, note that “correlation does not
imply causation”. The following information is
acquired:

• Maximization of the final velocity is strongly
incompatible with the other two objectives.
Especially, the gross mass of the booster
grows rapidly when the final velocity is de-
sired to be more than 4500 m/s. This implies
the necessity of the optimal allocation of ve-
locity increments between the booster and the
orbiter.

• Minimization of the booster gross mass and
minimization of the takeoff velocity are
weakly conflicting with each other. Broadly
speaking, parameters that have the consider-
able correlation with the booster gross mass
are not influential on the takeoff velocity a lot.

• It is better to switch to the ramjet mode as
soon as possible when it becomes available.
Optimal switchover Mach number to the sc-
ramjet + rocket mode, on the other hand,
spans from 4.6 to 5.6 and is highly associated
with the takeoff velocity. When the engines
are operated in the ramjet mode for a longer
period of time, more ethanol fuel must be
loaded, and it leads to larger (Vea/Vlo) value.

• (bhu/bll) and (ew/bw) have a strong positive
correlation, indicating that the enlargement
of the tanks urged by larger engines is basi-
cally accomplished by increasing the fuselage
height.

In extracting the underlying structures of dy-
namic variables, proper orthogonal decomposi-
tion (POD) [8] is a powerful tool. In this paper,
POD is applied to the time history of angle of
attack because it has a significant influence on
propulsion and aerodynamics. Using POD, the
angle of attack history of the solution No. i αi(t)
is decomposed into that of a nominal solution and
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Fig. 6 The dominant basis function α̃(1)(τ).

3500

4000

4500

500
1000

1500
2000

2500

120

140

160

180

200

 

Final velocity (m/s)

Gross mass (t)
 

T
ak

eo
ff

 v
el

o
ci

ty
 (

m
/s

)

0

0.04

0.08

0.12

Fig. 7 The coefficients of the dominant mode a(1)i .

the deviation from it:

αi(τ) = α1(τ)+
225

∑
j=1

a( j)
i · α̃( j)(τ),

i = 1, . . . ,225, (25)

where the deviation is expressed by the linear
combination of basis functions with 225 modes
{α̃( j)(τ), j = 1, . . . ,225}. The nominal solution
(i = 1) corresponds to the solution No. 1 dis-
cussed in Section 4.1. Due to the optimality of
POD, the deviation of each solution from the
nominal one can be typically described using a
couple of dominant modes. In this case, the most
dominant mode ( j = 1) can express 78.4 % of the
whole deviation in terms of the energy content.
Figures 6 and 7 show its basis function and coef-
ficients, respectively. It is noted that time is nor-
malized from t ∈ [0, tf] to τ ∈ [−1, 1].

The result of POD indicates the following
knowledge:

• The coefficients shown in Fig. 7 suggest that
the optimal time history of angle of attack dur-
ing the flight relies primary on the takeoff ve-
locity and slightly on the final velocity. When
the lower takeoff velocity is desired and/or the
final velocity is not required to be so high, the
optimal angle of attack becomes smaller (the
basis function whose coefficients get larger
has a negative value throughout its domain).
This tendency can be attributed to the fact that
the optimal booster design in this kind of situ-
ation has lower wing loading.

• The dominant basis function has a larger neg-
ative value in τ ∈ [−0.4,0.3] compared to the
other region. This means that the sensitivity of
the optimal angle of attack during the ramjet
mode to the design preference is high.

5 Conclusion

In this paper, a multi-objective, multidisciplinary
conceptual design study of the booster of a hor-
izontal takeoff and landing TSTO space plane
with RBCC engines was performed. The MDO
framework that handles the interdependence be-
tween flight trajectories, propulsion, vehicle ge-
ometries, and aerodynamics was constructed, and
the multi-objective MDO problem was formu-
lated with the following objective functions: the
maximization of the final velocity, the minimiza-
tion of the booster gross mass, and the minimiza-
tion of the takeoff velocity. A set of pareto op-
timal solutions exhibiting the trade-off relation
among these design criteria was obtained using
a newly developed multi-objective optimization
methodology. After some discussions were made
on four selected solutions, correlation analyses of
the pareto optimal solutions were conducted via
two data mining techniques (a scatter plot ma-
trix and POD). This paper revealed some knowl-
edge on the optimal design of the booster and its
trajectory, and demonstrated the applicability of
the novel optimization method to multi-objective
MDO problems.

In the future work, the following improve-
ments in the accuracy of numerical models are
indispensable for acquiring more reliable and in-
sightful design knowledge: applying higher fi-
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delity models to the estimation of vehicle mass
and aerodynamic forces; including the scale ef-
fect of the engine performance; taking the inter-
action between airframe and propulsion into con-
sideration; and considering rigid body character-
istics of the vehicle. Besides, optimization of the
overall TSTO system including the orbiter design
and the flight trajectory after the separation of the
orbiter will be conducted.
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