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Abstract  

This paper addresses the task assignment 

algorithm for the multiple cooperative load 

transportation system. The centralized group 

buying algorithm is a heuristic security strategy 

algorithm based on the group buying market. 

Through the simulation, the algorithm the sub 

optimality and applicability is shown.  

1  Introduction  

The slung load type load transportation is 

recently being researched [1-2]. The helicopter 

or the quadrotor has a possibility to be used as 

slung load system. As the quad rotor system is 

useful in the quick package delivery service, the 

amazon.com recently announced a plan for the 

quad rotor 30 minutes home delivery service.  

To utilize these kind of service efficiently, 

the high level task scheduling is necessary. As 

the system size is getting bigger, the need for 

the task assignment increases more. Choi, and K. 

Whitten has introduced the CBBA and the 

CCBBA algorithm [3-5]. It is a consensus based 

auction algorithm, that assigns the task to the 

agents sequentially. The CBBA guarantees 50% 

optimality and the fast convergence.  

This author have wrote a couple of papers 

related to the group buying algorithm. [6-7] The 

group buying algorithm inspired from the 

collective buying market. In the following 

section, this paper, to solve the task assignment 

of the load transportation problem, formulated 

the problem as the multiple cooperative task 

assignment problem, and introduces the group 

buying algorithm.  

2  Problem Statement  

2.1  Cooperative Transport Mission  

The cooperative transport mission by 

swarm UAVs is one of the promising usage of 

the quadrotor robot. As the technology of the 

UAV system improves, the cost of UAV system 

is reduced, and the reliability is increased. In a 

close future, the artificial intelligence and the 

advanced control theories would help the UAV 

to operate on these kind of complex mission. In 

the cooperative transport operation, a group of 

quadrotors or any kinds of unmanned rotary 

aerial vehicle cooperates simultaneously to 

transport a package to somewhere.  

In many area area, cooperative transport 

mission can be utilized for, such as, the 

immediate munition deployment, the package 

delivery service, and so on. In Fig. 2.1, the 

cargo is supported to each UAV through a wire, 

and thus the swarm robots can carry a heavy 

package that exceeds the payload capacity of 

each UAV. As the group of a single type agents 

can carry various weights of the payload, the 

agent can be standardized, and thus the 

manufacturing and maintenance cost of the 

entire system also can be reduced. 

In the actual application, there would be 

multiple delivering request, and multiple agents 

which can perform the requested service. If at 

least nmin agents are needed to shift a cargo, the 

agents should gather to initiate the mission, that 

is, an early arrival agent ought to wait the other 

nmin-1 agent near the task. Namely, the mission 
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is constrained by the number of agent to initiate 

it. This constraints causes the forbidding of the 

cross deployment, which is discussed later. 

Generally the nmin is related to the payload 

capacity of each agent, as following,  

 min
max

W

w
n  

  
  (1) 

where W is the weight of the payload, and wmax 

is the payload limits of an agent. Here all the 

agents are assumed to be same as. The operator 

    is the round up operator.  
The cooperative transport mission is a non-

synergetic mission. If the agents more than nmin 

are assigned to a task, there would be no 

advantage, compared to the case that only nmin 

agents involves in. Those agents are actually 

redundant agents, it might help the service to be 

more reliable, but unnecessary. Therefore if 

there exists other tasks, assigning the redundant 

agents to the other task is more profitable. Thus 

the mission planning of these system is required 

for the autonomous service system in the future 

and it can be formulated into the multiple, 

cooperative task assignment (MCTA) problem, 

which is discussed in the following section.  

 

 
Figure 2.1 Quadrotor Cooperative Transport 

Mission concept, carrying a cargo in a slung 

load type. 

