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Abstract 
In recent years, sum-of-squares optimization 
has been employed to estimate region of 
attraction for nonlinear systems. We present 
region of attraction for missiles with three-loop 
autopilot in boost phase and give variation of 
region of attraction according to gain-
scheduling. Comparing the region of attraction 
between them can be used for qualitative insight 
to check the stability and effect of gain-
scheduling method. 

1  Introduction  
Conventional autopilot design for tactical 

guided missiles employs acceleration and rate 
feedback such as three-loop structure to track 
the guidance command [1]. The gains of the 
linear autopilot are obtained at several trim 
points indexed by scheduling variable for gain-
scheduling method. However, linear design 
method about equilibrium point ensure stability 
and performance in only small area and may 
even lose stability between trim points due to 
the nonlinear characteristics of missiles. In the 
design of linear control, control designers don’t 
know the exact or approximate region of 
attraction, and they should obtain as many trim 
points as possible to guarantee the stability for 
entire flight regime. 
 Recently, significant development has been put 
on the nonlinear stability analysis based on sum-
of-squares optimization [2-4]. They use sum-of-
squares relaxation to check non-negativity and 
efficient solve them using semi-definite 
programming algorithm [5]. If nonlinear system 
can be expressed by polynomial functions, then 
sum-of-square optimization is used to construct 

Lyapunov function or to give approximate 
region of attraction based on nonlinear 
dynamics [6-8]. However, it can be applied to 
only polynomial systems. Then nonlinear 
systems with non-polynomial terms should be 
transformed or approximated to polynomial 
form.  
 In this paper, regions of attraction for missile in 
boost phase are calculated using sum-of-squares 
optimization tool. Standard three-loop autopilot 
is applied to the missile and is scheduled by 
Mach number. At first, the region of attraction 
is obtained at each trim point based on the result 
of linear control design. And then, gains by 
gain-scheduling method are obtained between 
trim points and used for estimating gain-
scheduled region of attraction. It can gives 
insight for stability of nonlinear system and 
show the effect of gain-scheduling based on 
nonlinear dynamics, not linear one. Generally, 
validity for gain-scheduling can be computed 
using stability margins at some check points 
between trim points. Since it is also based on 
linearized systems at check points, it cannot 
include the exact nonlinear nature. Comparison 
between the region of attraction at check points 
gives valuable results to check the stability and 
effect of gain-scheduling. 
 This paper is organized as follows : Section 2 
describes the Lyapunov stability, region of 
attraction and V-s iteration method to apply 
SOS optimization. Section 3 introduces pitch 
dynamics of missiles, especially short-period 
mode. Section 4 include the result of linear 
control design such as calculation of trim points, 
design of three-loop autopilot. Section 5 
describes simulation results for estimating and 
comparing region of attraction. Finally, Section 
6 presents conclusion. 
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2  Lyapunov Stability and Region of 
Attraction 
Consider the autonomous nonlinear system ẋ = f(x) (1) 

where x(t) ∈ ℝ  is state vector and f ∶  ℝ →ℝ  is continuous such that f(0) = 0 , i.e., the 
origin is an equilibrium point of (1), and f  is 
locally Lipschitz. Let (; x)  denote the 
solution to (1) at time t with the initial state x = x(0) . Without loss of generality, any 
equilibrium point can be shifted to the origin 0 
via a change of variables and we may always 
assume that the equilibrium point of interest 
occurs at the origin. 
 
Definition 1 (Lyapunov stability). The  
equilibrium point 0 of (1) is 

· Stable if, for any ϵ > 0 , there exists δ = δ(ϵ) > 0 such that ‖x(0)‖ < δ ⇒ ; x(0) < ϵ, ∀t > 0 (2) 

· unstable, if it is not stable. 
· asymptotically stable, if it is stable, and δ can be chosen such that ‖x(0)‖ < δ ⇒ lim→ (; x(0)) = 0 (3) 

· globally asymptotically stable if it is 
stable, and for all x(0) ∈ ℝ, lim→ (; x(0)) = 0 (4) 

 
The equilibrium point 0 is stable if all solutions 
with the initial conditions in a neighborhood of 
the origin remain near the origin for all time. 
Asymptotically stable means that all solutions 
starting at nearby points not only remain close 
enough but also finally converge to the 
equilibrium point. And globally asymptotically 
stable means that asymptotically stable for all 
initial state x(0) ∈  ℝ . Since arbitrarily small 
perturbations of the initial state about the 
equilibrium point lead to arbitrarily small 
perturbations in the corresponding solution 
trajectories of (1), the stability is an important 

property in practice. The existence of a 
Lyapunov function is a sufficient condition for 
stability of the zero equilibrium as shown in the 
following theorem. 
 
