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Abstract  

Carbon-fibre reinforced polymer (CFRP) 

cylindrical shells are used in a variety of 

aerospace applications. Such shells are 

extremely imperfection sensitive [1, 2] and 

feature a large scatter in buckling load levels 

induced from imperfections introduced in their 

manufacturing process. 

 

This paper aims to improve the stochastic 

modelling of cylindrical thickness imperfections 

in order to better replicate the stochastic 

variation of the actual thickness and material 

imperfections for FE analysis. 

 

These results will reduce the cost of producing 

and aid in improving the design and reliability 

of newly designed and untested cylinders by 

accurately modelling thickness and material 

imperfections for improved stochastic analysis 

and robust design. 

1  Introduction  

There is a substantial requirement for more 

robust, lighter and cheaper launch vehicle 

structures. Essential to the fabrication of launch 

vehicle airframes are unstiffened composite 

shells, which are prone to buckling and are 

highly sensitive to imperfections which arise 

during the manufacturing process. These 

imperfections facilitate the drastic variation of 

the actual buckling load from the buckling load 

of the geometrically perfect structure [1, 2]. 

 

The current design guidelines for imperfection 

sensitive shells are based on the NASA-SP 8007 

[3] which dates from 1968 and is only 

concerned with the design capabilities of 

isotropic shells. The guideline predicts the 

reduced buckling load of a given cylinder 

design by first calculating the theoretical 

buckling load of a geometrically perfect 

structure by performing a linear bifurcation 

analysis using closed-form equations. This 

theoretical buckling load is then reduced by 

applying an empirical knockdown factor to 

account for the differences between theory and 

experiment. 

 

From recent literature [4-6], the NASA-SP 8007 

knockdown factors used in the design of 

aerospace-quality shell structures were 

determined to be exceedingly conservative and 

unsuitable for shells constructed from modern 

manufacturing processes and materials such as 

composites. Such a conservative approach 

means that structures are therefore heavier and 

more costly than need be. 

 

Dependable and verified design criteria for thin-

walled cylindrical shells are required, 

particularly for shells constructed from 

advanced materials and manufacturing 

techniques. ‘New Robust DESign Guideline for 
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Imperfection Sensitive COmposite Launcher 

Structures’ (DESICOS) was established in 2012 

and currently receives funding from the 

European Commission to develop the “Single 

Perturbation Load Approach” - a new 

methodology which is being paired with the 

stochastic approach for improved design criteria 

of composite shells in buckling [7]. 

 

The research conducted for this paper fits under 

the umbrella of ‘stochastic approaches’ for the 

DESICOS project. Stochastic analysis using 

metamodels [6, 8-12] have proven to be an 

excellent method for determining the sensitivity 

of the buckling load of thin shells to various 

imperfection types. The stochastic analysis of 

such shells aims to determine the influence of 

initial shell-wall geometric, thickness and 

material imperfections and non-uniform applied 

end-loads on the axial buckling load for 

improved robustness and reliability.  

1.1 Background 

Recent work on stochastic analysis of shells to 

date include Hilburger and Starnes [13], which 

compared the effect of measured thickness 

imperfections, lamina fibre volume fraction and 

applied load distribution for upper and lower 

bound buckling curves on cylinders with three 

different lay-ups. The thickness imperfections 

were varied based on the accuracy tolerances of 

the coordinate measurement device. Along with 

varying other initial input parameters, Alfano 

and Bisagni [14] superimposed axisymmetric 

buckling modes to model various geometric 

imperfections. 

 

For geometric imperfections, the method of 

separation in conjunction with the spectral 

representation method has previously been used 

to generate new geometric imperfections on 

both isotropic [15] and orthotropic [8-10] 

cylinders for stochastic analysis and robust 

design.  

 

Geometric imperfections, in this case, are 

treated as random fields. In Broggi and 

Schueller [8], the evolutionary power spectra of 

the geometric imperfections were estimated and 

utilised by the spectral representation method to 

generate a hundred cylinders with geometric 

imperfections that conform to the statistical 

limits of the original experimentally tested 

shells.  