 

2.2 Multiple Cooperative Task Assignment  

In this section, this paper formulate the 

MCTA problem mathematically. The MCTA is 

an operation scheduling problem that assigns Nu 

agents to Nt tasks as many as possible. Here the 

satisfaction of the society is expressed by the 

utility function, and the purpose of the task 

assignment is maximizing the summation of the 

utility, global utility, then MCTA problem for 

the cooperative transportation mission can be 

expressed as,  

 
1 1

arg max ( )
u tN N

ij i ij
i j

u p x
  P   (2) 

Subject to 

 min, or 0 {1,2,... }uN
i ij j tx n j N       (3) 

 , {1,2,... }tN
j ij t ux L i N      (4) 

where xij is the decision variable which indicates 

agent i is assigned to task j, when agent i is 

allocated to task j, the corresponding decision 

variable xij is ‘1,’ and if not allocated, it is ‘0.’   

uij is the utility value or score that is earned by 

for agent i performing task j along with the path 

list of agent i. Thus the meaning of Eq. (2) is 

finding the best path strategy of the fleet that 

can maximize the summation of the utility of 

whole society. In Eq.(3), the left hand side of 

the equation is j-th column sum of decision 

variable. It means the number of agent that 

involves in task j is only nmin,j or zero. It implies 

that the cooperative transport mission has the 

non-synergetic property, so that, constrains the 

number of the agent assigned for the task to be 

no more than or less than nmin,j when the mission 

is taken, and to be zero when mission is 

abandoned. In Eq.(4), the left hand side of 

equation is row sum of the decision variable and 

it means the number of task assigned to agent i. 

Thus each agent can’t involve in more than Lt 

tasks in a sortie. This constraint is a simple 

modeling of agent fuel capacity.  

In order to get the best result from the 

assignment, one have to fill in ‘1’ as many as 

possible. The task assignment is said to be 

ideally completed, when there is no better 

agent-task pairs than now. Define the Nmin as 

Eq.(5). 

 1 1 min
u tN N

i j ijx N     (5) 

where Nmin is the total number of the assigned 

agent-task pair. When all agents to perform all 

task is assigned, all agents are exhausted, or  no 

more task-agent pair is feasible even though 

there left task and available agent both, then the 

assignment said to be completed. It is 

mathematically expressed as Eq.(6),.  
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 min minmin{ , , }j i poor
j i

N n L N
 

     (6) 

 
min,

max( )

for { }

poor q i
q i

q j

N n L

n n


 



   (7) 

In Eq.(6), the first value, the sum of whole 

nmin,j is the number of all agent to perform all 

task. The second one, sum of all Lt of entire fleet, 

is the number of task-agent pair that the fleet 

can support. The third element, Npoor indicates 

poor situation. where Npoor is defined as Eq. (7), 

that is, the biggest sum of nmin,j which is less 

than or equal to the sum of the Lt. In this third 

case there exist both remaining tasks and 

redundant agents, which are not enough to 

perform the remaining task. In Eq.(7), if the 

equality holds, the poor case is not in the 

problem setup.  For instance, if there are three 

agents, which can take participate in three task 

respectively, and five tasks, which require two 

agents to be initiated, and the agents evenly 

allocated to the five tasks, then there always left 

one task and one agent. Thus the possible 

maximum task-agent pair is eight, not nine.  

The utility function for cooperative 

transportation mission has an exponential 

discounted scheme along the time of the task 

completion.  

 jTOC

ij j ju u    (8) 

The utility, uij, gained by agent i performing 

task j is proportional to the static gain, ju , and 

discounted by the time of completion TOCj 

within the rate of the discounting factor j . This 

time discounted utility model makes the agents 

to complete the tasks as soon as possible to get 

more utility. Additionally, this utility function 

results in the monotonically increasing function 

along the task number. However for the MCTA, 

it is hard to say that it holds the sub modularity. 

Namely the marginal utility function might not 

monotonically decrease as it does in the 

multiple assignment problem of Choi [4].  

3 Group Buying Algorithm  

3.1 Group Buying   

The group buying is also known as 

collective buying or group purchasing. It is 

originated from the Chinese “Tuángòu”, which 

gives a special discount on an item, when a 

group of purchasers order to buy the same item. 

The group buying is beneficial to both the 

retailer and the client. As the retailer sales goods 

in discounted price, the clients get some 

incentive on it. Simultaneously, the retailer can 

extend the market area, thus it is profitable for 

them too, although they sales it in cheap price.  