Theorem 2 ([10, Theorem 4.1]) Let  ⊂  be 
a domain containing the equilibrium point  = 0 of the system (1). 
Let :  → ℝ  be a continuously differentiable 
function such that (0) = 0, () > 0   \{0} (5) 

̇ ≔  ∇ ∗  ≤ 0    (6) 

then the origin is stable. Moreover, if ̇ ≔   ∗  < 0   \{0} (7) 

then the origin is asymptotically stable. 
 
It is commonly known as a Lyapunov function 
satisfying conditions (5) and (6) in Theorem 2. 
And globally asymptotic stability of system (1) 
can be verified by using Lyapunov functions 
stated as follows. 
 
Theorem 3 ([10, Theorem 4.2])  Let the origin 
be an equilibrium point for (1). If there exists a 
continuously differentiable function : ℝ → ℝ 
such that (0) = 0,   () > 0   ∀ ≠ 0, (8) ‖‖ → ∞ ⇒ () → ∞, (9) 

̇() < 0 ∀ ≠ 0 (10) 

then the origin is globally asymptotically stable. 
 
Remark that ()  satisfying condition (9) is 
radially unbounded. Although globally 
asymptotic stability is very desirable, it is 
difficult to achieve in many applications. Quite 
often, determining a given system has an 
asymptotically stable is not sufficient. It is 
important to determining how far from the 
origin the trajectory can be and converge to the 
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origin as  approaches infinity. This gives rise to 
the following definition. 
 
Definition 4 (region of attraction). The region 
of attraction (ROA) Ω of the equilibrium point 0 
of (1) is defined as  Ω = {x ∈ ℝ | lim→ (; x) = 0} 

The ROA is the set of all points x such that any 
trajectory starting at initial state x(0)  will 
converges to the equilibrium point. In the 
literature, the terms “attraction basin” and 
“domain of attraction” are also used. 
 
Definition 5 (positively invariant set). A set M ⊂ ℝ  is called a positively invariant set of 
the system (1), if x(0) ∈   implies (; x(0)) ∈   for all  ≥ 0 . Namely, if a 
solution belongs to a positively invariant set M 
at some time instant, then it belongs to  for all 
future time. 
 
It is difficult to analytically find the exact ROA 
for nonlinear systems if not impossible. In 
general, Lyapunov functions can be used to 
compute estimates of the ROA. Lyapunov based 
approaches to ROA estimation using a 
characterization of invariant subsets of the ROA  
rely on statements of the following lemma. For c > 0 and a function : ℝ → ℝ, define the c-
sublevel set Ω,  of   as Ω, ≔ {x ∈ℝ|V(x) < c}. 
 
Lemma 1 ([13]) Let  ∈  ℝ be positive. If there 
exists a function : ℝ → ℝ such that , is bounded, and (11) 

(0) = 0, () > 0 for all  ∈ ℝ (12) 

,\{0} ⊂ { ∈ ℝ| ∗  < 0}, (13) 

then for all x(0) ∈ , , the solution of (1) 
exists, satisfies (; x(0)) ∈ ,  for all  ≥ 0, 
and  → (; x(0)) = 0 , i.e,. ,  is a 
positively invariant region contained in the 
equilibrium point’s domain of attraction. 

In order to find the estimate invariant subset of 
the ROA, we describe P with a semi-algebraic 
set P ≔ { ∈ |() ≤ } 

where  ∈  , a fixed positive definite convex 
polynomial, and maximizing   subject to P ∈ Ω,  satisfying the constraints (11)-(13). 
We pose the following optimization to search 
for Lyapunov function ∗() ≔ max,∈  

       s.t. (11)-(13),  P ∈ Ω, 
(14) 

Here   denotes over which the maximum is 
defined the set of candidate Lyapunov functions.  
It is shown that a characterization of the 
invariant subsets of the ROA with regard to the 
sublevel sets Lyapunov functions. Since the 
optimization problem in (14) is an infinite-
dimensional problem,   is restrained all 
polynomials of some fixed degree. Using simple 
generalizations of the S-procedure [11], 
sufficient conditions for set containment 
constraints are obtained. Usually, we take l(x) 
of the form l(x) = ∑ ϵ  , where ϵ  are 
positive small real number. Then, the constraint V − l ∈ SOS (15) 

And V(0) = 0 are sufficient conditions for (11) 
and (12). Additionally, if s ∈ SOS, then −[(β − p)s + (V − c)] ∈ SOS (16) 

means the set containment P ⊆ Ω, , and if s, s ∈ SOS, then 

−[(c − V)s +  ∗  + l] ∈ SOS (17) 

is a sufficient condition for (13). Using these 
sufficient conditions, a lower bound on β∗(ν) 
can be defined as 
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∗ () ≔ max,∈,∈  

  s.t.  (15)-(17), (0) = 0, 
              s ∈  ,  > 0 

(18) 

Here, the set ν  is specified finite-dimensional 
subspaces of polynomials. Even though β∗  
depends on these subspaces, it will not always 
be definitively notated. Remark that β∗ () ≤∗()  because conditions (15)-(17) are only 
sufficient conditions. The optimization problem 
in (18) is bilinear due to existing the product 
terms βs in (16) and Vs and  ∗  in (17). 
However, there are so many approaches to solve 
BMI problem like v-s iteration [2], BMI [8], and 
using simulation data [14]. In this paper v-s 
iteration approach is used to find Lyapunov 
function and estimate ROA. 

