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Abstract

In recent years, sum-of-squares optimization
has been employed to estimate region of
attraction for nonlinear systems. We present
region of attraction for missiles with three-loop
autopilot in boost phase and give variation of
region of attraction according to gain-
scheduling. Comparing the region of attraction
between them can be used for qualitative insight
to check the stability and effect of gain-
scheduling method.

1 Introduction

Conventional autopilot design for tactical
guided missiles employs acceleration and rate
feedback such as three-loop structure to track
the guidance command [1]. The gains of the
linear autopilot are obtained at several trim
points indexed by scheduling variable for gain-
scheduling method. However, linear design
method about equilibrium point ensure stability
and performance in only small area and may
even lose stability between trim points due to
the nonlinear characteristics of missiles. In the
design of linear control, control designers don’t
know the exact or approximate region of
attraction, and they should obtain as many trim
points as possible to guarantee the stability for
entire flight regime.

Recently, significant development has been put
on the nonlinear stability analysis based on sum-
of-squares optimization [2-4]. They use sum-of-
squares relaxation to check non-negativity and
efficient solve them wusing semi-definite
programming algorithm [5]. If nonlinear system
can be expressed by polynomial functions, then
sum-of-square optimization is used to construct

Lyapunov function or to give approximate
region of attraction based on nonlinear
dynamics [6-8]. However, it can be applied to
only polynomial systems. Then nonlinear
systems with non-polynomial terms should be
transformed or approximated to polynomial
form.

In this paper, regions of attraction for missile in
boost phase are calculated using sum-of-squares
optimization tool. Standard three-loop autopilot
is applied to the missile and is scheduled by
Mach number. At first, the region of attraction
is obtained at each trim point based on the result
of linear control design. And then, gains by
gain-scheduling method are obtained between
trim points and used for estimating gain-
scheduled region of attraction. It can gives
insight for stability of nonlinear system and
show the effect of gain-scheduling based on
nonlinear dynamics, not linear one. Generally,
validity for gain-scheduling can be computed
using stability margins at some check points
between trim points. Since it is also based on
linearized systems at check points, it cannot
include the exact nonlinear nature. Comparison
between the region of attraction at check points
gives valuable results to check the stability and
effect of gain-scheduling.

This paper is organized as follows : Section 2
describes the Lyapunov stability, region of
attraction and V-s iteration method to apply
SOS optimization. Section 3 introduces pitch
dynamics of missiles, especially short-period
mode. Section 4 include the result of linear
control design such as calculation of trim points,
design of three-loop autopilot. Section 5
describes simulation results for estimating and
comparing region of attraction. Finally, Section
6 presents conclusion.



2 Lyapunov Stability and Region of
Attraction

Consider the autonomous nonlinear system

x = f(x) (1)

where x(t) € R" is state vector and f: R" —
R" is continuous such that f(0) = 0, i.e., the
origin is an equilibrium point of (1), and f is
locally Lipschitz. Let ¢(t;x,) denote the
solution to (1) at time t with the initial state
Xo = x(0) . Without loss of generality, any
equilibrium point can be shifted to the origin 0
via a change of variables and we may always
assume that the equilibrium point of interest
occurs at the origin.

Definition 1 (Lyapunov stability). The
equilibrium point 0 of (1) is
e Stable if, for any € > 0, there exists
6 = 6(e) > 0 such that

|x(0)]| < 6 = ||¢>(t; X(O))” <gVvVt>0 (2)

e unstable, if it is not stable.
e asymptotically stable, if it is stable, and
0 can be chosen such that

x| < 8 = lim p(6x(0) =0 (3

e globally asymptotically stable if it is
stable, and for all x(0) € R",

lim ¢(;x(0)) = 0 (4)

The equilibrium point 0 is stable if all solutions
with the initial conditions in a neighborhood of
the origin remain near the origin for all time.
Asymptotically stable means that all solutions
starting at nearby points not only remain close
enough but also finally converge to the
equilibrium point. And globally asymptotically
stable means that asymptotically stable for all
initial state x(0) € R™. Since arbitrarily small
perturbations of the initial state about the
equilibrium point lead to arbitrarily small
perturbations in the corresponding solution
trajectories of (1), the stability is an important
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property in practice. The existence of a
Lyapunov function is a sufficient condition for
stability of the zero equilibrium as shown in the
following theorem.

Theorem 2 ([10, Theorem 4.1]) Let D € R™ be
a domain containing the equilibrium point
x = 0 of the system (1).

Let V:D - R be a continuously differentiable
function such that

V(0)=0,V(x)>0a D\{0} (5)

Vi=Vsf<0na D (6)

then the origin is stable. Moreover, if

V:i=VVx*f <0on D\{0} (7)
then the origin is asymptotically stable.