The group buying market has the curse of 

winner problem, which is a natural born 

phenomenon that the earlier mover or the 

customer of appetence should wait the others 

until the minimum required number of agents is 

ready. In the sense of the utility of the given 

problem, the utility of those urgent customers 

are discounted along the time, and they have to 

take the loss of the utility.  

This paper shortly discusses about the 

optimal solution of the MCTA problem in the 

following chapter. In consequently, the only 

ways to find the optimal solution is the 

complete enumeration, which enumerates all the 

possible solution and test all the cases to find 

best input. Unfortunately, this complete 

enumeration takes the exponential time to find 

proper solution. In a practical manner, thus this 

paper are going to introduce a heuristic 

suboptimal algorithm. 

The centralized group buying algorithm 

(CGBA) finds a feasible solution for the MCTA 

problem. The CGBA is inspired from the 

property of the group buying market. It decides 

the schedule of each agent sequentially, and the 

agents has to take the loss of the utility caused 

by the winner’s curse. But the proposed 

algorithm finds as best one as possible, within 

the safety strategy.  

3.2 Centralized Group Buying Algorithm   

Similar to the sequential greedy algorithm 

of Choi [4], the centralized group buying 

algorithm decides the task to perform 

sequentially. Algorithm 3.1 describes the CGBA 

process. Each agent initialize the task bundle, bi, 

path list pi and the best marginal utility ûij 

through line 1 to 5. 
'

min, jn  is a dummy variable 
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that contains the number of agents needed for 

each task. In line 3, the process calculates the 

number of task-agent pair, which is equal to Eq. 

(7). For the number of task-agent pair to be 

closer to the optimal solution, the global utility 

of the whole fleet need to hold the 

monotonically increasing function scheme. 

Literally, it means that eating more pies is 

always better than eating fewer, and it makes 

sense for the greedy individual, or the 

homoeconomicus.  

Through line 6 to line 36, each task is 

matched with a group of agents of the entire 

fleet. It goes through this loop for Nmin times. 

The CGBA estimates the best marginal utility ûij 

which is an expected maximum marginal utility 

for agent i to be earned by performing task j 

between its path list, with the assumptions that 

new assignment doesn’t affect the waiting time 

on the other task, and newly assigned task can 

be initiated just in time. Therefore, the marginal 

utility calculated here is a pseudo value. 

 ( )
(p )

( ) ( )

i p j oi i

i i

n TOC t
p j p j

j
U u  

p
  (9) 

 
{ }

| | 1ˆ [ ] max i n i

i

j
ij i nu U U

  p p
pb   (10) 

where the pseudo global utility iU p is the 

summation of the utility rewards from all of the 

individual tasks, and it is function of the path of 

the agent i. Then the pseudo marginal utility is 

obtained as Eq. (10). Here the operator n  

means inserting following list into the n-th 

position of the preceding list. Thus it is an 

expectation of agent i to be earned by 

performing task j on its best chance.  

In line 9, these marginal utility is ranked 

for each task. Additionally algorithm arranges 

the utility in the descending order, and point out 

first to nmin,j-th higher scoring agents ij and 

corresponding utility values sj. Especially the 

nmin,j-th agent is called as the critical agent. The 

critical agent are expected to arrive the task at 

last so as to it results in the nmin,j-th highest 

utility. As the other agents has to wait the 

critical agent, the winner’s curse, even those are 

arrived the task early, the utility rewards is 

determined by the critical agent.  

To avoid the cross deployment issue, 

which is discussed on the following section, the 

algorithm check the cross deployment with the 

fleet’s original path and the path of agents ij. If 

newly updated path is cross-deployed case, the 

marginal utility is updated, taking the path of 

nmin,j-th agent of agents list ij as the pivot points 

of the path candidate. That is, without changing 

the order of the path of the agent, only changes 

the path order of the other agents, it calculates 

the marginal utility again. Then it goes to line 9 

again.  

