

1

Abstract

This paper addresses the task assignment

algorithm for the multiple cooperative load

transportation system. The centralized group

buying algorithm is a heuristic security strategy

algorithm based on the group buying market.

Through the simulation, the algorithm the sub

optimality and applicability is shown.

1 Introduction

The slung load type load transportation is

recently being researched [1-2]. The helicopter

or the quadrotor has a possibility to be used as

slung load system. As the quad rotor system is

useful in the quick package delivery service, the

amazon.com recently announced a plan for the

quad rotor 30 minutes home delivery service.

To utilize these kind of service efficiently,

the high level task scheduling is necessary. As

the system size is getting bigger, the need for

the task assignment increases more. Choi, and K.

Whitten has introduced the CBBA and the

CCBBA algorithm [3-5]. It is a consensus based

auction algorithm, that assigns the task to the

agents sequentially. The CBBA guarantees 50%

optimality and the fast convergence.

This author have wrote a couple of papers

related to the group buying algorithm. [6-7] The

group buying algorithm inspired from the

collective buying market. In the following

section, this paper, to solve the task assignment

of the load transportation problem, formulated

the problem as the multiple cooperative task

assignment problem, and introduces the group

buying algorithm.

2 Problem Statement

2.1 Cooperative Transport Mission

The cooperative transport mission by

swarm UAVs is one of the promising usage of

the quadrotor robot. As the technology of the

UAV system improves, the cost of UAV system

is reduced, and the reliability is increased. In a

close future, the artificial intelligence and the

advanced control theories would help the UAV

to operate on these kind of complex mission. In

the cooperative transport operation, a group of

quadrotors or any kinds of unmanned rotary

aerial vehicle cooperates simultaneously to

transport a package to somewhere.

In many area area, cooperative transport

mission can be utilized for, such as, the

immediate munition deployment, the package

delivery service, and so on. In Fig. 2.1, the

cargo is supported to each UAV through a wire,

and thus the swarm robots can carry a heavy

package that exceeds the payload capacity of

each UAV. As the group of a single type agents

can carry various weights of the payload, the

agent can be standardized, and thus the

manufacturing and maintenance cost of the

entire system also can be reduced.

In the actual application, there would be

multiple delivering request, and multiple agents

which can perform the requested service. If at

least nmin agents are needed to shift a cargo, the

agents should gather to initiate the mission, that

is, an early arrival agent ought to wait the other

nmin-1 agent near the task. Namely, the mission

MULTILE TASK ASSIGNMENT FOR COOPERATIVE
TRANSPORT SYSTEM WITH GROUP BUYING

APPROACH

Gun Hee Moon*, Dong Wan Yoo*, Byung Yoon Lee*, Hae In Lee* and Min Jea Tahk*

*Korea Advanced Institute of Science and Technology

Keywords: slung load system, multiple cooperative task assignment, group buying, UAV

Gun Hee Moon, Dong Wan Yoo, Byung Yoon Lee

 Hae In Lee and Min Jea Tahk

2

is constrained by the number of agent to initiate

it. This constraints causes the forbidding of the

cross deployment, which is discussed later.

Generally the nmin is related to the payload

capacity of each agent, as following,

 min
max

W

w
n  

  
 (1)

where W is the weight of the payload, and wmax

is the payload limits of an agent. Here all the

agents are assumed to be same as. The operator

   is the round up operator.
The cooperative transport mission is a non-

synergetic mission. If the agents more than nmin

are assigned to a task, there would be no

advantage, compared to the case that only nmin

agents involves in. Those agents are actually

redundant agents, it might help the service to be

more reliable, but unnecessary. Therefore if

there exists other tasks, assigning the redundant

agents to the other task is more profitable. Thus

the mission planning of these system is required

for the autonomous service system in the future

and it can be formulated into the multiple,

cooperative task assignment (MCTA) problem,

which is discussed in the following section.