3 Analysis of a controller for missile pitch 
dynamics 

3.1 Missile longitudinal dynamics 
A nonlinear short period mode in the pitch 
dynamic model of a SRAAM (Short-Range Air-
to-Air Missile) is given by  

̇ =  −   −    
̇ =  { + 2   

−  , −    +      +  }    
(19) 

where α is the angle of attack, q is the pitch rate, δq  is the control surface deflection, V is the 
missile velocity, Q, S, D, m are the dynamic 
pressure,  reference area, length, missile mass 
and I  is moment of inertia about the body 
frame. The aerodynamic force and moment 
coefficients (C, C , C , C , C ) are 
given in terms of an aerodynamic table. 

3.2 State-space description and Three-loop 
autopilot design  

The autopilot an automatic control system is to 
guarantee stability and follow command given 
by guidance law. In most skid-to-turn 
configuration, tracking acceleration normal to 
the missile longitudinal axis is desired. In this 
paper, assume that general three-loop autopilot 
is applied to control SRAAM in the boost phase 
as shown in Figure 1. Three-loop autopilot is 
comprised of a rate loop, a synthetic stability 
loop, and an accelerometer feedback loop. The 
three autopilot gains K , w  and K  must be 
chosen to fulfill some designer-chosen criteria 
and the gain K is obtained from other gains 
therefore the achieved acceleration will 
correspond the commanded acceleration. 
 

 
Figure 1. Structure of Three-loop Autopilot 

 
The linear control input based on Three-loop 
structure is shown below.  = ∆ + K∆ (20) 

where  = ∫{( −  ) + } . The 
closed-loop system is combined nonlinear pitch-
axis model of (19) and control input of (20). 

∆̇ = ∆ −  () −  ()  
∆̇ =  {() + 2  ∆ 

− ( , −  ) () + ()   + () )} ∆̇ =   () +  ()              + −   

(21) 

The model is valid for an equilibrium point 
characterized by the altitude h = 2km  and 
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number of Mach M. The signal ∆ =  − , ∆ =  −   and ∆ =  −   represent 
perturbation from the equilibrium values ,  
and  . The terms C(), C() , C (), C()  are polynomial functions of   and 
were obtained with polynomial fitting on data of 
the aerodynamics table as shown in Figure 2. 
 

 

 
Figure 2. Polynomial Fitting on Aero. Data 

 

4  Linear Controller Design 
For the design of linear controller, trim points 
should be calculated. Trim points for the level-
flight are shown in Table 1. (The gravitational 
effect is neglected) 
 

Table 1. Calculation of Trim Points 
Mach AOA (deg) Deflection (deg) 
0.85 5.8254 -2.0721 
0.95 4.6989 -2.0523 
1.05 3.7948 -2.1989 
1.20 2.8231 -1.5251 

1.60 1.5668 -0.3019 
2.00 1.1093 -0.1537 
2.40 0.8362 -0.0906 
2.80 0.6468 -0.0571 
3.20 0.5352 -0.0567 
3.60 0.4332 -0.0607 

 
Angle of attack and deflection angle at trim 
points according to Mach number are shown in 
Figure 3 and Figure 4. As shown in the figures, 
nonlinear characteristics of missile dynamics is 
evident from Mach 0.85 to Mach 1.20, which is 
general transonic region. Therefore, the stability 
analysis in this area is more important than any 
other area and it will be analyzed through 
estimation of region of attraction in the 
following chapter. 
 

 
Figure 3. Angle of Attack at Trim Points 

 

 
Figure 4. Deflection Angle at Trim Points 

 
The structure of general three-loop autopilot is 
already shown in Figure 1. Then, the gains of 
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three-loop autopilot are calculated at trim points 
to meet the stability margin requirement. In this 
paper, we obtain at least 6dB gain margin and 
45deg phase margin as follows : 
 

Table 2. Gains of Three-loop Autopilot 
Mach KDC KA wI KR 
0.85 1.0735 0.0481 8.1835 0.2605 
0.95 1.0725 0.0437 8.6233 0.2024 
1.05 1.0645 0.0444 8.4221 0.1426 
1.20 1.0599 0.0274 8.4447 0.1236 
1.60 1.1122 0.0167 10.0004 0.0827 
2.00 1.1318 0.0114 10.5640 0.0661 
2.40 1.1486 0.0084 10.8591 0.0541 
2.80 1.1666 0.0064 11.0255 0.0445 
3.20 1.1609 0.0058 10.8589 0.0384 
3.60 1.1507 0.0055 10.5670 0.0335 

5  Simulation Results 
In this paper, we concentrate on the analysis of 
trim points in the transonic region due to limited 
space. 