After this refining loops, one have a tables 

of the pseudo marginal utility. Then it finds the 

argument *
nj  which is the task of the maximum 

of the minimum of the nmin,j-th best marginal 

utility between each task j. This is a kind of 

safety strategy to reduce the impact of the curse 

of the winner, by assigning tasks mainly based 

on the critical agent. Then the *min njn -th agent of 

agents *
ni  get assigned task *

nj , as line 21. Thus 

agent *
ni  is assigned to the task *

nj  by inserting 

task *
nj  to the bundle list and the path list of the 

agent. As one agent is allocated to the task, the 

required number of agent, *min njn , decreases by 

one, and the number of task assigned to the 

agent, *
ni , increase by one. When the agent is 

fully exhausted, it is removed from the agent 

pool, In, as line 22 to 24. Likewise, when the 

task is completely assigned, the task is removed 

from the task pool, Jn, and the global utility and 

the marginal utility is updated with the new path 

list of the fleet. As the utility is the function of 

the complete time, the TOC of fleet, s , is 

obtained, when the global utility is calculated. 

Actual the marginal utility of the fleet is 

possible to calculate, only after the path of 

entire fleet is fixed.   

In the multiple group buying market, each 

retailers willing to attract more customer. In 

order to that, there should be more incentives on 

the task. In the CGBA, to avoid the agents to be 

assigned to the non-cooperative task first, which 

leads to redundant agent-task pair, the incentive 

strategy might be useful. By giving incentives 

on the static utility of task j, which requires nmin,j 

agents, as following,     

 min,j ju n   (11) 

it leads to the cooperative task is more attractive 

than other, and avoids the redundant pairs. 
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 1:  { }, { }i i   b p , 0,i i I     

 2:  min minj jn n    j J   

 3:  min1 1min , , }min{ poorj
N Nu t
i jL n NiN     

 4:  
(1)ˆ ˆ ({ }) ( , )ijiju u i j I J      

 5:  Frank = true 

 6:  for n = 1 to minN do 

 7:   if Frank = true 

 8:   for nj J  

 9:   min, ˆ( , ) rank ( )jn n
j j ijj ui s  

10:   if 
( )

j

n ip p p  is cross deployed 

11:    min

( )
( )ˆ ( )j j

n n
ij ij n nu u i I  ip p  

12:   go to 9 

13:   end if 

13:   end for 

14:  
* arg max minn j j i j n jj j J i    s i                                   

15:   *
*

njn i i  

16:   Frank = false 

17:  end if 

18: *
* *

min( )njn ni n i  

19:   *min njn = *min 1njn   

20:   * * 1
n ni i    

21:   * *
*

end { }
n n

ni i j b b , * *
( )

n n

n

i ip p      

22:   if *
n

ii L  then 

23:   
*

1 \{ }n n nI I i   

24:   *
( 1)

, 0
n

n
jiu j J     

25:   else  

26:   1n nI I   

27:   end if 

28:   if *min 0njn  then 

29:   
*

1 \{ }n n nJ J j   

30:   ( , ) ( )TTOC i j U p 1 1( , ) n ni j I J     

31:   
( 1) ( )

1 1[ ] ( , )n n
ij n nij iu u i j I J

    b  

32:    Frank = true 

33:   else  

34:    1n nJ J   

35:   end if 

36:  end for 

Algorithm 3.1 Centralized Group Buying 

Algorithm. 

3.2 Cross Deployment    

If the path lists of some agents, which are 

mutually dependent on performing a task, has 

conflicts in the order of the tasks then it is 

defined as the cross deployment. For example, 

consider that agent 1 has path list {1 2 3}, and 

agent 2 has path list {3 2}. To do task 3, agent 1 

should perform task 2 first. On the other hand, 

in the point of view of agent 2 to perform task 2, 

it has to perform task 3 first. The conflict can 

appear indirectly. Consider that the case agent 1 

has path {1 2}, agent 2 has path {2 3}, and 

agent 3 has {3 1}. In this case, to perform task 3, 

agent 1 and agent 2 should perform task 1 and 

task 2. But for agent 3 to do task 1, the agent 

has to do task 3 first, thus a conflict rises.   

3.2.1 Definition of Cross Deployment  

Mathematically the cross deployment can 

be defined as following. Definition 6.1 and 6.2 

define direct cross deployment (D. C. D.) and 

indirect cross deployment (I. C. D), respectively.  

 

Definition 6.1, direct cross deployment 

, , , ,

. . .