Figure 2.1 Quadrotor Cooperative Transport

Mission concept, carrying a cargo in a slung

load type.

2.2 Multiple Cooperative Task Assignment

In this section, this paper formulate the

MCTA problem mathematically. The MCTA is

an operation scheduling problem that assigns Nu

agents to Nt tasks as many as possible. Here the

satisfaction of the society is expressed by the

utility function, and the purpose of the task

assignment is maximizing the summation of the

utility, global utility, then MCTA problem for

the cooperative transportation mission can be

expressed as,

1 1

arg max ()
u tN N

ij i ij
i j

u p x
  P (2)

Subject to

 min, or 0 {1,2,... }uN
i ij j tx n j N     (3)

 , {1,2,... }tN
j ij t ux L i N    (4)

where xij is the decision variable which indicates

agent i is assigned to task j, when agent i is

allocated to task j, the corresponding decision

variable xij is ‘1,’ and if not allocated, it is ‘0.’

uij is the utility value or score that is earned by

for agent i performing task j along with the path

list of agent i. Thus the meaning of Eq. (2) is

finding the best path strategy of the fleet that

can maximize the summation of the utility of

whole society. In Eq.(3), the left hand side of

the equation is j-th column sum of decision

variable. It means the number of agent that

involves in task j is only nmin,j or zero. It implies

that the cooperative transport mission has the

non-synergetic property, so that, constrains the

number of the agent assigned for the task to be

no more than or less than nmin,j when the mission

is taken, and to be zero when mission is

abandoned. In Eq.(4), the left hand side of

equation is row sum of the decision variable and

it means the number of task assigned to agent i.

Thus each agent can’t involve in more than Lt

tasks in a sortie. This constraint is a simple

modeling of agent fuel capacity.

In order to get the best result from the

assignment, one have to fill in ‘1’ as many as

possible. The task assignment is said to be

ideally completed, when there is no better

agent-task pairs than now. Define the Nmin as

Eq.(5).

 1 1 min
u tN N

i j ijx N   (5)

where Nmin is the total number of the assigned

agent-task pair. When all agents to perform all

task is assigned, all agents are exhausted, or no

more task-agent pair is feasible even though

there left task and available agent both, then the

assignment said to be completed. It is

mathematically expressed as Eq.(6),.

3

MULTIPLE TASK ASSIGNMENT FOR COOPERATIVE TRANSPORT

SYSTEM WITH GROUP BUYING APPROACH

 min minmin{ , , }j i poor
j i

N n L N
 

   (6)

min,

max()

for { }

poor q i
q i

q j

N n L

n n


 



  (7)

In Eq.(6), the first value, the sum of whole

nmin,j is the number of all agent to perform all

task. The second one, sum of all Lt of entire fleet,

is the number of task-agent pair that the fleet

can support. The third element, Npoor indicates

poor situation. where Npoor is defined as Eq. (7),

that is, the biggest sum of nmin,j which is less

than or equal to the sum of the Lt. In this third

case there exist both remaining tasks and

redundant agents, which are not enough to

perform the remaining task. In Eq.(7), if the

equality holds, the poor case is not in the

problem setup. For instance, if there are three

agents, which can take participate in three task

respectively, and five tasks, which require two

agents to be initiated, and the agents evenly

allocated to the five tasks, then there always left

one task and one agent. Thus the possible

maximum task-agent pair is eight, not nine.

The utility function for cooperative

transportation mission has an exponential

discounted scheme along the time of the task

completion.

 jTOC

ij j ju u  (8)

The utility, uij, gained by agent i performing

task j is proportional to the static gain, ju , and

discounted by the time of completion TOCj

within the rate of the discounting factor j . This

time discounted utility model makes the agents

to complete the tasks as soon as possible to get

more utility. Additionally, this utility function

results in the monotonically increasing function

along the task number. However for the MCTA,

it is hard to say that it holds the sub modularity.