5.1 Estimation of Region of Attraction 
Simulation results from Mach 0.85 to Mach 
1.20 are shown in the figure 5. It appears that 
each trim point has different region of attraction. 
 

 
Figure 5. Region of Attraction at Trim Points 

 
Region of attraction at Mach 0.95 is smaller 
than that at Mach 0.85 for angle of attack and 
pitch rate. For Mach 1.05 and 1.20, admissible 

range for one side become larger, but admissible 
range for the other side decreases. At each trim 
point, the Lyapunov functions are calculated as 
follows : 
 V . = 4.6847x + 0.3791 + 0.0460 Ω . ≔ {x ∈ ℝ|V. < c . = 1.0042} V . = 5.2914x + 0.4702 + 0.0513 Ω . ≔ {x ∈ ℝ|V . < c . = 1.0033} V . = 4.9698x + 0.3599 + 0.0538 Ω . ≔ {x ∈ ℝ|V . < c . = 1.0042} V . = 4.7734x + 0.2314 + 0.0516 Ω . ≔ {x ∈ ℝ|V . < c . = 1.0014} 
 

5.2 ROA Effect of Gain-Scheduling 
Three-loop autopilot gain set is calculated at 
each trim point as shown in Table2. In the 
region between trim points, gain-scheduling is 
generally used for linear control methodology. 
Variation of region of attraction by gain-
scheduling reveals the difference between 
nonlinear analysis and linear analysis. Figure 6 
indicate the results at Mach 0.95 for three cases. 
Blue line is the result for the proper gain set 
calculated at Mach 0.95. Red line means the 
result for linear interpolation gain set. Finally, 
green line is the result for gain set calculated at 
Mach 1.05. As shown in the figure, blue region 
is larger than red and green region and red 
region is larger than green one. It means that 
interpolation method is better than using 
improper gain set in view of ROA. 
 

 
Figure 6. Region of Attraction at Mach 0.95 
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Then, the results of linear analysis for three 
cases are as follows : 
 

Table 3. Linear Results of Mach 0.95 
Gain Set Gain Margin Phase Margin 

0.95 12.3 dB 46.0 deg 
1.05 15.3 dB 44.9 deg 

Scheduled 12.4 dB 46.5 deg 
 
Gain margin by proper gain set is the smallest 
among them and phase margin by improper gain 
set is the smallest one. Gain margin is expected 
to be similar to the result of ROA. However, the 
simulation results display that linear analysis 
don’t express the nature of nonlinear systems 
properly. The figure 7 is the simulation results 
for Mach 1.05. It is similar to those in figure 6, 
but region of attraction by gain-scheduling 
method is a little bit large in some axis. It means 
that stability margin in each state of nonlinear 
system is different 
 

 
Figure 7. Region of Attraction at Mach 1.05 

 
The results of linear analysis for Mach 1.05 are 
as follows : 
 

Table 4. Linear Results of Mach 1.05 
Gain Set Gain Margin Phase Margin 

1.05 11.4 dB 46.1 deg 
1.20 11.9 dB 48.6 deg 

Scheduled 9.53 dB 44.2 deg 
 

The results by linear analysis in Table 4 are hard 
to compare the nonlinear one in figure 7. It 
represents that linear dynamics at the trim points 
is sometimes highly nonlinear or results from 
linear analysis don’t capture the nonlinear 
nature in terms of stability. In conclusion, 
control designers should consider nonlinear 
analysis in addition to traditional linear one to 
guarantee the stability of nonlinear systems. 

6  Conclusion 
In this paper, region of attraction for missile 
with three-loop autopilot is calculated based on 
sum-of-squares optimization. For simplicity, the 
short period mode in pitch dynamics of missiles 
is considered. Aerodynamic data in look-up 
table is transformed into 2nd or 3rd polynomial 
functions for use of sum-of-squares method. 
The region of attraction at transonic trim points 
are calculated and compared with the results of 
gain-scheduled gain set and improper gain set. 
Simulation results generally show that the 
region of attraction with better gain set is larger 
than any other region of attraction in most 
direction. However, Nonlinear region of 
attraction seems to be hard to understand based 
on the results of linear control during highly 
nonlinear regime. As a result, although stability 
margin on linear dynamics reflect stability 
features on nonlinear dynamics in a measure, it 
doesn’t contain nonlinear property completely. 
Therefore, nonlinear analysis need to be carried 
out with linear analysis for a better 
understanding of nonlinear systems. 
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