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Abstract

Carbon-fibre reinforced polymer (CFRP)
cylindrical shells are used in a variety of
aerospace applications. Such shells are
extremely imperfection sensitive [1, 2] and
feature a large scatter in buckling load levels
induced from imperfections introduced in their
manufacturing process.

This paper aims to improve the stochastic
modelling of cylindrical thickness imperfections
in order to better replicate the stochastic
variation of the actual thickness and material
imperfections for FE analysis.

These results will reduce the cost of producing
and aid in improving the design and reliability
of newly designed and untested cylinders by
accurately modelling thickness and material
imperfections for improved stochastic analysis
and robust design.

1 Introduction

There is a substantial requirement for more
robust, lighter and cheaper launch vehicle
structures. Essential to the fabrication of launch
vehicle airframes are unstiffened composite
shells, which are prone to buckling and are
highly sensitive to imperfections which arise
during the manufacturing process. These
imperfections facilitate the drastic variation of

the actual buckling load from the buckling load
of the geometrically perfect structure [1, 2].

The current design guidelines for imperfection
sensitive shells are based on the NASA-SP 8007
[3] which dates from 1968 and is only
concerned with the design capabilities of
isotropic shells. The guideline predicts the
reduced buckling load of a given cylinder
design by first calculating the theoretical
buckling load of a geometrically perfect
structure by performing a linear bifurcation
analysis using closed-form equations. This
theoretical buckling load is then reduced by
applying an empirical knockdown factor to
account for the differences between theory and
experiment.

From recent literature [4-6], the NASA-SP 8007
knockdown factors used in the design of
aerospace-quality ~ shell  structures  were
determined to be exceedingly conservative and
unsuitable for shells constructed from modern
manufacturing processes and materials such as
composites. Such a conservative approach
means that structures are therefore heavier and
more costly than need be.

Dependable and verified design criteria for thin-
walled cylindrical shells are required,
particularly  for shells constructed from
advanced materials and  manufacturing
techniques. ‘New Robust DESign Guideline for
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Imperfection Sensitive COmposite Launcher
Structures’ (DESICOS) was established in 2012
and currently receives funding from the
European Commission to develop the “Single
Perturbation Load Approach” - a new
methodology which is being paired with the
stochastic approach for improved design criteria
of composite shells in buckling [7].

The research conducted for this paper fits under
the umbrella of ‘stochastic approaches’ for the
DESICOS project. Stochastic analysis using
metamodels [6, 8-12] have proven to be an
excellent method for determining the sensitivity
of the buckling load of thin shells to various
imperfection types. The stochastic analysis of
such shells aims to determine the influence of
initial  shell-wall geometric, thickness and
material imperfections and non-uniform applied
end-loads on the axial buckling load for
improved robustness and reliability.

1.1 Background

Recent work on stochastic analysis of shells to
date include Hilburger and Starnes [13], which
compared the effect of measured thickness
imperfections, lamina fibre volume fraction and
applied load distribution for upper and lower
bound buckling curves on cylinders with three
different lay-ups. The thickness imperfections
were varied based on the accuracy tolerances of
the coordinate measurement device. Along with
varying other initial input parameters, Alfano
and Bisagni [14] superimposed axisymmetric
buckling modes to model various geometric
imperfections.

For geometric imperfections, the method of
separation in conjunction with the spectral
representation method has previously been used
to generate new geometric imperfections on
both isotropic [15] and orthotropic [8-10]
cylinders for stochastic analysis and robust
design.

Geometric imperfections, in this case, are
treated as random fields. In Broggi and
Schueller [8], the evolutionary power spectra of
the geometric imperfections were estimated and
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utilised by the spectral representation method to
generate a hundred cylinders with geometric
imperfections that conform to the statistical
limits of the original experimentally tested
shells.