 

For material imperfections, Broggi and 

Schueller [9] developed a modelling algorithm; 

an improvement of the Window Moving 

Averaging Technique, that maps material 

imperfections onto discrete finite element (FE) 

points by categorising existing thickness 

imperfections. The average thickness of each 

shell was used as the overall thickness of their 

FE models [8-11] as is the case with other 

simulations [16]. 

 

For composite cylinders manufactured via hand 

layup, it is widely believed that geometric 

imperfections arise mainly from imperfections 

in the mandrel [6]. Hilburger et al. [4] measured 

initial geometric imperfection data to determine 

a manufacturing-process-specific imperfection 

signature for CFRP shells. Thickness 

imperfections, however, are widely believed to 

arise mainly from imperfections in the resin 

distribution and ply gaps and overlaps [8-10]. 

These different imperfection types make it 

difficult to replicate thickness imperfections for 

stochastic analysis due to their differing 

statistical properties. Indeed, Broggi and 

Schueller [8] only use the initially measured 

cylindrical thickness imperfections for their 

stochastic analysis; relying on the stochastically 

varying geometric imperfections for further 

statistical variation.  

1.2 Aims 

This paper aims to improve the stochastic 

modelling of thickness imperfections in order to 

better replicate stochastic variation of the actual 

thickness in FE analysis. The improved 

stochastic thickness imperfections may also be 

used as inputs to the improved Moving Window 

Averaging Technique [8-10] to improve FE 

modelling of material imperfections. 

 

In this paper, the power spectrum of thickness 

imperfections of composite cylinders will be 
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accurately estimated which will also take into 

account ply gaps and changes in the distribution 

of the resin or, in other words, matrix. This 

spectrum can then be used to further generate 

additional stochastic results using the spectral 

representation method [15] for the robust design 

of thin shelled structures.  

 

An imperfection database of eight nominally 

identical CFRP IM6/8557 UD ultrasonic 

scanned and tested cylinders (denoted Z15-Z26) 

was acquired from a joint DLR-ESA research 

program [6].  The nominal properties of these 

cylinders are shown in Table 1.  

 
Table 1. Nominal properties of DLR cylinders. 

Property Nominal Data 

Total length (mm) 540 

Free length (mm) 500 

Radius (mm) 250 

Total Thickness (mm) 0.5 

Lay up [±24/±41] 

Ply Thickness (mm) 0.125 

Cylinder mass (g) 641 

 

The DLR tested cylinders are representative of 

imperfection sensitive design in which the 

sensitivity of the axial buckling load to each 

imperfection type is magnified. The thickness 

imperfection readings are available as a 

collection of pixels, where each pixel is 

identified by one thickness measurement. The 

thickness values are discrete, and the 

approximate number of pixels used in each 

measurement is 513 in the circumferential 

direction and 183 in the axial direction leading 

to a total number of 93,769 pixels. The spacing 

between in the pixels in the circumferential 

direction is 3.11mm and 2.87mm in the axial 

direction. 

 

The primary steps involved in estimating the 

power spectrum of the thickness imperfections 

and accurately modelling new imperfections for 

stochastic analysis involve separating the ply 

gaps and overlaps from variations in the matrix 

of the eight nominally identical cylinders [6] by 

means of a Hough transform [18]. 

 

The next step involves the use of the 1D STFT 

to determine which power spectrum estimation 

method is suitable for estimating variations in 

the matrix imperfections. The power spectrum is 

defined as the Fourier transform of the 

autocorrelation function of a random field [13, 

16]. The power spectrum can intuitively be 

recognised as the distribution of the mean 

square of the random field over the space-

frequency domain [13] as presented in Equation 

1:  

𝐸[|𝑓(𝑥)|2] = 2 ∫ 𝑆(𝜔, 𝑥)𝑑𝜔
∞

0

 

 

 

(1) 

The power spectrum 𝑆(𝜔) is called 

homogeneous if it depends only on frequency, 

and is called evolutionary 𝑆(𝜔, 𝑥) if depends on 

frequency 𝜔 and spatial localisation 𝑥. The 

periodogram in Equation 1 can be expanded and 

improved to accurately estimate the random 

field in question. Methods of estimating the 

power spectrum include the short-time Fourier 

transform (STFT) [19], the harmonic wavelet 

transform [20] and the method of separation 

[21] among other methods. 

