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Abstract

We obtain statistical distributions of contributing
factors, which can potentially lead to an incident
from an airline’s operational flight data. Then we
propagate these distribution through an incident
model using subset simulation, which is more ef-
ficient than a direct Monte Carlo approach, in or-
der to quantify the incident probability. The me-
thod is shown using the incident type of runway
overrun. The corresponding overrun model con-
sists of a set of nonlinear differential equations of
motion. Some results are computed as examples
to show the capabilities of our method.

1 Introduction

Runway excursion is one of the most frequent in-
cidents occurring worldwide [1]. Out of the regi-
stered 432 incidents that occurred between 2009
and 2013, 23% of them were identified as runway
excursions, making up the largest share. Therefo-
re, many studies focus on determining the typical
contributing factors (CF) leading to runway ex-
cursions and analyzing their dependencies.
Typical factors that contribute to excursions
are high speed deviations from the target ap-
proach speed, high tailwinds, landings on a short
runway, long landings (touching down late) or
wet runways. Usually, studies nowadays analy-
ze the final incident investigation reports in order
to determine the main CFs for runway overruns.
However, this is unsatisfactory from an airline’s
perspective because usually the individual flight
operation of airlines can vary significantly with
respect to aircraft types, procedures, limits, pilot
training as well as the route network structure.
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Fig. 1 An airline‘s flight operation

The dependencies described in investigation re-
ports might be relevant for that specific airline
only. They cannot be reflected in the above men-
tioned studies that aggregate incidents from air-
lines worldwide. To overcome this fact, we first
derive an overrun model that is based on the dy-
namics of an aircraft, i.e. a physical approach. Se-
cond, we analyze the statistical distribution of the
contributing factors by using operational flight
data of a single airline. Third, we propagate the
statistics of the contributing factors through the
overrun model in order to quantify the occurrence
probability of an overrun pgyerrun-

Figure 1 depicts the task that is to be achie-
ved. The goal is to quantify the red area that re-
presents the part of the flight operation in which
the considered incident occurs. From a mathema-
tical perspective, the goal is to evaluate a multi-
dimensional integral:

Poverrun = // p(0)de (1)
overrun

where 0 refers to the vector of contributing
factors with p (6) being the probability that a cer-



tain combination of © occurs flight operations.
However, as 0 is usually of high dimensions, it is
not possible to evaluate the integral analytically.
Instead, Monte-Carlo simulations can be applied.
The incident probability can thus be approxima-
ted as follows:
1 N
poverrun ~ — Y 1(6). (2)
N=
1 1s the indicator function that equals one if an
excursion occurred and zero, if the aircraft stops
on the runway. By performing a given number N
of simulations and simple addition of the number
of incidents, one would be able to compute the
probability by comparing to the total number of
samples. However, for small probabilities, as we
are considering in this application, a large sample
size is required since N is inverse proportional to
the incident probability that is to be computed:
N ~ 1/poverrun- Since the probabilities that are
to be obtained lie at the order of 10~° or lower,
a large amount of samples have to be evaluated,
consuming an unacceptable amount of time when
using a direct Monte Carlo approach.

2  Subset Simulation

Mathematically speaking, any incident can sim-
ply be considered as a failure, i.e. when the load
of a system exceeds its capacity. In our case of
an runway overrun, the required landing distance
of an aircraft would exceed the available landing
distance to cause an incident. As this method can
be used not only for runway overruns, but also for
other incident types, even any failure of a techni-
cal system, we will use the term failure in general
in this section.

In order to reduce the number of samples
compared to the direct Monte-Carlo method as
mentioned in the previous section, we apply the
subset simulation method. The idea is to express
the failure domain as a subset of m larger failure
domains [2].

FoDF D ...DFn—1 D Fn=Fejlyre 3

The probability of the system failure is deter-

C. WANG, L. DREES, F. HOLZAPFEL

mined as the product of the conditional probabi-
lities of each subset [2, eq. (2)].

Ptailure

m—1
= p(R) [ P(Fui|F)
i=1

The failure domains F; for each subset can be
chosen such that the estimated conditional pro-
bability p; is equal for all subsets and sufficiently
large to be determined using a small number of
samples. The last failure domain F, = Fppiyre
is determined individually but has be equal or
greater than the previous conditional probabili-
ties. The final failure probability can then be esti-
mated as:

—H =y (5)

i= 1

Pfailure = Hp i

with n; being the number of samples in each
subset that lie in the failure domain and N the to-
tal number of samples for each subset. A graphi-
cal illustration of the subset simulation is shown
in figure 2. One is able to see the samples moving
towards the failure domain during the simulation
from one subset to the next one.