For material imperfections, Broggi and
Schueller [9] developed a modelling algorithm;
an improvement of the Window Moving
Averaging Technique, that maps material
imperfections onto discrete finite element (FE)
points by categorising existing thickness
imperfections. The average thickness of each
shell was used as the overall thickness of their
FE models [8-11] as is the case with other
simulations [16].

For composite cylinders manufactured via hand
layup, it is widely believed that geometric
imperfections arise mainly from imperfections
in the mandrel [6]. Hilburger et al. [4] measured
initial geometric imperfection data to determine
a manufacturing-process-specific imperfection
signature  for CFRP  shells.  Thickness
imperfections, however, are widely believed to
arise mainly from imperfections in the resin
distribution and ply gaps and overlaps [8-10].
These different imperfection types make it
difficult to replicate thickness imperfections for
stochastic analysis due to their differing
statistical properties. Indeed, Broggi and
Schueller [8] only use the initially measured
cylindrical thickness imperfections for their
stochastic analysis; relying on the stochastically
varying geometric imperfections for further
statistical variation.

1.2 Aims

This paper aims to improve the stochastic
modelling of thickness imperfections in order to
better replicate stochastic variation of the actual
thickness in FE analysis. The improved
stochastic thickness imperfections may also be
used as inputs to the improved Moving Window
Averaging Technique [8-10] to improve FE
modelling of material imperfections.

In this paper, the power spectrum of thickness
imperfections of composite cylinders will be
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accurately estimated which will also take into
account ply gaps and changes in the distribution
of the resin or, in other words, matrix. This
spectrum can then be used to further generate
additional stochastic results using the spectral
representation method [15] for the robust design
of thin shelled structures.

An imperfection database of eight nominally
identical CFRP IM6/8557 UD ultrasonic
scanned and tested cylinders (denoted Z15-Z26)
was acquired from a joint DLR-ESA research
program [6]. The nominal properties of these
cylinders are shown in Table 1.

Table 1. Nominal properties of DLR cylinders.

Property Nominal Data
Total length (mm) 540
Free length (mm) 500
Radius (mm) 250
Total Thickness (mm) 0.5
Lay up [£24/£41]

Ply Thickness (mm) 0.125

Cylinder mass () 641

The DLR tested cylinders are representative of
imperfection sensitive design in which the
sensitivity of the axial buckling load to each
imperfection type is magnified. The thickness
imperfection readings are available as a
collection of pixels, where each pixel is
identified by one thickness measurement. The
thickness values are discrete, and the
approximate number of pixels used in each
measurement is 513 in the circumferential
direction and 183 in the axial direction leading
to a total number of 93,769 pixels. The spacing
between in the pixels in the circumferential
direction is 3.11mm and 2.87mm in the axial
direction.

The primary steps involved in estimating the
power spectrum of the thickness imperfections
and accurately modelling new imperfections for
stochastic analysis involve separating the ply
gaps and overlaps from variations in the matrix
of the eight nominally identical cylinders [6] by
means of a Hough transform [18].

The next step involves the use of the 1D STFT
to determine which power spectrum estimation
method is suitable for estimating variations in
the matrix imperfections. The power spectrum is
defined as the Fourier transform of the
autocorrelation function of a random field [13,
16]. The power spectrum can intuitively be
recognised as the distribution of the mean
square of the random field over the space-
frequency domain [13] as presented in Equation
1:

E[If (0?1 = ZfooS(a), x)dw )

0

The power spectrum S(w) is called
homogeneous if it depends only on frequency,
and is called evolutionary S(w, x) if depends on
frequency w and spatial localisation x. The
periodogram in Equation 1 can be expanded and
improved to accurately estimate the random
field in question. Methods of estimating the
power spectrum include the short-time Fourier
transform (STFT) [19], the harmonic wavelet
transform [20] and the method of separation
[21] among other methods.