 

Next, a Monte Carlo analysis will be used to 

generate ply gap imperfections and the spectral 

representation method will be used to generate 

new realisations of resin distribution 

imperfections. The results from the Monte Carlo 

analysis for the ply gaps will be superimposed 

onto the results from the spectral representation 

method in order to provide new stochastic 

inputs that are accurate in describing changes in 

the thickness distribution due to ply gaps, 

overlaps and unevenness in the resin.  

 

In the future, the thickness models can be 

incorporated into a finite element (FE) analysis 

and compared with tested results. This novel 

method of estimating thickness imperfections 

may lead to FE models which calculate the 

reduction in the buckling load of cylindrical 

shells more accurately when compared with 

previous estimation techniques.  
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2  The Hough Transform  

Thickness imperfections on composite shell 

structures can generally be attributed to two 

different causes: by variation in the resin 

distribution and by incomplete or excessive 

coverage of plies on the surface resulting in ply 

gaps or overlaps [8-10]. The angles of these gap 

lines coincide with the lay-up angles of the 

plies. When one observes the variation of 

thickness in the shell structure as shown in 

Figure 1, one will notice lines of the deepest 

imperfections which are due to ply gaps and 

large patches where the overall thickness of a 

region changes which can be attributed to 

changes in the resin or matrix distribution. Due 

to these two distinct imperfection types, it is 

unlikely that any spectrum estimation method 

will accurately capture and be able to replicate 

these imperfections for stochastic analysis due 

to their variation in statistical properties. 

 

 
Fig. 1. Ultrasonic-scanned real thickness imperfections on 

the Z23 cylinder. [6] 

 

The Hough Transform will therefore be used to 

isolate the ply gaps and overlaps. The ply gaps 

will be withdrawn from the matrix and 

statistical measurement tools can be 

implemented on each imperfection type 

separately.  

 

The Hough Transform is a feature detection 

method, which, in this specific case, can be used 

to detect lines of lowest or highest thickness 

points which correspond to ply gaps or overlaps 

[17]. We scan through the Cartesian coordinates 

of lowest and highest thickness points and 

assign a “distance to origin” and “angle from 

origin” of each point via the polar representation 

shown in Equation 2. 

𝑟 = 𝑥 cos 𝜃 + 𝑦 sin 𝜃 (2) 

 

Where r is the perpendicular distance to the 

origin and θ is the angle from the positive x-axis 

to the perpendicular line as described in the 

Figure 2. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. Polar representation variables of the Hough 

Transform. 

 

A MATLAB code was devised to determine if a 

sufficient number of points contain the same 

perpendicular distance and angle, given a very 

minor margin of disparity, and then recognized 

the points as ply gaps or overlaps. These data 

points were withdrawn from the matrix 

imperfections and isolated into another data set 

for further analysis later on.  

 

Figures 1 and 4 show the Z23 and Z26 cylinders 

(respectively) ultrasonic measured thickness 

imperfections [6]. The thickness imperfections 

with the deepest lines are removed (thought to 

be ply gaps in this case) and are shown in 

Figure 3 for the Z23 cylinder. Figure 5 features 

the points that were removed from the Z26 

cylinder. The thickness scale is shown on the 

right hand side of these figures. 