Namely the marginal utility function might not

monotonically decrease as it does in the

multiple assignment problem of Choi [4].

3 Group Buying Algorithm

3.1 Group Buying

The group buying is also known as

collective buying or group purchasing. It is

originated from the Chinese “Tuángòu”, which

gives a special discount on an item, when a

group of purchasers order to buy the same item.

The group buying is beneficial to both the

retailer and the client. As the retailer sales goods

in discounted price, the clients get some

incentive on it. Simultaneously, the retailer can

extend the market area, thus it is profitable for

them too, although they sales it in cheap price.

The group buying market has the curse of

winner problem, which is a natural born

phenomenon that the earlier mover or the

customer of appetence should wait the others

until the minimum required number of agents is

ready. In the sense of the utility of the given

problem, the utility of those urgent customers

are discounted along the time, and they have to

take the loss of the utility.

This paper shortly discusses about the

optimal solution of the MCTA problem in the

following chapter. In consequently, the only

ways to find the optimal solution is the

complete enumeration, which enumerates all the

possible solution and test all the cases to find

best input. Unfortunately, this complete

enumeration takes the exponential time to find

proper solution. In a practical manner, thus this

paper are going to introduce a heuristic

suboptimal algorithm.

The centralized group buying algorithm

(CGBA) finds a feasible solution for the MCTA

problem. The CGBA is inspired from the

property of the group buying market. It decides

the schedule of each agent sequentially, and the

agents has to take the loss of the utility caused

by the winner’s curse. But the proposed

algorithm finds as best one as possible, within

the safety strategy.

3.2 Centralized Group Buying Algorithm

Similar to the sequential greedy algorithm

of Choi [4], the centralized group buying

algorithm decides the task to perform

sequentially. Algorithm 3.1 describes the CGBA

process. Each agent initialize the task bundle, bi,

path list pi and the best marginal utility ûij

through line 1 to 5.
'

min, jn is a dummy variable

Gun Hee Moon, Dong Wan Yoo, Byung Yoon Lee

 Hae In Lee and Min Jea Tahk

4

that contains the number of agents needed for

each task. In line 3, the process calculates the

number of task-agent pair, which is equal to Eq.

(7). For the number of task-agent pair to be

closer to the optimal solution, the global utility

of the whole fleet need to hold the

monotonically increasing function scheme.

Literally, it means that eating more pies is

always better than eating fewer, and it makes

sense for the greedy individual, or the

homoeconomicus.

Through line 6 to line 36, each task is

matched with a group of agents of the entire

fleet. It goes through this loop for Nmin times.

The CGBA estimates the best marginal utility ûij

which is an expected maximum marginal utility

for agent i to be earned by performing task j

between its path list, with the assumptions that

new assignment doesn’t affect the waiting time

on the other task, and newly assigned task can

be initiated just in time. Therefore, the marginal

utility calculated here is a pseudo value.

 ()
(p)

() ()

i p j oi i

i i

n TOC t
p j p j

j
U u  

p
 (9)

{ }

| | 1ˆ [] max i n i

i

j
ij i nu U U

  p p
pb (10)

where the pseudo global utility iU p is the

summation of the utility rewards from all of the

individual tasks, and it is function of the path of

the agent i. Then the pseudo marginal utility is

obtained as Eq. (10). Here the operator n

means inserting following list into the n-th

position of the preceding list. Thus it is an

expectation of agent i to be earned by

performing task j on its best chance.

In line 9, these marginal utility is ranked

for each task. Additionally algorithm arranges

the utility in the descending order, and point out

first to nmin,j-th higher scoring agents ij and

corresponding utility values sj. Especially the

nmin,j-th agent is called as the critical agent. The

critical agent are expected to arrive the task at

last so as to it results in the nmin,j-th highest

utility. As the other agents has to wait the

critical agent, the winner’s curse, even those are

arrived the task early, the utility rewards is

determined by the critical agent.