. . and

for and

p q p qq i m i g A i n i f B

D C D

i s t j j

m n f g



    

 

p p p p   (12) 

 

Definition 6.2 indirect cross deployment 

, , , ,

, ,

. . .

and ,

for , and \{ }

. . and for

p p q q

r r

i m A i n i x B i y C

q p

r i f C i g A

I C D

j j j

m n x y i i

i s t j j f g



   

  

   

p p p p

i

p p

  (13) 

 

It is direct cross deployment if there exist agent 

iq such that, when agent ip performs path m  

earlier than path n and agent iq performs path f  

earlier than path g, the m-th path list element of 

the agent ,pi mp  and the g-th path list element of  

agent iq ,gqip  are same as task Aj , and the n-th 

element of the path list of the agent ip ,npip and 

the f-th element of the path list of the agent iq 

,qi fp  are same as task Bj . In a similar manner, it 

is indirect cross deployment, if agent ir exists 

such that the agent has task jC and task jA in the 

path list of f-th and g-th element, here path f is 

ahead the path g, when agent ip has task jA in the 

m-th element of the path, task jB is the n-th 

element of the path of agent ip and the x-th 

element of the path of agent iq simultaneously, 

and task jC is the y-th element of the path of 

agent iq. Here path m proceeds path n, path x 

proceeds path y.  

Fig. 3.1 shows two examples of the DCD 

case and ICD case. In Fig. 3.1 (a) the two agents 
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has mutually dependent task list. Agent 1 should 

perform task 1 2 and 3, and agent 2 show task in 

the order of 2, 4, and 1. Then the two agent 

cannot proceed the task forever, unless the task 

order is changed. The two agents are directly 

dependent each other as so it is DCD case. In 

Fig. 3.1 (b), agent 1, 2 and 3 are involved in the 

mission. Agent 1 should perform task 1 and 2, 

agent 2 should perform tasks in the order of task 

2, 5 and 3, and the final agent should perform 

tasks in the order of 3, 4, and 1. In this case, 

none of the tasks are directly dependent each 

other, but the task 1 is directly depends on task 

3, and task 3 is indirectly depends on task 1 

through the task 2, thus it is ICD. 

 
(a) 

 
(b) 

 

Figure 3.1 D.C.D ex (a), I.C.D. ex (b) 

 

3.2.2 Cross Deployment Discriminant  

As the cross deployment causes the logical 

error on the mission schedule, it should be 

avoided. In order to find out whether the given 

task schedule of the fleet is cross deployed or 

not, this paper introduces a discriminant for the 

cross deployment of the MCTA. The algorithm 

3.2 defines the preceding task list (PTL), B, and 

the following task list (FTL), A, for all of the 

tasks in the path list of the agents. In the PTL, 

the algorithm collects the preceding task, and in 

the FTL it collects the following task of each 

task.  

The algorithm build a PTL and a FTL for 

all task j that is assigned to any agent, and if 

PTL and FTL of the tasks are already build up, 

it is given as input of the algorithm. For each 

agent, from the first task to the last task in the 

list, it figure out the temporal preceding task list, 

Tb, and temporal following task list, Ta, as line 5 

to 6. If any task in Ta exists in PTL of the z-th 

task of the agent i, jthis, or any task in Tb exists in 

FTL of task jthis, it is determined as cross 

deployed, as line 7 to 8. With this determinant, 

any case of the DCD or ICD can be detected.  

If the condition isn’t satisfied, the Ta and 

the Tb is updated to the PTL and the FTL 

respectively. For the Tb, when the element of Tb 

is out of the PTL of task jthis, the element is 

added to the PTL of task jthis. And 

simultaneously, the task of the Tb is updated to 

the PTL of the tasks that already follows the 

task jthis. It is logical that any preceding task to 

task jthis, also precedes the following tasks of 

task jthis. In a similar manner, the elements of  Ta 

is updated to the FTL.  

 

 1:  function  

Input i i I p , paths of all agent.  

Input { }j j J B , (P.T.L.) 

Input { }j j J A , (F.T.L.) 