Next, a Monte Carlo analysis will be used to
generate ply gap imperfections and the spectral
representation method will be used to generate
new realisations of resin  distribution
imperfections. The results from the Monte Carlo
analysis for the ply gaps will be superimposed
onto the results from the spectral representation
method in order to provide new stochastic
inputs that are accurate in describing changes in
the thickness distribution due to ply gaps,
overlaps and unevenness in the resin.

In the future, the thickness models can be
incorporated into a finite element (FE) analysis
and compared with tested results. This novel
method of estimating thickness imperfections
may lead to FE models which calculate the
reduction in the buckling load of cylindrical
shells more accurately when compared with
previous estimation techniques.



2 The Hough Transform

Thickness imperfections on composite shell
structures can generally be attributed to two
different causes: by wvariation in the resin
distribution and by incomplete or excessive
coverage of plies on the surface resulting in ply
gaps or overlaps [8-10]. The angles of these gap
lines coincide with the lay-up angles of the
plies. When one observes the variation of
thickness in the shell structure as shown in
Figure 1, one will notice lines of the deepest
imperfections which are due to ply gaps and
large patches where the overall thickness of a
region changes which can be attributed to
changes in the resin or matrix distribution. Due
to these two distinct imperfection types, it is
unlikely that any spectrum estimation method
will accurately capture and be able to replicate
these imperfections for stochastic analysis due
to their variation in statistical properties.

Axial Length (mm)

AR \ Y
R DRERTAM \P oA
600 800 1000 1200 1400 1600
Circumference (mm)

Fig. 1. Ultrasonic-scanned real thickness imperfections on
the Z23 cylinder. [6]
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The Hough Transform will therefore be used to
isolate the ply gaps and overlaps. The ply gaps
will be withdrawn from the matrix and

statistical ~measurement tools can be
implemented on each imperfection type
separately.

The Hough Transform is a feature detection
method, which, in this specific case, can be used
to detect lines of lowest or highest thickness
points which correspond to ply gaps or overlaps
[17]. We scan through the Cartesian coordinates
of lowest and highest thickness points and
assign a “distance to origin” and “angle from
origin” of each point via the polar representation
shown in Equation 2.
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r =xcosf + ysinf (2)

Where r is the perpendicular distance to the
origin and 0 is the angle from the positive x-axis
to the perpendicular line as described in the
Figure 2.

A

y
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Fig. 2. Polar representation variables of the Hough
Transform.

A MATLAB code was devised to determine if a
sufficient number of points contain the same
perpendicular distance and angle, given a very
minor margin of disparity, and then recognized
the points as ply gaps or overlaps. These data
points were withdrawn from the matrix
imperfections and isolated into another data set
for further analysis later on.

Figures 1 and 4 show the Z23 and Z26 cylinders
(respectively) ultrasonic measured thickness
imperfections [6]. The thickness imperfections
with the deepest lines are removed (thought to
be ply gaps in this case) and are shown in
Figure 3 for the Z23 cylinder. Figure 5 features
the points that were removed from the Z26
cylinder. The thickness scale is shown on the
right hand side of these figures.
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Fig. 3. Z23 cylinder matrix-only imperfections. [6]
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Fig. 4. Z26 cylinder thickness imperfections. [6]
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Fig. 5. Points of lowest thickness that were removed from
Z26 cylinder. [6]

3 Validation of Stochastic Code

In order to validate the MATLAB codes for
obtaining the power spectrum of the thickness
imperfections from various spectrum estimation
tools, we utilise a 1D benchmark spectrum
known as the Kanai Tajimi spectrum [21],
which is defined by the equation below by its
separable components [22]:

1+ 4¢? (wﬂo)2

S(w) = — — O
(- (2)) + (2]
g(x) _ e—O.ZS;Iz_Se—O.Sx (4)

Where the parameters w, = 10rad/mm and
¢ = 0.24 represent the natural frequency and the
damping ratio, respectively. The exact Kanai
Tajimi spectrum is shown in Figure 6.