 
Fig. 3. Z23 cylinder matrix-only imperfections. [6] 
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Fig. 4. Z26 cylinder thickness imperfections. [6] 

 

 
Fig. 5. Points of lowest thickness that were removed from 

Z26 cylinder. [6] 

3  Validation of Stochastic Code  

In order to validate the MATLAB codes for 

obtaining the power spectrum of the thickness 

imperfections from various spectrum estimation 

tools, we utilise a 1D benchmark spectrum 

known as the Kanai Tajimi spectrum [21], 

which is defined by the equation below by its 

separable components [22]: 

 

𝑆(𝜔) =
1 + 4𝜍2 (

𝜔
𝜔0

)
2

[(1 − (
𝜔
𝜔0

)
2

)
2

+ (2𝜍
𝜔
𝜔0

)
2

]

 

 

 
 

(3) 

 

𝑔(𝑥) =
𝑒−0.25𝑥 − 𝑒−0.5𝑥

0.25
 

 

(4) 

 

Where the parameters 𝜔0 = 10𝑟𝑎𝑑/𝑚𝑚 and 

𝜍 = 0.24 represent the natural frequency and the 

damping ratio, respectively. The exact Kanai 

Tajimi spectrum is shown in Figure 6.  

 

 
Fig. 6. Exact Kanai Tajimi Spectrum 

The spectral representation method for a 1D 

Gaussian random field was utilised to obtain the 

stochastic input for the power spectrum 

estimations. The spectral representation method 

for a zero-mean 1D Gaussian random field is 

shown in Equation 5 [17]. 

 

𝑓(𝑖)(𝑥) = √2 ∑ 𝐴𝑛 cos(𝜔𝑛𝑥 + 𝜙𝑛
(𝑖)

)

𝑁−1

𝑛=0

 

 

 

(5) 

Where: 

𝐴𝑛 = √2 ∙ 𝑆(𝜔𝑛, 𝑥) ∙ ∆𝜔 

𝜔𝑛 = 𝑛 ∙ ∆𝜔 

∆𝜔 = 𝜔𝑢𝑝/𝑁 

𝐴0 = 0 𝑜𝑟 𝑆(𝜔0 = 0, 𝑥) = 0 

 

Where i = 0, 1, 2…m and n = 0, 1, 2… (N-1) 

and N determines the discretisation within the 

active frequency range. 𝜔𝑢𝑝 is the cut-off 

frequency, beyond which the spectrum is 

considered to be zero. 𝜙𝑛
(𝑖)

 is the (i)th realisation 

of N independent phase angles that are 

uniformly distributed in the range [0, 2𝜋]. The 

spectral estimation techniques used to estimate 

the Kanai Tajimi spectrum are described as 

follows. 

3.1 1D Method of Separation 

The 1D method of separation is considered to be 

an evolutionary spectrum estimation technique 

because it focuses on spectrum variations in 

both the frequency and spatial axes. An 

evolutionary power spectrum can be considered 

separable if it can multiplicatively be 

decomposed into a homogenous spectrum 𝑆(𝜔) 
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and a modulating envelope 𝑔(𝑥) as shown in 

Equation 6 [15, 17, 22]. 

 

𝑆(𝜔, 𝑥) = 𝑆ℎ(𝜔) ∙ 𝑔(𝑥) (6) 

The homogenous component of the above 

separable equation can be estimated using the 

periodogram [16, 23] displayed in Equation 7. 

𝑆̃ℎ(𝜔) = 𝐸 [
1

2𝜋𝐿
∙ |∫ 𝑓(𝑖)(𝑥)

𝐿

0

∙ 𝑒−𝑖𝜔𝑥𝑑𝑥|

2

] 

 

(7) 

From the derivation provided in [9], the 

modulating envelope can be estimated by the 

equation shown in Equation 8. 

𝑔(𝑥) =
𝐸 [|𝑓(𝑖)(𝑥)|

2
]

2 ∫ 𝑆̃ℎ(𝜔)𝑑𝜔
∞

0

 

 

(8) 

To use the method of separation, the input 

samples 𝑓(𝑖)(𝑥) need to be approximately 

separable as the frequency and spatial 

components must be broken down and dealt 

with separately. The method of separation based 

spectrum estimation of the Kanai Tajimi 

spectrum is shown in Figure 7 for N = 1000 

showing very accurate variations in both the 

spatial and frequency axes. 