To avoid the cross deployment issue,

which is discussed on the following section, the

algorithm check the cross deployment with the

fleet’s original path and the path of agents ij. If

newly updated path is cross-deployed case, the

marginal utility is updated, taking the path of

nmin,j-th agent of agents list ij as the pivot points

of the path candidate. That is, without changing

the order of the path of the agent, only changes

the path order of the other agents, it calculates

the marginal utility again. Then it goes to line 9

again.

After this refining loops, one have a tables

of the pseudo marginal utility. Then it finds the

argument *
nj which is the task of the maximum

of the minimum of the nmin,j-th best marginal

utility between each task j. This is a kind of

safety strategy to reduce the impact of the curse

of the winner, by assigning tasks mainly based

on the critical agent. Then the *min njn -th agent of

agents *
ni get assigned task *

nj , as line 21. Thus

agent *
ni is assigned to the task *

nj by inserting

task *
nj to the bundle list and the path list of the

agent. As one agent is allocated to the task, the

required number of agent, *min njn , decreases by

one, and the number of task assigned to the

agent, *
ni , increase by one. When the agent is

fully exhausted, it is removed from the agent

pool, In, as line 22 to 24. Likewise, when the

task is completely assigned, the task is removed

from the task pool, Jn, and the global utility and

the marginal utility is updated with the new path

list of the fleet. As the utility is the function of

the complete time, the TOC of fleet, s , is

obtained, when the global utility is calculated.

Actual the marginal utility of the fleet is

possible to calculate, only after the path of

entire fleet is fixed.

In the multiple group buying market, each

retailers willing to attract more customer. In

order to that, there should be more incentives on

the task. In the CGBA, to avoid the agents to be

assigned to the non-cooperative task first, which

leads to redundant agent-task pair, the incentive

strategy might be useful. By giving incentives

on the static utility of task j, which requires nmin,j

agents, as following,

 min,j ju n (11)

it leads to the cooperative task is more attractive

than other, and avoids the redundant pairs.

5

MULTIPLE TASK ASSIGNMENT FOR COOPERATIVE TRANSPORT

SYSTEM WITH GROUP BUYING APPROACH

 1: { }, { }i i   b p , 0,i i I   

 2: min minj jn n  j J 

 3: min1 1min , , }min{ poorj
N Nu t
i jL n NiN   

 4:
(1)ˆ ˆ ({ }) (,)ijiju u i j I J    

 5: Frank = true

 6: for n = 1 to minN do

 7: if Frank = true

 8: for nj J

 9: min, ˆ(,) rank ()jn n
j j ijj ui s

10: if
()

j

n ip p p is cross deployed

11: min

()
()ˆ ()j j

n n
ij ij n nu u i I  ip p

12: go to 9

13: end if

13: end for

14:
* arg max minn j j i j n jj j J i    s i

15: *
*

njn i i

16: Frank = false

17: end if

18: *
* *

min()njn ni n i

19: *min njn = *min 1njn 

20: * * 1
n ni i  

21: * *
*

end { }
n n

ni i j b b , * *
()

n n

n

i ip p

22: if *
n

ii L  then

23:
*

1 \{ }n n nI I i 

24: *
(1)

, 0
n

n
jiu j J   

25: else

26: 1n nI I 

27: end if

28: if *min 0njn  then

29:
*

1 \{ }n n nJ J j 

30: (,) ()TTOC i j U p 1 1(,) n ni j I J   

31:
(1) ()

1 1[] (,)n n
ij n nij iu u i j I J

    b

32: Frank = true

33: else

34: 1n nJ J 

35: end if

36: end for

Algorithm 3.1 Centralized Group Buying

Algorithm.