Spectrum S [mm?/rad]
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070,

Fig. 6. Exact Kanai Tajimi Spectrum

The spectral representation method for a 1D
Gaussian random field was utilised to obtain the
stochastic input for the power spectrum
estimations. The spectral representation method
for a zero-mean 1D Gaussian random field is
shown in Equation 5 [17].

N-1
FO@) =V2 Y Aycos(wpx+ o) O
X 1; COS(O) X )

Where:

Ap =2 S(wp, %) Aw
w, =n-Aw
Aw = wy, /N
Ay =00rS(wy=0,x)=0

Wherei =0,1,2..mandn =0, 1, 2... (N-1)
and N determines the discretisation within the
active frequency range. w,, is the cut-off
frequency, beyond which the spectrum is

considered to be zero. ¢ is the (i)™ realisation
of N independent phase angles that are
uniformly distributed in the range [0, 2m]. The
spectral estimation techniques used to estimate
the Kanai Tajimi spectrum are described as
follows.

3.1 1D Method of Separation

The 1D method of separation is considered to be
an evolutionary spectrum estimation technique
because it focuses on spectrum variations in
both the frequency and spatial axes. An
evolutionary power spectrum can be considered
separable if it can multiplicatively be
decomposed into a homogenous spectrum S(w)



and a modulating envelope g(x) as shown in
Equation 6 [15, 17, 22].

S(w,x) = Sp(w) - g(x) (6)

The homogenous component of the above
separable equation can be estimated using the
periodogram [16, 23] displayed in Equation 7.

S =E
n(w) L

L 2
f f(i)(x).e—iwxdx ‘ (7)
0

From the derivation provided in [9], the
modulating envelope can be estimated by the
equation shown in Equation 8.

E[lFof -
Zfooogh(w)dw

gx) =

To use the method of separation, the input
samples f®(x) need to be approximately
separable as the frequency and spatial
components must be broken down and dealt
with separately. The method of separation based
spectrum estimation of the Kanai Tajimi
spectrum is shown in Figure 7 for N = 1000
showing very accurate variations in both the
spatial and frequency axes.

0 o 2
Fig. 7. Method of separation estimation of the Kanai
Tajimi spectrum.

3.2 1D Short time Fourier Transform

A common approach for evolutionary power
spectrum estimation is by using the STFT
method. The STFT emphasises the spectrum at
specific spatial locations (x = y) also known as
windows, and suppresses spectrum components
that are located further away. The 1D STFT
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evolutionary power spectrum estimate is shown
in Equation 9 [17].

xX+T/2
S(wx) =E [ roeowa -

x=T/2 (9)
|
A non-overlapping simple rectangular window

function will be used for all estimations in this
paper:

2nT .

se Tl W%dx

(1 —~T/2<x<T/2

wlx) = {0 elsewhere

The STFT based estimate of the Kanai Tajimi
spectrum was calculated at 16 equally spaced
positions by a non-overlapping rectangular
window [15]. Due to the uncertainty principle, a
limitation of the STFT is its inability to achieve
simultaneous localisation in both frequency and
space [19]. If the width of the window is
reduced to achieve greater accuracy in the
spatial axes, the STFT will sacrifice information
in the frequency axes. Similarly, if the width of
the window is increased, one would achieve
more accurate estimation readings in the
frequency component while reducing the
precision of information in the spatial axes. In
this paper, a compromise in the spatial
localisation of the window function has been
chosen, that allows for fair localisation in the
space without distorting the frequency
localisation too severely.

The Kanai Tajimi random field power spectrum
estimation using the short time Fourier
transform are shown in the Figure 8.

’ 20
= 16 18
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0y 2

Fig. 8. STFT estimation of the Kanai Tajimi spectrum.
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From comparing Figures 6-8, it is clear that the
method of separation provides the most accurate
spectrum estimate of the Kanai Tajimi
spectrum. It has also been used to estimate the
evolutionary power spectrum of geometric
imperfections in shells [8-10, 15]. It is therefore
preferable to model the spectrum of the matrix
imperfections by using the method of
separation, provided the matrix imperfections fit
within the criteria required to use this particular
method.