 
Fig. 7. Method of separation estimation of the Kanai 

Tajimi spectrum. 

3.2 1D Short time Fourier Transform 

A common approach for evolutionary power 

spectrum estimation is by using the STFT 

method. The STFT emphasises the spectrum at 

specific spatial locations (𝑥 = 𝜒) also known as 

windows, and suppresses spectrum components 

that are located further away. The 1D STFT 

evolutionary power spectrum estimate is shown 

in Equation 9 [17]. 

 

𝑆̃𝑗(𝜔, 𝑥) = 𝐸 [
1

2𝜋𝑇
∙ |∫ 𝑓(𝑖)(𝑥)𝑤(𝑥 − 𝜒𝑗)

𝜒+𝑇/2

𝜒−𝑇/2

∙ 𝑒−𝑖𝜔𝑥𝑑𝑥|

2

] 

 

(9) 

 

A non-overlapping simple rectangular window 

function will be used for all estimations in this 

paper: 

 

𝑤(𝑥) = {
1         − 𝑇/2 ≤ 𝑥 ≤ 𝑇/2
0                       𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 

 

The STFT based estimate of the Kanai Tajimi 

spectrum was calculated at 16 equally spaced 

positions by a non-overlapping rectangular 

window [15]. Due to the uncertainty principle, a 

limitation of the STFT is its inability to achieve 

simultaneous localisation in both frequency and 

space [19]. If the width of the window is 

reduced to achieve greater accuracy in the 

spatial axes, the STFT will sacrifice information 

in the frequency axes. Similarly, if the width of 

the window is increased, one would achieve 

more accurate estimation readings in the 

frequency component while reducing the 

precision of information in the spatial axes. In 

this paper, a compromise in the spatial 

localisation of the window function has been 

chosen, that allows for fair localisation in the 

space without distorting the frequency 

localisation too severely. 

 

The Kanai Tajimi random field power spectrum 

estimation using the short time Fourier 

transform are shown in the Figure 8. 

 

 
Fig. 8. STFT estimation of the Kanai Tajimi spectrum. 
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From comparing Figures 6-8, it is clear that the 

method of separation provides the most accurate 

spectrum estimate of the Kanai Tajimi 

spectrum. It has also been used to estimate the 

evolutionary power spectrum of geometric 

imperfections in shells [8-10, 15]. It is therefore 

preferable to model the spectrum of the matrix 

imperfections by using the method of 

separation, provided the matrix imperfections fit 

within the criteria required to use this particular 

method. 

4  Spectral Analysis of Matrix Imperfections 

The 1D Short Time Fourier Transform (STFT) 

is used to determine if the power spectra of the 

matrix imperfections are suitable for use in the 

2D method of separation. If the matrix 

imperfections are deemed unsuitable, alternative 

2D spectrum estimation methods must be 

implemented. 

4.1 1D Short Time Fourier Transform 

To use the method of separation as an 

approximation, one must prove that the 

imperfections are separable. The criterion of 

separability strongly depends on the narrow-

bandedness of the spectrum; where variations of 

energy distribution in the frequency domain are 

considerably limited to a specified frequency 

range. The bulk of the spectrum within the 

limited frequency range usually contains 95-

100% of the signal to avoid significant 

estimation errors. Furthermore, the distribution 

in the spatial axis must be approximately 

uniformly modulated and must not vary 

significantly. The spectrum must be calculated 

about a Gaussian zero mean to be accurate [15]. 

 

The 1D Short Time Fourier Transform (STFT) 

based estimate obtained at 6 equally spaced 

positions by a non-overlapping rectangular 

window of length L/6 (where L is the 

circumference of the cylinder) will be used to 

estimate the extent of the narrow-bandedness of 

the thickness imperfections to ensure reduced 

errors in utilising the 2D method of separation. 