3.2 Cross Deployment

If the path lists of some agents, which are

mutually dependent on performing a task, has

conflicts in the order of the tasks then it is

defined as the cross deployment. For example,

consider that agent 1 has path list {1 2 3}, and

agent 2 has path list {3 2}. To do task 3, agent 1

should perform task 2 first. On the other hand,

in the point of view of agent 2 to perform task 2,

it has to perform task 3 first. The conflict can

appear indirectly. Consider that the case agent 1

has path {1 2}, agent 2 has path {2 3}, and

agent 3 has {3 1}. In this case, to perform task 3,

agent 1 and agent 2 should perform task 1 and

task 2. But for agent 3 to do task 1, the agent

has to do task 3 first, thus a conflict rises.

3.2.1 Definition of Cross Deployment

Mathematically the cross deployment can

be defined as following. Definition 6.1 and 6.2

define direct cross deployment (D. C. D.) and

indirect cross deployment (I. C. D), respectively.

Definition 6.1, direct cross deployment

, , , ,

. . .

. . and

for and

p q p qq i m i g A i n i f B

D C D

i s t j j

m n f g



    

 

p p p p (12)

Definition 6.2 indirect cross deployment

, , , ,

, ,

. . .

and ,

for , and \{ }

. . and for

p p q q

r r

i m A i n i x B i y C

q p

r i f C i g A

I C D

j j j

m n x y i i

i s t j j f g



   

  

   

p p p p

i

p p

 (13)

It is direct cross deployment if there exist agent

iq such that, when agent ip performs path m

earlier than path n and agent iq performs path f

earlier than path g, the m-th path list element of

the agent ,pi mp and the g-th path list element of

agent iq ,gqip are same as task Aj , and the n-th

element of the path list of the agent ip ,npip and

the f-th element of the path list of the agent iq

,qi fp are same as task Bj . In a similar manner, it

is indirect cross deployment, if agent ir exists

such that the agent has task jC and task jA in the

path list of f-th and g-th element, here path f is

ahead the path g, when agent ip has task jA in the

m-th element of the path, task jB is the n-th

element of the path of agent ip and the x-th

element of the path of agent iq simultaneously,

and task jC is the y-th element of the path of

agent iq. Here path m proceeds path n, path x

proceeds path y.

Fig. 3.1 shows two examples of the DCD

case and ICD case. In Fig. 3.1 (a) the two agents

Gun Hee Moon, Dong Wan Yoo, Byung Yoon Lee

 Hae In Lee and Min Jea Tahk

6

has mutually dependent task list. Agent 1 should

perform task 1 2 and 3, and agent 2 show task in

the order of 2, 4, and 1. Then the two agent

cannot proceed the task forever, unless the task

order is changed. The two agents are directly

dependent each other as so it is DCD case. In

Fig. 3.1 (b), agent 1, 2 and 3 are involved in the

mission. Agent 1 should perform task 1 and 2,

agent 2 should perform tasks in the order of task

2, 5 and 3, and the final agent should perform

tasks in the order of 3, 4, and 1. In this case,

none of the tasks are directly dependent each

other, but the task 1 is directly depends on task

3, and task 3 is indirectly depends on task 1

through the task 2, thus it is ICD.

(a)

(b)

Figure 3.1 D.C.D ex (a), I.C.D. ex (b)

3.2.2 Cross Deployment Discriminant

As the cross deployment causes the logical

error on the mission schedule, it should be

avoided. In order to find out whether the given

task schedule of the fleet is cross deployed or

not, this paper introduces a discriminant for the

cross deployment of the MCTA. The algorithm

3.2 defines the preceding task list (PTL), B, and

the following task list (FTL), A, for all of the

tasks in the path list of the agents. In the PTL,

the algorithm collects the preceding task, and in

the FTL it collects the following task of each

task.

The algorithm build a PTL and a FTL for

all task j that is assigned to any agent, and if

PTL and FTL of the tasks are already build up,

it is given as input of the algorithm. For each

agent, from the first task to the last task in the

list, it figure out the temporal preceding task list,

Tb, and temporal following task list, Ta, as line 5

to 6. If any task in Ta exists in PTL of the z-th

task of the agent i, jthis, or any task in Tb exists in

FTL of task jthis, it is determined as cross

deployed, as line 7 to 8. With this determinant,

any case of the DCD or ICD can be detected.