It is commonly known as a Lyapunov function
satisfying conditions (5) and (6) in Theorem 2.
And globally asymptotic stability of system (1)
can be verified by using Lyapunov functions
stated as follows.

Theorem 3 ([10, Theorem 4.2]) Let the origin
be an equilibrium point for (1). If there exists a
continuously differentiable function V:R"™ - R
such that

V({0)=0, V(x) >0 Vx #0, (8)
llx]| = 00 = V(x) = oo, ©
V(x)<0Vx#0 (10)

then the origin is globally asymptotically stable.

Remark that V(x) satisfying condition (9) is
radially  unbounded.  Although  globally
asymptotic stability is very desirable, it is
difficult to achieve in many applications. Quite
often, determining a given system has an
asymptotically stable is not sufficient. It is
important to determining how far from the
origin the trajectory can be and converge to the
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origin as t approaches infinity. This gives rise to
the following definition.

Definition 4 (region of attraction). The region
of attraction (ROA) (1 of the equilibrium point 0
of (1) is defined as

Q={x€eR" Itlim¢(t;x) = 0}

The ROA is the set of all points x such that any
trajectory starting at initial state x(0) will
converges to the equilibrium point. In the
literature, the terms ‘‘attraction basin” and
“domain of attraction” are also used.

Definition 5 (positively invariant set). A set
M c R" is called a positively invariant set of
the system (1), if x(0) €M implies
¢(t;x(0)) €M for all t =>0. Namely, if a
solution belongs to a positively invariant set M
at some time instant, then it belongs to M for all
future time.

It is difficult to analytically find the exact ROA
for nonlinear systems if not impossible. In
general, Lyapunov functions can be used to
compute estimates of the ROA. Lyapunov based
approaches to ROA estimation using a
characterization of invariant subsets of the ROA
rely on statements of the following lemma. For
¢ > 0 and a function V: R"™ - R, define the c-
sublevel set Qy, of V as Qy.:={x€
R"|V(x) < c}.

Lemma 1 ([13]) Let ¢ € R be positive. If there
exists a function V:R"™ - R such that

0y . is bounded, and (11)
V(0)=0,V(x)>0forallx € R" (12)

O, MO} {x eERYVV x f <0},  (13)

then for all x(0) € 2y ., the solution of (1)
exists, satisfies ¢(t;x(0)) € Qy . for all t >0,
and M o ¢(t;x(0)) =0, ie. Dy, is a
positively invariant region contained in the
equilibrium point’s domain of attraction.

In order to find the estimate invariant subset of
the ROA, we describe Pg with a semi-algebraic
set

Py = (x € R"[p(x) < B}

where p € SOS, a fixed positive definite convex
polynomial, and maximizing [ subject to
Pg € Oy, satisfying the constraints (11)-(13).
We pose the following optimization to search
for Lyapunov function

pr(v) = ﬂg(l)g;évﬁ (14

s.t. (11)(13), Pg € Qy,

Here v denotes over which the maximum is
defined the set of candidate Lyapunov functions.
It is shown that a characterization of the
invariant subsets of the ROA with regard to the
sublevel sets Lyapunov functions. Since the
optimization problem in (14) is an infinite-
dimensional problem, v is restrained all
polynomials of some fixed degree. Using simple
generalizations of the S-procedure [11],
sufficient conditions for set containment
constraints are obtained. Usually, we take l;(x)
of the form 1;(x) = Xj.; ¢ sz , where € are
positive small real number. Then, the constraint

V-1, € SOS (15)

And V(0) = 0 are sufficient conditions for (11)
and (12). Additionally, if s; € SOS, then

—[(B=p)si + (V—-c)] €505 (16)

means the set containment Pg € Qy ., and if
Sy, 83 € SOS, then

—[(c=V)s, + PV * fs; +1,] €S0S  (17)

is a sufficient condition for (13). Using these
sufficient conditions, a lower bound on *(v)
can be defined as



ppv) = max B

WVEV,S;ESOS
s.t. (15)-(17), V(0) = 0, (18)
s; €S0S,B >0

Here, the set v is specified finite-dimensional
subspaces of polynomials. Even though (3
depends on these subspaces, it will not always
be definitively notated. Remark that f3z(v) <
B*(v) because conditions (15)-(17) are only
sufficient conditions. The optimization problem
in (18) is bilinear due to existing the product
terms s, in (16) and Vs, and V'V * fs5 in (17).
However, there are so many approaches to solve
BMI problem like v-s iteration [2], BMI [8], and
using simulation data [14]. In this paper v-s
iteration approach is used to find Lyapunov
function and estimate ROA.