A non-overlapping simple rectangular window 

function will be used for this estimation [15]. 

The 1D STFT based spectrum components of 

the mid-axial-length thickness imperfection 

measurements in the circumferential direction 

𝑓(𝑖)(𝑥) (without the removal of any ply gaps) of 

the Z15-Z26 cylinders [6] is shown in Figure 

9(a) and with a side view of their corresponding 

frequencies shown in Figure 9(b). 

  

 
Fig. 9(a). STFT spectrum estimate for mid-axial-length 

circumferential reading of Z15-Z26 cylinders. 

 

 
Fig. 9(b). Frequency-side view of STFT spectrum 

estimates for mid-axial-length circumferential reading of 

Z15-Z26 cylinders. 

 

As shown in Figures 9(a) and (b), 

approximately 40% of the variation of the 

energy distribution in the frequency component 

is limited to small fixed bandwidth (between 0-

0.05rad/mm). A large section of the energy 

distribution is still represented by the remaining 

frequencies. Furthermore, 1D STFT based 

estimates of the lower-most and top-most 

circumferential readings showed similar trends. 

This distribution of energy is not sufficient to 

warrant the use of the method of separation 

which requires around 95% or more of the main 

lobe of the energy distribution to be located 

within a small band-width to avoid large 

distribution errors [22].  
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When ply-gap imperfections are removed, there 

is no improvement to the STFT spectrum 

estimate in terms of the narrow-bandedness or 

separability for variations in the matrix. The 

main lobe contains less than 40% of the energy 

distribution for the mid-axial-length 

circumferential imperfection readings as shown 

in Figures 10(a) and (b). 

 
Fig. 10(a). STFT spectum estimate for mid-axial-length 

circumferential imperfection readings for Z15-Z26 

cylinders with ply gaps removed. 

 
Fig. 10(b). Frequency-side view of STFT spectrum 

estimates for mid-axial-length circumferential reading of 

Z15-Z26 cylinders with ply gaps removed. 

This indicates that the distributions in the matrix 

imperfections of the cylinder are largely random 

and contain very few patterns. Furthermore, the 

variations in the spatial direction are not 

uniformly modulated and diverge strongly. 

Therefore a 2D spectral estimation technique 

such as the method of separation is unsuitable 

for this type of imperfection and alternative 

methods should be sought such as the 2D STFT. 

The assumption of separability may be worked-

around by partitioning the space-frequency 

spectrum into parts that are of themselves 

narrow-banded or approximately separable [17]. 

However, viewing the spectrum estimates as 

shown in Figures 10(a) and (b), indicates that 

the spectrum would have to be partitioned into 

approximately 60 different parts. Each part must 

then be analysed by the method of separation 

and then stitched back together to form the 

complete spectrum. The time and effort required 

to construct the final spectrum would outweigh 

any inaccuracies produced by the time-saving 

2D STFT method. 

4.2 2D Short Time Fourier Transform  

The 2D STFT will now be derived and applied 

to the matrix imperfections in order to estimate 

the evolutionary power spectrum for stochastic 

analysis. To expand the 1D STFT to a 2D case, 

we derive the 2D case from the generalised 

homogenous periodogram [13] shown in 

Equation 10. 

 

𝑆̃𝑖𝑖
ℎ(𝜔) = 𝐸 [

1

(2𝜋)2𝐿1 ∙ 𝐿2 … 𝐿𝑛
∙ |∫ … ∫ 𝑓(𝑖)

𝐿𝑛

0

(𝑥)
𝐿1

0

∙ 𝑒−𝑖(𝜔𝑛𝑥𝑛)𝑑𝑥𝑛 … 𝑒−𝑖(𝜔1𝑥1)𝑑𝑥1|

2

] 

 

 

(10) 

The 2D STFT is therefore:  
 