4 Spectral Analysis of Matrix Imperfections

The 1D Short Time Fourier Transform (STFT)
is used to determine if the power spectra of the
matrix imperfections are suitable for use in the
2D method of separation. If the matrix
imperfections are deemed unsuitable, alternative
2D spectrum estimation methods must be
implemented.

4.1 1D Short Time Fourier Transform

To use the method of separation as an
approximation, one must prove that the
imperfections are separable. The criterion of
separability strongly depends on the narrow-
bandedness of the spectrum; where variations of
energy distribution in the frequency domain are
considerably limited to a specified frequency
range. The bulk of the spectrum within the
limited frequency range usually contains 95-
100% of the signal to avoid significant
estimation errors. Furthermore, the distribution
in the spatial axis must be approximately
uniformly modulated and must not vary
significantly. The spectrum must be calculated
about a Gaussian zero mean to be accurate [15].

The 1D Short Time Fourier Transform (STFT)
based estimate obtained at 6 equally spaced
positions by a non-overlapping rectangular
window of length L/6 (where L is the
circumference of the cylinder) will be used to
estimate the extent of the narrow-bandedness of
the thickness imperfections to ensure reduced
errors in utilising the 2D method of separation.
A non-overlapping simple rectangular window
function will be used for this estimation [15].

The 1D STFT based spectrum components of
the mid-axial-length thickness imperfection
measurements in the circumferential direction
£®(x) (without the removal of any ply gaps) of
the Z15-Z26 cylinders [6] is shown in Figure
9(a) and with a side view of their corresponding
frequencies shown in Figure 9(b).
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Fig. 9(a). STFT spectrum estimate for mid-axial-length
circumferential reading of Z15-226 cylinders.
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Fig. 9(b). Frequency-side view of STFT spectrum
estimates for mid-axial-length circumferential reading of
Z15-726 cylinders.

As shown in Figures 9(a) and (b),
approximately 40% of the variation of the
energy distribution in the frequency component
is limited to small fixed bandwidth (between 0-
0.05rad/mm). A large section of the energy
distribution is still represented by the remaining
frequencies. Furthermore, 1D STFT based
estimates of the lower-most and top-most
circumferential readings showed similar trends.
This distribution of energy is not sufficient to
warrant the use of the method of separation
which requires around 95% or more of the main
lobe of the energy distribution to be located
within a small band-width to avoid large
distribution errors [22].



When ply-gap imperfections are removed, there
IS no improvement to the STFT spectrum
estimate in terms of the narrow-bandedness or
separability for variations in the matrix. The
main lobe contains less than 40% of the energy
distribution for the mid-axial-length
circumferential imperfection readings as shown
in Figures 10(a) and (b).
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Fig. 10(a). STFT spectum estimate for mid-axial-length
circumferential imperfection readings for Z15-726
cylinders with ply gaps removed.
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This indicates that the distributions in the matrix
imperfections of the cylinder are largely random
and contain very few patterns. Furthermore, the
variations in the spatial direction are not
uniformly modulated and diverge strongly.
Therefore a 2D spectral estimation technique
such as the method of separation is unsuitable
for this type of imperfection and alternative
methods should be sought such as the 2D STFT.
The assumption of separability may be worked-
around by partitioning the space-frequency
spectrum into parts that are of themselves
narrow-banded or approximately separable [17].
However, viewing the spectrum estimates as
shown in Figures 10(a) and (b), indicates that
the spectrum would have to be partitioned into
approximately 60 different parts. Each part must
then be analysed by the method of separation
and then stitched back together to form the
complete spectrum. The time and effort required
to construct the final spectrum would outweigh
any inaccuracies produced by the time-saving
2D STFT method.