 2:  for i = 1 to ( )n I  

 3:  for z = 1 to ( )in p  

 4:  this ij  zp  

 5:  (1:z 1)b iT  p ,  ( )bp n T  

 6:  (z 1: ( ))ia i nT  pp , ( )aq n T  

 7:   if             

. . { }aq thisq s t T j B for q q   or 

. . { }b p thisp s t T j A for p p   

 8:   return true. 

 9:   end if 

10:   if { }bp thisT jB  for p p   

11:   end{ }this b pj T B  

12:   if { }b pT aB for { }thisa j A   

13:   end{ } b pa T B  

14:   end if 

15:   end if 

16:   if { }aq thisT jA  for q q   

17:   end{ }this aqj T A  

18:   if { }aqT bA for { }thisb j B  

19:   end{ } aqb T A  

20:   end if 

21:   end if 

22:    end for 

23:  end for 

Algorithm 3.2 Checking Cross Deployment 
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3.2.3 Cross Deployment Discriminant 

Algorithm Complexity Study. 

In order to analyze the complexity of the 

cross deployment discriminant, worst case 

analysis is done. To be sure that the CGBA 

takes the polynomial time, it is a necessary 

condition that the cross deployment checking 

algorithm takes the polynomial time at worst 

case.  

In this paper the comparison operator “==” 

is assumed as a basic operational load element. 

Before one starts the analysis, here comes some 

assumptions for the worst case analysis.  

1. There are ‘n’ numbers of distinguishable 

tasks in the path lists of the agents. Therefore, 

tn N  holds.  

2. n is dominant to the number of agent, Nu, or 

the capacity of agent, Li. 

3. There are no ambiguously ordered task, that 

is, all tasks are ordered from task 1 to task n 

sequentially, so that task j always precede 

task j + 1. 

4. All elements in the path list of an agent 

shouldn’t be identical each other.  

5. For simplicity, the PTL and FTL is already 

built at first. 

 

For agent i, the length of the path of the 

agent is Li. Thus the z is one of the value 

between 1 and Li. Then the numbers of the 

elements in each temporarily preceding task list 

and following task list is 

 ( ) 1bn T z    (14) 

 ( )a in T L z    (15) 

If the task of the z-th element in the path 

list of agent i, is task jz, the algorithm inspects if 

the tasks in Tb exists in the FTL and the other 

opponent case also. Thus the comparison occurs 

the operational load as much as,  

 ( ) ( 1)( )b zO T z n j   A   (16) 

 ( ) ( )( 1)a i zO T L z j   B    (17) 

As one of them in Eq. (16) and (17) is true, 

the procedure terminated, here assume that the 

checking algorithm is not terminated. Then the 

Ta and Tb should be updated to the PTL and the 

FTL. For the update, it has to check whether the 

element in Tb is already in PTL, and the other 

case also. So it costs as following, 

 ( ) ( 1)( 1)b zO T z j   B   (18) 

 ( ) ( )( )a i zO T L z n j   A   (19) 

As the PTL and FTL already fully built 

from the beginning, the cost related to the sub-

sequential updates is zero. That is, above two 

equations are always true, so the loop doesn’t go 

deeper. Then the total complexity of the cross 

checking algorithm would be, 

 

{ ( ) ( )

( ) ( )}

( 1)( 1)

( )
O T O Tb a

zNu O T O Tb a

L nizNu

O n
  

 
   

  





A B

B A
  (20) 

When Li of all agent is equal to L, the 

operational load is,  

 ( ) ( 1)( 1)uO n N L L n     (21) 

Therefore the algorithm complexity is first 

order polynomial to the number of tasks.  

3.2 Optimal Solution to the MCTA.    

The task assignment problem for the 

multiple assignment is able to be stated in the 

form of the multidimensional multiple-choice 

knapsack problem (MMKP), by transforming 

the decision variable from the task-agent pair to 

the path candidates of each agent. When it is 

turned into MMKP, it have a chance to solve by 

using MILP solver like CPLEX. However, as 

the utility of the task of the MCTA is 

determined by the critical agent, this is mixed 

integer nonlinear programming problem. By the 

reason, the only way to the optimal solution of 

the MCTA is the complete enumeration.  

The complete enumeration searches every 

solution field. Therefore, in the worst case, it 

has to visit many solution space as much as the 

number of Eq. (22) to find the optimal solution.   