If the condition isn’t satisfied, the Ta and

the Tb is updated to the PTL and the FTL

respectively. For the Tb, when the element of Tb

is out of the PTL of task jthis, the element is

added to the PTL of task jthis. And

simultaneously, the task of the Tb is updated to

the PTL of the tasks that already follows the

task jthis. It is logical that any preceding task to

task jthis, also precedes the following tasks of

task jthis. In a similar manner, the elements of Ta

is updated to the FTL.

 1: function

Input i i I p , paths of all agent.

Input { }j j J B , (P.T.L.)

Input { }j j J A , (F.T.L.)

 2: for i = 1 to ()n I

 3: for z = 1 to ()in p

 4: this ij  zp

 5: (1:z 1)b iT  p , ()bp n T

 6: (z 1: ())ia i nT  pp , ()aq n T

 7: if

. . { }aq thisq s t T j B for q q  or

. . { }b p thisp s t T j A for p p 

 8: return true.

 9: end if

10: if { }bp thisT jB for p p 

11: end{ }this b pj T B

12: if { }b pT aB for { }thisa j A

13: end{ } b pa T B

14: end if

15: end if

16: if { }aq thisT jA for q q 

17: end{ }this aqj T A

18: if { }aqT bA for { }thisb j B

19: end{ } aqb T A

20: end if

21: end if

22: end for

23: end for

Algorithm 3.2 Checking Cross Deployment

7

MULTIPLE TASK ASSIGNMENT FOR COOPERATIVE TRANSPORT

SYSTEM WITH GROUP BUYING APPROACH

3.2.3 Cross Deployment Discriminant

Algorithm Complexity Study.

In order to analyze the complexity of the

cross deployment discriminant, worst case

analysis is done. To be sure that the CGBA

takes the polynomial time, it is a necessary

condition that the cross deployment checking

algorithm takes the polynomial time at worst

case.

In this paper the comparison operator “==”

is assumed as a basic operational load element.

Before one starts the analysis, here comes some

assumptions for the worst case analysis.

1. There are ‘n’ numbers of distinguishable

tasks in the path lists of the agents. Therefore,

tn N holds.

2. n is dominant to the number of agent, Nu, or

the capacity of agent, Li.

3. There are no ambiguously ordered task, that

is, all tasks are ordered from task 1 to task n

sequentially, so that task j always precede

task j + 1.

4. All elements in the path list of an agent

shouldn’t be identical each other.

5. For simplicity, the PTL and FTL is already

built at first.

For agent i, the length of the path of the

agent is Li. Thus the z is one of the value

between 1 and Li. Then the numbers of the

elements in each temporarily preceding task list

and following task list is

 () 1bn T z  (14)

 ()a in T L z  (15)

If the task of the z-th element in the path

list of agent i, is task jz, the algorithm inspects if

the tasks in Tb exists in the FTL and the other

opponent case also. Thus the comparison occurs

the operational load as much as,

 () (1)()b zO T z n j   A (16)

 () ()(1)a i zO T L z j   B (17)

As one of them in Eq. (16) and (17) is true,

the procedure terminated, here assume that the

checking algorithm is not terminated. Then the

Ta and Tb should be updated to the PTL and the

FTL. For the update, it has to check whether the

element in Tb is already in PTL, and the other

case also. So it costs as following,

 () (1)(1)b zO T z j   B (18)

 () ()()a i zO T L z n j   A (19)

As the PTL and FTL already fully built

from the beginning, the cost related to the sub-

sequential updates is zero. That is, above two

equations are always true, so the loop doesn’t go

deeper. Then the total complexity of the cross

checking algorithm would be,

{ () ()

() ()}

(1)(1)

()
O T O Tb a

zNu O T O Tb a

L nizNu

O n
  

 
   

  





A B

B A
 (20)

When Li of all agent is equal to L, the

operational load is,

 () (1)(1)uO n N L L n   (21)

Therefore the algorithm complexity is first

order polynomial to the number of tasks.