4.2 2D Short Time Fourier Transform

The 2D STFT will now be derived and applied
to the matrix imperfections in order to estimate
the evolutionary power spectrum for stochastic
analysis. To expand the 1D STFT to a 2D case,
we derive the 2D case from the generalised

Fig. 10(b). Frequency-side view of STFT spectrum homogenous periodogram  [13] shown in
estimates for mid-axial-length circumferential reading of Equation 10.
Z15-726 cylinders with ply gaps removed.
Ly Ln 2
Stw)=E - j J ® (x) - e~i@nrn)gy  e~i@ix)gy
ll( ) (ZT[)ZL]_ . LZ ...Ln o 0 f ( ) n 1 (10)

The 2D STFT is therefore:

2

Ty Ty
5 ! 2T J v — Y - e-i@ixtw) (11)
Sij(wy, wp,x,y) =E m X_% L_Z_yf o, y)wlx — !,y —Y)) - e H@1X¥7@2Y)qxdy
Where x and y correspond to the directions. The 2D STFT was coded into

circumferential and axial directions respectively
and T, and T, are the widths of the rectangular
windowing functions and y’ and Y’ correspond
to the centre spatial location of the windows to
be examined in the circumferential and axial

MATLAB and the imperfections due only to
changes in the resin distribution of the Z15-Z726
cylinders [6] were added as input functions
F®(x,y). The resulting 4D function is difficult
to plot so the data in the frequency and spatial
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axes in the axial direction have been supressed
for ease of viewing Figures 11(a), (b) and (c).
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Fig. 11. 2D STFT of matrix imperfections in the
circumferential direction for rectangular window widths
(@ T=L=1600mm, (b) T =L/6=266.67mm, (c) T =
L/12 = 133.33mm.

Rectangular Window Width

Spectrum [m m’ rad]

.02 0.03
Frequency (rad/mm)

(@)

0.04 0,05 0.06

Rectangular Window Width

o T

800 1000 1200 1400 1600
X (mm)

(b)

Fig. 12. Comparison of various rectangular window
widths for 2D STFT in the circumferential direction only
(axial values suppressed for ease of viewing), (a)
reduction in accuracy of frequency estimate with
decreasing window size and (b) increase in accuracy of
spatial estimate with decreasing window size.

The increase in spatial localisation and the
decrease in the accuracy of the frequency data
as the window size decreases is a general
property of the STFT. This is ‘uncertainly
principle’ is motivated from a physical point of
view by Heisenberg’s observations in quantum
mechanics [22]. It was determined that six
rectangular windows would be sufficient to
capture the distribution of energy along the
spatial axes without substantially damaging the
data along the frequency axis.

4.3 Spectral
Imperfections

Representation of Matrix

Similar to the spectral representation method of
the 1D Gaussian random field, the spectral
representation for a 2D Gaussian random field is
shown in Equation 12 [15].

From Equation 12:
Apm = \/2 " S(W1n Wam, X, Y)  Aw; * Aw,

N; and N, determine the discretisation within
the active frequency range of the circumferential
and axial axes. ¢” and ¢” are the (i)"
realisations of N; and N, independent phase
angles that are uniformly distributed in the
range [0, 2rx].

N;—1N,—1

O, y) =2 Z Z [Anm cos (wlnx + wymy + qbl(i)) + Apm COS (wlnx — Wy + gbz(i))] (12)

n=0 m=0




A MATLAB code was devised where the 2D
STFT  spectrum  estimate  for  matrix
imperfections was incorporated into the 2D
spectral representation method and produced
100 new realisations of the random field. A few
results for this process are shown in Figures
13(a) and (b) and are comparable with original
matrix imperfections as shown in Figure 3 [6].
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Fig. 13(a) and (b). Examples of matrix imperfections
generated from spectral representation method.