  2

1 11
[( ( ))!]

N Nt u
u tN N

ij
k ji

x k


     (22) 

However, the most of the solution in the 

space is infeasible one, due to the constraints, 

such as the number of agents required to a task, 

nmin, the capacity of an agent, Li, or the cross 

deployment. Thus if one can detect the 
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feasibility of a candidate soon, the speed of 

complete enumeration could be enhanced. In the 

[2], there introduced a modified complete 

enumeration procedure for the MCTA. This 

paper compare the solution of the CGBA with 

the optimal solution from the complete 

enumeration procedure.  

5 Simulation and Results 

5.1 Load Transportation Simulation 

To simulate the load transportation 

simulation, following 2D particle dynamics are 

used, 

 

cos sin

/

/10 if 0

x V y V

a V

a V

 



 


 



  (23) 

For the case 1, the agents are moving in 1 

m/s and the problem set as Fig. 5.1. 

 
Figure 5.1 Load Transportation Simulation 

Problem Setup CASE 1   

 

 
Figure 5.2 Load Transportation Simulation 

Time Schedule CASE 1  

There are 3 agent and 5 tasks, each task 

requires two agents. In Fig. 5.2, the tasks is 

evenly allocated well. Here the cost is 

discounted as much as 5% / hour. The straight 

lines along the time axis means the waiting of 

the agent. And the oblique line means the 

moving of the agent. 

 

 
Figure 5.2 Load Transportation Simulation 

Problem Setup CASE 2   

 

 
Figure 5.4 Load Transportation Simulation 

Time Schedule CASE 2  

 

In case 2 setup, there are 5 agents and 10 

tasks. The tasks requires the number of agents 

from one to three. The agent can involves in 5 

tasks each. For this large problem, the CGBA 

shows a feasible solution.  

5.2 Sub Optimality of the CGBA 

To compare the sub optimality of the 

CGBA algorithm, a Monte Carlo simulation has 

been taken. The agent number is fixed to three, 

and it moves 50 m/s. The position of agent is 
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randomly chosen. Each agent’s load capacity is 

three. Tasks and obstacles position is randomly 

chosen with in the map 20 by 20 km, and time 

discounting factor leads to 5%/hour discounting.  

Figure 5.5 and 5.6 shows the total utility 

rewards of the Monte Carlo simulation of the 

complete enumeration and the CGBA, 

respectively. The green area means 3 sigma 

variance area, and black dots are each 

simulation result. The red line is expectation of 

the total utility.  

In Fig 5.7, the expectations of the optimal 

solution and the CGBA is compared. In Figure 

5.8, the optimality of the CGBA is shown. The 

optimality of the total utility reward is nearly 

over than 90 %.  

 
Figure 5.5 The Utility Reward of Monte Carlo 

Simulation of the Complete Enumeration  

 

 
Figure 5.6 The Utility Reward of Monte Carlo 

Simulation of the CGBA.  

 

 
Figure 5.7 The Utility Reward Expectation 

Comparision 

 
Figure 5.8 The Optimality of the CGBA 

 
Figure 5.9 The Elapsed Time of Monte Carlo 

Simualtion of the complete Enumeration 

Fig. 5.9 and 5.10 shows the elapsed time of 

the Monte Carlo simulation of the complete 

enumeration and the CGBA, respectively. And 

it is compared together in Fig 5.11, in the log 

scale. In Fig. 5.11, the elapsed time for the 

optimal solution is increasing exponentially, but 

that of the CGBA is increasing linearly as the 

problem size increase.  
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Figure 5.10 The Elapsed Time of Monte Carlo 

Simualtion of the complete Enumeration 

 

 
Figure 5.11 The Expectation of the Elapsed 

Time Comparison.  

6 Conclusion  

This paper introduces the MCTA problem 

for the multi agent’s slung load type transport 

system. The CGBA is a heuristic security 

strategy algorithm, inspired from the group 

buying market. It gives a feasible solution with 

in a finite time, and show over 90% optimality 

in practical manner. The algorithm applicability 

were shown by the case study and the Monte 

Carlo simulation. 
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