3.2 Optimal Solution to the MCTA.

The task assignment problem for the

multiple assignment is able to be stated in the

form of the multidimensional multiple-choice

knapsack problem (MMKP), by transforming

the decision variable from the task-agent pair to

the path candidates of each agent. When it is

turned into MMKP, it have a chance to solve by

using MILP solver like CPLEX. However, as

the utility of the task of the MCTA is

determined by the critical agent, this is mixed

integer nonlinear programming problem. By the

reason, the only way to the optimal solution of

the MCTA is the complete enumeration.

The complete enumeration searches every

solution field. Therefore, in the worst case, it

has to visit many solution space as much as the

number of Eq. (22) to find the optimal solution.

  2

1 11
[(())!]

N Nt u
u tN N

ij
k ji

x k


   (22)

However, the most of the solution in the

space is infeasible one, due to the constraints,

such as the number of agents required to a task,

nmin, the capacity of an agent, Li, or the cross

deployment. Thus if one can detect the

Gun Hee Moon, Dong Wan Yoo, Byung Yoon Lee

 Hae In Lee and Min Jea Tahk

8

feasibility of a candidate soon, the speed of

complete enumeration could be enhanced. In the

[2], there introduced a modified complete

enumeration procedure for the MCTA. This

paper compare the solution of the CGBA with

the optimal solution from the complete

enumeration procedure.

5 Simulation and Results

5.1 Load Transportation Simulation

To simulate the load transportation

simulation, following 2D particle dynamics are

used,

cos sin

/

/10 if 0

x V y V

a V

a V

 



 


 



 (23)

For the case 1, the agents are moving in 1

m/s and the problem set as Fig. 5.1.

Figure 5.1 Load Transportation Simulation

Problem Setup CASE 1

Figure 5.2 Load Transportation Simulation

Time Schedule CASE 1

There are 3 agent and 5 tasks, each task

requires two agents. In Fig. 5.2, the tasks is

evenly allocated well. Here the cost is

discounted as much as 5% / hour. The straight

lines along the time axis means the waiting of

the agent. And the oblique line means the

moving of the agent.

Figure 5.2 Load Transportation Simulation

Problem Setup CASE 2

Figure 5.4 Load Transportation Simulation

Time Schedule CASE 2

In case 2 setup, there are 5 agents and 10

tasks. The tasks requires the number of agents

from one to three. The agent can involves in 5

tasks each. For this large problem, the CGBA

shows a feasible solution.

5.2 Sub Optimality of the CGBA

To compare the sub optimality of the

CGBA algorithm, a Monte Carlo simulation has

been taken. The agent number is fixed to three,

and it moves 50 m/s. The position of agent is

9

MULTIPLE TASK ASSIGNMENT FOR COOPERATIVE TRANSPORT

SYSTEM WITH GROUP BUYING APPROACH

randomly chosen. Each agent’s load capacity is

three. Tasks and obstacles position is randomly

chosen with in the map 20 by 20 km, and time

discounting factor leads to 5%/hour discounting.

Figure 5.5 and 5.6 shows the total utility

rewards of the Monte Carlo simulation of the

complete enumeration and the CGBA,

respectively. The green area means 3 sigma

variance area, and black dots are each

simulation result. The red line is expectation of

the total utility.

In Fig 5.7, the expectations of the optimal

solution and the CGBA is compared. In Figure

5.8, the optimality of the CGBA is shown. The

optimality of the total utility reward is nearly

over than 90 %.

Figure 5.5 The Utility Reward of Monte Carlo

Simulation of the Complete Enumeration

Figure 5.6 The Utility Reward of Monte Carlo

Simulation of the CGBA.