5 Monte Carlo Analysis of Ply Gaps and
Overlaps

The imperfections in the shell thickness due to
ply gaps and overlaps of eight CFRP 1M6/8557
UD real cylinders [6] have been successfully
isolated using the Hough transform code as
evidenced in Figures 3 and 5. Further analyses
of these imperfections provide the statistical
properties  necessary to generate  new
imperfections for stochastic analysis. The
properties of most interest are the variation in
the thickness of the lines, the number of lines at
various ply angles in any one cylinder and the
spatial location of these lines. An example of
the ply gaps that were isolated from the Hough
transform code are shown in Figures 14(a) and

(b).
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()
Fig. 14(a) and (b). -41 degree ply gap imperfections from
Z17 cylinder [6]. Lowest imperfection points are
highlighted in red.

The thickness values of the gap lines were
collected and assumed to be normally
distributed. Furthermore, as evidenced by
Figures 14(a) and (b), the lines of the deepest
imperfections are located at almost identical
distances from each other. We can take
advantage of these patterns to collect the spatial
distribution of gap line imperfections on the
cylinders for stochastic analysis. First, the lines
are rotated so that they are vertical and easy to
count.

Next, lines containing 25 or more points are
isolated in order to obtain the most prominent
ply gaps. The isolated lines represent the spatial
areas that ply-gaps are most likely to occur. The
precise number of these lines in each of the 8
nominally identical CFRP IM6/8557 UD
cylinders [6] were recorded for all ply angles
[£24, £41] and used to construct a Gaussian
probability function. Similarly, the spatial
distribution of these lines were recorded and
utilised to construct a unique probability
distribution. Figure 15 features the spatial and
thickness probability distribution of the gap
lines in the -24 degree direction.
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Percentage (%)
-

Spatial Location (mm) soo 045
0.44 Ply Gap Thickness (mm)

Fig. 15. Probability distribuﬁon of -24 degree gap lines.

The thickness of the ply gaps were assumed to
be normally distributed about a particular mean
and standard deviation which was unique to
each ply gap angle. As shown in Figure 18, the
spatial location of the ply gaps tend to
accumulate at certain locations, with close to
4% of the distributions being localised a certain
locations. The localisation of these ply gaps
may be attributed to the hand lay-up
manufacturing process of the cylinders in which
strips of composite plies are arranged side-by-
side. A Monte Carlo random number generator
was utilised to generate 100 new stochastic
fields with variations in ply gap thickness,
spatial distribution and quantity that carry the
statistical properties of the ply gaps in the
original 8 nominally identical shells [6]. An
example of a new field is shown in Figure 16.

600~

Axial Length (mm)

200 400 600 800 1000 1200 1400 1600
Circumferential Length (mm)

Fig. 16. New field produced with -24 degree ply gaps.

6 Superimposition of Ply Gaps to Matrix
Imperfections

Finally, the stochastically generated ply gaps are
superimposed onto matrix imperfections that
were generated from the spectral representation
method. A few examples of the outcome of this
process are shown in Figures 17(a) and (b).

Axial Length (mm)

600 800
Circumference (mm)

@

Axial Length (mm)
o

DL L vl . 3 S _
0 200 400 600 80D 1000 1200 1400 1600
Circumference (mm)

(b)
Fig. 17(a) and (b). Generated thickness imperfections.

7 Conclusion and Future Work

The results generated from the novel method
described in this paper are comparable to the
original thickness scans provided from DLR [6]
shown in Figures 1 and 4. Further analysis and
finite element modelling will need to be
conducted to ensure the stochastic thicknesses
provide modelling results that are similar to the
experimental ~ buckling  results.  Further
refinement of the spectrum estimation method
and improved STFT windowing functions will
provide more accurate stochastic thickness
models. The stochastic thickness models may
also be used as inputs into the Moving Window

Averaging Technique [8-10] to provide
stochastically varying imperfect material
models.
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