3 Analysis of a controller for missile pitch
dynamics

3.1 Missile longitudinal dynamics

A nonlinear short period mode in the pitch
dynamic model of a SRAAM (Short-Range Air-
to-Air Missile) is given by

QS QS
a=q- _VCNO — m—VCN6q5q
. 0SD D
q="- {Cmo + ﬁCqu
yy (19)
Xeg R —
( @ D Cg) (CNO + CN(Squ)

where a is the angle of attack, q is the pitch rate,
0q is the control surface deflection, V is the
missile velocity, Q, S, D, m are the dynamic
pressure, reference area, length, missile mass
and Iy, is moment of inertia about the body
frame. The aerodynamic force and moment
coefficients (Cyo, Cnsq> Cm 0> Cm g Cmsq) are
given in terms of an aerodynamic table.

3.2 State-space description and Three-loop
autopilot design
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The autopilot an automatic control system is to
guarantee stability and follow command given
by guidance law. In most skid-to-turn
configuration, tracking acceleration normal to
the missile longitudinal axis is desired. In this
paper, assume that general three-loop autopilot
is applied to control SRAAM in the boost phase
as shown in Figure 1. Three-loop autopilot is
comprised of a rate loop, a synthetic stability
loop, and an accelerometer feedback loop. The
three autopilot gains K,, w; and Kg must be
chosen to fulfill some designer-chosen criteria
and the gain Kpc 1s obtained from other gains
therefore the achieved acceleration will
correspond the commanded acceleration.

Figure 1. Structure of Three-loop Autopilot

The linear control input based on Three-loop
structure is shown below.

6q = w;KpAx; + KrAq (20)
where x; = [{(a; — KpcQon )Ka4 + q}dt . The
closed-loop system is combined nonlinear pitch-
axis model of (19) and control input of (20).

8 = Aq — L Cro(@) =L Csa (@)
mV mV Vol
QSD D
Aq = —Iyy {Cmo(a) + WCM Aq

. (xcg R xcg)

D (CNO(a) + CNaq(a)&Z)
+Cy 5q(2)6q)}

S S
2, = Ky (L o) + L sy )

+q — KpcKaon a

The model is valid for an equilibrium point
characterized by the altitude h = 2km and

4

21)



number of Mach My. The signal Aa = a — «a,
Aq=q—qy and Ax; =x; —x;, represent
perturbation from the equilibrium values ay, q,
and x;o. The terms Cyo(@), Cnsq(@), Cumo(@),
Cmsq(@) are polynomial functions of a and
were obtained with polynomial fitting on data of
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1.60 1.5668 -0.3019
2.00 1.1093 -0.1537
2.40 0.8362 -0.0906
2.80 0.6468 -0.0571
3.20 0.5352 -0.0567
3.60 0.4332 -0.0607

the aerodynamics table as shown in Figure 2.
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Figure 2. Polynomial Fitting on Aero. Data

4 Linear Controller Design

For the design of linear controller, trim points
should be calculated. Trim points for the level-
flight are shown in Table 1. (The gravitational
effect is neglected)

Table 1. Calculation of Trim Points

Mach AOA (deg) Deflection (deg)
0.85 5.8254 -2.0721
0.95 4.6989 -2.0523
1.05 3.7948 -2.1989
1.20 2.8231 -1.5251

Angle of attack and deflection angle at trim
points according to Mach number are shown in
Figure 3 and Figure 4. As shown in the figures,
nonlinear characteristics of missile dynamics is
evident from Mach 0.85 to Mach 1.20, which is
general transonic region. Therefore, the stability
analysis in this area is more important than any
other area and it will be analyzed through
estimation of region of attraction in the
following chapter.

GTRIM

Mach

Figure 3. Angle of Attack at Trim Points
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Figure 4. Deflection Angle at Trim Points

The structure of general three-loop autopilot is
already shown in Figure 1. Then, the gains of
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three-loop autopilot are calculated at trim points
to meet the stability margin requirement. In this
paper, we obtain at least 6dB gain margin and
45deg phase margin as follows :

Table 2. Gains of Three-loop Autopilot

Mach | KDC KA wl KR

0.85 1.0735 | 0.0481 | 8.1835 | 0.2605
0.95 1.0725 | 0.0437 | 8.6233 | 0.2024
1.05 1.0645 | 0.0444 | 8.4221 | 0.1426
1.20 | 1.0599 | 0.0274 | 8.4447 | 0.1236
1.60 | 1.1122 | 0.0167 | 10.0004 | 0.0827
2.00 | 1.1318 | 0.0114 | 10.5640 | 0.0661
240 | 1.1486 | 0.0084 | 10.8591 | 0.0541
2.80 1.1666 | 0.0064 | 11.0255 | 0.0445
3.20 | 1.1609 | 0.0058 | 10.8589 | 0.0384
3.60 | 1.1507 | 0.0055 | 10.5670 | 0.0335

5 Simulation Results

In this paper, we concentrate on the analysis of
trim points in the transonic region due to limited
space.