Figure 5.7 The Utility Reward Expectation

Comparision

Figure 5.8 The Optimality of the CGBA

Figure 5.9 The Elapsed Time of Monte Carlo

Simualtion of the complete Enumeration

Fig. 5.9 and 5.10 shows the elapsed time of

the Monte Carlo simulation of the complete

enumeration and the CGBA, respectively. And

it is compared together in Fig 5.11, in the log

scale. In Fig. 5.11, the elapsed time for the

optimal solution is increasing exponentially, but

that of the CGBA is increasing linearly as the

problem size increase.

Gun Hee Moon, Dong Wan Yoo, Byung Yoon Lee

 Hae In Lee and Min Jea Tahk

10

Figure 5.10 The Elapsed Time of Monte Carlo

Simualtion of the complete Enumeration

Figure 5.11 The Expectation of the Elapsed

Time Comparison.

6 Conclusion

This paper introduces the MCTA problem

for the multi agent’s slung load type transport

system. The CGBA is a heuristic security

strategy algorithm, inspired from the group

buying market. It gives a feasible solution with

in a finite time, and show over 90% optimality

in practical manner. The algorithm applicability

were shown by the case study and the Monte

Carlo simulation.

Acknowledgment

This research was supported by Defense

Acquisition Program Administration and

Agency for Defense Development under the

contract UE124026JD.

References

[1] M. Bisgaard, Modeling, Estimation and Control of

Helicopter Slung Load System, Ph.D. Thesis,

Aalborg University, Fredrik Bajers Vej 7, Denmark.

[2] B. Y. Lee, S. M. Hong, D. W. Yoo, H. I. Lee, G. H.

Moon, and M. J. Tahk, Design of a Neural Network

Controller for a Slung-Load System Lifted by 1

Quad-Rotor, 2014 The 2nd International Conference

on Intelligent and Automation Systems, Hanoi,

Vietnam, Feb 2014, (published on JOACE vol. 3, no.

1, pp. 9-14, Feb 2015)

[3] A. K. Whitten, Decentralized planning for

autonomous agents cooperating in complex missions,

M.S. Thesis, Massachusetts Insititute of Technology,

Massachusetts, United States of America, 2010.

[4] H. L. Choi, A. K. Whitten, J. P. How, Decentralized

task allocation for Heterogeneous Teams with

cooperation constraints, American Control

Conference, Marriott Waterfront, Baltimore, MD.

USA, 2010.

[5] H. L. Choi, L. Brunet, and J. P. How, Consensus-

based decentralized auction for robust task allocation,

IEEE Trans. On Robotics, vol. 25, no. 4, pp. 912-925,

2009.

[6] G. H. Moon, D. W. Yoo, B. Y. Lee, H. I. Lee and M.

J. Tahk, Centralized Group Buying Approach for

Multiple Cooperative Task Allocation, 2014 The 2nd

International Conference on Intelligent and

Automation Systems, Vietnam, Hanoi, (published on

JOACE vol. 3, no. 2, pp. 92-97, April 2015)

[7] G. H. Moon, Group Buying Algorithm for Task

Assignment of Multi-Agent Load Transport System,

M.S. thesis, Korea Advanced Institute of Science and

Technology, Daejeon, Korea, 2014

7 Contact Author Email Address

mailto:mjtahk@fdcl.kaist.ac.kr

Copyright Statement

The authors confirm that they, and/or their company or

organization, hold copyright on all of the original material

included in this paper. The authors also confirm that they

have obtained permission, from the copyright holder of

any third party material included in this paper, to publish

it as part of their paper. The authors confirm that they

give permission, or have obtained permission from the

copyright holder of this paper, for the publication and

distribution of this paper as part of the ICAS 2014

proceedings or as individual off-prints from the

proceedings.

mailto:mjtahk@fdcl.kaist.ac.kr