𝑆̃𝑗(𝜔1, 𝜔2, 𝑥, 𝑦) = 𝐸 [
1

4𝜋2𝑇𝑥𝑇𝑦
∙ |∫ ∫ 𝑓(𝑖)

Υ+
𝑇𝑦

2

Υ−
𝑇𝑦

2

(𝑥, 𝑦)𝑤(𝑥 − 𝜒𝑗 , 𝑦 − Υ𝑗)
𝜒+

𝑇𝑥
2

𝜒−
𝑇𝑥
2

∙ 𝑒−𝑖(𝜔1𝑥+𝜔2𝑦)𝑑𝑥𝑑𝑦|

2

] 

 

(11) 

 

Where 𝑥 and 𝑦 correspond to the 

circumferential and axial directions respectively 

and 𝑇𝑥 and 𝑇𝑦 are the widths of the rectangular 

windowing functions and 𝜒𝑗 and Υ𝑗 correspond 

to the centre spatial location of the windows to 

be examined in the circumferential and axial 

directions. The 2D STFT was coded into 

MATLAB and the imperfections due only to 

changes in the resin distribution of the Z15-Z26 

cylinders [6] were added as input functions 

𝑓(𝑖)(𝑥, 𝑦). The resulting 4D function is difficult 

to plot so the data in the frequency and spatial 
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axes in the axial direction have been supressed 

for ease of viewing Figures 11(a), (b) and (c). 

 
(a) 

 

 
(b) 

 

 
(c) 

Fig. 11. 2D STFT of matrix imperfections in the 

circumferential direction for rectangular window widths 

(a) T = L = 1600mm, (b) T = L/6 = 266.67mm, (c) T = 

L/12 = 133.33mm. 

 

 
(a) 

 

 
(b) 

Fig. 12. Comparison of various rectangular window 

widths for 2D STFT in the circumferential direction only 

(axial values suppressed for ease of viewing), (a) 

reduction in accuracy of frequency estimate with 

decreasing window size and (b) increase in accuracy of 

spatial estimate with decreasing window size. 

 

The increase in spatial localisation and the 

decrease in the accuracy of the frequency data 

as the window size decreases is a general 

property of the STFT. This is ‘uncertainly 

principle’ is motivated from a physical point of 

view by Heisenberg’s observations in quantum 

mechanics [22]. It was determined that six 

rectangular windows would be sufficient to 

capture the distribution of energy along the 

spatial axes without substantially damaging the 

data along the frequency axis. 

4.3 Spectral Representation of Matrix 

Imperfections 

Similar to the spectral representation method of 

the 1D Gaussian random field, the spectral 

representation for a 2D Gaussian random field is 

shown in Equation 12 [15]. 

 

From Equation 12: 

𝐴𝑛𝑚 = √2 ∙ 𝑆(𝜔1𝑛, 𝜔2𝑚, 𝑥, 𝑦) ∙ ∆𝜔1 ∙ ∆𝜔2 

 

𝑁1 and 𝑁2 determine the discretisation within 

the active frequency range of the circumferential 

and axial axes. 𝜙1
(𝑖)

 and 𝜙2
(𝑖)

 are the (i)th 

realisations of 𝑁1 and 𝑁2 independent phase 

angles that are uniformly distributed in the 

range [0, 2𝜋]. 

𝑓(𝑖)(𝑥, 𝑦) = √2 ∑ ∑ [𝐴𝑛𝑚 cos (𝜔1𝑛𝑥 + 𝜔2𝑚𝑦 + 𝜙1
(𝑖)

) + 𝐴𝑛𝑚 cos (𝜔1𝑛𝑥 − 𝜔2𝑚𝑦 + 𝜙2
(𝑖)

)]

𝑁2−1

𝑚=0

𝑁1−1

𝑛=0

 
 

(12) 
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A MATLAB code was devised where the 2D 

STFT spectrum estimate for matrix 

imperfections was incorporated into the 2D 

spectral representation method and produced 

100 new realisations of the random field. A few 

results for this process are shown in Figures 

13(a) and (b) and are comparable with original 

matrix imperfections as shown in Figure 3 [6]. 
 