5.1 Estimation of Region of Attraction

Simulation results from Mach 0.85 to Mach
1.20 are shown in the figure 5. It appears that

each trim point has different region of attraction.

q(rad/sec)

2+ -

0.1 0 0.1 0.2 0.3 0.4 0.5
AOA(rad)

Figure 5. Region of Attraction at Trim Points
Region of attraction at Mach 0.95 is smaller

than that at Mach 0.85 for angle of attack and
pitch rate. For Mach 1.05 and 1.20, admissible
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range for one side become larger, but admissible
range for the other side decreases. At each trim
point, the Lyapunov functions are calculated as
follows :

Vi 0gs = 4.6847x% + 0.3791x,x, + 0.0460x2
O ogs = {X € R"|Viyog5 < Cmogs = 1.0042}
Vi gos = 5.2914x2 + 0.4702x,x, + 0.0513x2
QM o5 = {X € RV o5 < Cm o5 = 1.0033}
Vy 105 = 4.9698x% + 0.3599x,x, + 0.0538x3
O 105 = {X € RV 105 < Cm 105 = 1.0042}
Vi 120 = 4.7734x% + 0.2314%,x, + 0.0516x2
QM 120 = {X € RV 120 < Cm120 = 1.0014}

5.2 ROA Effect of Gain-Scheduling

Three-loop autopilot gain set is calculated at
each trim point as shown in Table2. In the
region between trim points, gain-scheduling is
generally used for linear control methodology.
Variation of region of attraction by gain-
scheduling reveals the difference between
nonlinear analysis and linear analysis. Figure 6
indicate the results at Mach 0.95 for three cases.
Blue line is the result for the proper gain set
calculated at Mach 0.95. Red line means the
result for linear interpolation gain set. Finally,
green line is the result for gain set calculated at
Mach 1.05. As shown in the figure, blue region
is larger than red and green region and red
region is larger than green one. It means that
interpolation method is better than using
improper gain set in view of ROA.

per gain set at Mach 0.95
— Gain-scheduled gain set at Mach 0.95
Improper gain set at Mach 1.05

q(rad/sec)

S ——lm—mlm—H - — 4 - -t ——p - —E === -4 - —+ - —o

1 1 1 1 1 1 1 1 1 1 1

05 04 03 02 01 0 0.1
AOA(rad)

Figure 6. Region of Attraction at Mach 0.95
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Then, the results of linear analysis for three
cases are as follows :

Table 3. Linear Results of Mach 0.95

Gain Set Gain Margin | Phase Margin
0.95 12.3 dB 46.0 deg
1.05 15.3 dB 449 deg

Scheduled 12.4 dB 46.5 deg

Gain margin by proper gain set is the smallest
among them and phase margin by improper gain
set is the smallest one. Gain margin is expected
to be similar to the result of ROA. However, the
simulation results display that linear analysis
don’t express the nature of nonlinear systems
properly. The figure 7 is the simulation results
for Mach 1.05. It is similar to those in figure 6,
but region of attraction by gain-scheduling
method is a little bit large in some axis. It means
that stability margin in each state of nonlinear
system is different

—— Proper gain set at Mach 1.05
Gain-scheduled gain set at Mach 1.05
Improper gain set at Mach 1.20

q(rad/sec)

Figure 7. Region of Attraction at Mach 1.05

The results of linear analysis for Mach 1.05 are
as follows :

Table 4. Linear Results of Mach 1.05

Gain Set Gain Margin | Phase Margin
1.05 114 dB 46.1 deg
1.20 11.9dB 48.6 deg

Scheduled 9.53dB 44.2 deg

The results by linear analysis in Table 4 are hard
to compare the nonlinear one in figure 7. It
represents that linear dynamics at the trim points
is sometimes highly nonlinear or results from
linear analysis don’t capture the nonlinear
nature in terms of stability. In conclusion,
control designers should consider nonlinear
analysis in addition to traditional linear one to
guarantee the stability of nonlinear systems.

6 Conclusion

In this paper, region of attraction for missile
with three-loop autopilot is calculated based on
sum-of-squares optimization. For simplicity, the
short period mode in pitch dynamics of missiles
is considered. Aerodynamic data in look-up
table is transformed into 2™ or 3™ polynomial
functions for use of sum-of-squares method.

The region of attraction at transonic trim points
are calculated and compared with the results of
gain-scheduled gain set and improper gain set.
Simulation results generally show that the
region of attraction with better gain set is larger
than any other region of attraction in most
direction. However, Nonlinear region of
attraction seems to be hard to understand based
on the results of linear control during highly
nonlinear regime. As a result, although stability
margin on linear dynamics reflect stability
features on nonlinear dynamics in a measure, it
doesn’t contain nonlinear property completely.
Therefore, nonlinear analysis need to be carried
out with linear analysis for a better
understanding of nonlinear systems.
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