 
(a) 

 
(b) 

Fig. 13(a) and (b). Examples of matrix imperfections 

generated from spectral representation method. 

5 Monte Carlo Analysis of Ply Gaps and 

Overlaps 

The imperfections in the shell thickness due to 

ply gaps and overlaps of eight CFRP IM6/8557 

UD real cylinders [6] have been successfully 

isolated using the Hough transform code as 

evidenced in Figures 3 and 5. Further analyses 

of these imperfections provide the statistical 

properties necessary to generate new 

imperfections for stochastic analysis. The 

properties of most interest are the variation in 

the thickness of the lines, the number of lines at 

various ply angles in any one cylinder and the 

spatial location of these lines. An example of 

the ply gaps that were isolated from the Hough 

transform code are shown in Figures 14(a) and 

(b). 

 
(a) 

 

 
(b) 

Fig. 14(a) and (b). -41 degree ply gap imperfections from 

Z17 cylinder [6]. Lowest imperfection points are 

highlighted in red. 

 

The thickness values of the gap lines were 

collected and assumed to be normally 

distributed. Furthermore, as evidenced by 

Figures 14(a) and (b), the lines of the deepest 

imperfections are located at almost identical 

distances from each other. We can take 

advantage of these patterns to collect the spatial 

distribution of gap line imperfections on the 

cylinders for stochastic analysis. First, the lines 

are rotated so that they are vertical and easy to 

count.  
 

Next, lines containing 25 or more points are 

isolated in order to obtain the most prominent 

ply gaps. The isolated lines represent the spatial 

areas that ply-gaps are most likely to occur. The 

precise number of these lines in each of the 8 

nominally identical CFRP IM6/8557 UD 

cylinders [6] were recorded for all ply angles 

[±24, ±41] and used to construct a Gaussian 

probability function. Similarly, the spatial 

distribution of these lines were recorded and 

utilised to construct a unique probability 

distribution. Figure 15 features the spatial and 

thickness probability distribution of the gap 

lines in the -24 degree direction. 
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Fig. 15. Probability distribution of -24 degree gap lines. 

 

The thickness of the ply gaps were assumed to 

be normally distributed about a particular mean 

and standard deviation which was unique to 

each ply gap angle. As shown in Figure 18, the 

spatial location of the ply gaps tend to 

accumulate at certain locations, with close to 

4% of the distributions being localised a certain 

locations. The localisation of these ply gaps 

may be attributed to the hand lay-up 

manufacturing process of the cylinders in which 

strips of composite plies are arranged side-by-

side. A Monte Carlo random number generator 

was utilised to generate 100 new stochastic 

fields with variations in ply gap thickness, 

spatial distribution and quantity that carry the 

statistical properties of the ply gaps in the 

original 8 nominally identical shells [6]. An 

example of a new field is shown in Figure 16.  
 

 
Fig. 16. New field produced with -24 degree ply gaps. 

6  Superimposition of Ply Gaps to Matrix 

Imperfections 

Finally, the stochastically generated ply gaps are 

superimposed onto matrix imperfections that 

were generated from the spectral representation 

method.  A few examples of the outcome of this 

process are shown in Figures 17(a) and (b). 

 

(a) 

 

(b) 

Fig. 17(a) and (b). Generated thickness imperfections. 

7  Conclusion and Future Work 

The results generated from the novel method 

described in this paper are comparable to the 

original thickness scans provided from DLR [6] 

shown in Figures 1 and 4. Further analysis and 

finite element modelling will need to be 

conducted to ensure the stochastic thicknesses 

provide modelling results that are similar to the 

experimental buckling results. Further 

refinement of the spectrum estimation method 

and improved STFT windowing functions will 

provide more accurate stochastic thickness 

models. The stochastic thickness models may 

also be used as inputs into the Moving Window 

Averaging Technique [8-10] to provide 

stochastically varying imperfect material 

models. 
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