The first subset is created by using the Mon-
te Carlo method. The input values are sampled
from given distributions ¢(i) that represent the
CFs of an airline. The samples in the previous
subset 0; that lie in the failure domain of the pre-
vious sample F; are used to generate the samples
for the following subset 0, 1. A Markov Chain
using the Metropolis algorithm [3] is applied on
every one of the k components of the sample
0;,=1[0;(1),0;(2),...,6;(k)] separately. A proposal
distribution p* is used for the Metropolis algo-
rithm which can be any symmetric distribution:
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Fig. 2 Concept of Subset Simulation

p*(alb) = p*(bla), typically a normal or a uni-
form distribution with a given spread 6. The al-
gorithm can be described as follows [2, section
3]:

1. A candidate state &; is generated using the
proposal distribution p*(-|6;(j)). The ra-

o q&) . .
tio r = 5y 1 computed. The candida

te sample 0,1 is set to éi“ = &; with the
probability min(1,r) and 8,1 = 6; with the
remaining probability.

2. The candidate sample is evaluated using
the model. If 0;,; C F;, then it is accep-
ted as a sample for the next subset: 0,1 =

0,4 1. Otherwise set 6;1.1 = 6;.

The Metropolis algorithm ensures that the
stationary distribution of the Markov Chain for
each component is the input distribution g. For
the sampling, each component is transformed to
the standard normal space. This enables the same
proposal distribution to be applied to every com-
ponent, regardless of the actual values which can
be significantly different if, for example, the air
pressure is given in hPa and the approach speed
in knots. To summarize, there are four parameters
of the subset simulation that can be chosen by the
user: The type of proposal distribution (Gaussian
or uniform), the standard deviation of proposal
distribution 6, or simply any measure that des-
cribes the spread of the distribution, the number
of samples per subset N and the conditional pro-
bability p;.

3 Runway Overrun Model

3.1 Physical model

We now return from the description of failures in
general to our specific case. As the real-life ap-
plication, we focus on the runway overrun after
landing, which means that the aircraft overshoots
the runway. We do not consider lateral motions of
the aircraft that could result in a runway veer-off.
Therefore, the aircraft can be described as a point
mass with several acting forces. The equations
describing this point mass can generally be for-
mulated as a set of coupled first-order non-linear
differential equations with the vector of states x
and the vector of system inputs u:

x=f(x,u). (6)

Using Newton’s second law of motion, which
relates the sum of forces acting on the aircraft YF
and the time derivative of the linear momentum in
an inertial reference frame (p)’, we obtain:

d

YF= (E)I@)’. (7)

The acting forces include aerodynamic forces
Fg, gravitational forces F¢, propulsion forces ﬁ‘g
and landing gear (braking) forces Fg The G in
the superscript indicates that all forces are acting
at the center of gravity. The aerodynamic forces
can be described using the aerodynamic coeffi-
cients for lift Cy, drag Cp and tranverse force Cp,
along with the aerodynamic speed V4 as well as
the air density p and the wing reference area S:

. 1 —Cp
Fa=-pVisS| Co |. (8)
2
e

Propulsion forces i‘g can be either direct-
ly obtained from the manufacturer’s datasheet or
computed using parameter estimation techniques
[4], accounting for air density and temperature.
When considering gravitational forces, one has
to include the runway slope in both longitudinal
and lateral direction. The angles are described by
Y and ¢, respectively:
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where m is the aircraft mass and g is the local
gravitational constant. Landing gear forces main-
ly consist of the vertical (normal) forces and the
horizontal (braking) forces. The components can
be related to each other by using the coefficient
of friction u for the longitudinal and lateral direc-
tions x and y:

B JTN Y
Fr=mg | uky |. (10)
_FN

The sum of forces can therefore be described
as:

Y F=F&+FS+F5+F{. (11)

Equation 7 can now be numerically integrated
once the forces acting on the aircraft are known
to obtain the distance required to achieve a speed
of zero, 1.e. the aircraft reaches full stop after lan-
ding. Using the touchdown distances, the runway
length, and the deceleration distances, we get va-
lues for the stop margin, as seen in figure 3. The
input parameters to our simulation model (e.g.
headwind, landing weight) are distributed accor-
ding to the flight operation of the airline that is
being considered.

3.2 Operational aspects

The model that was built takes technical failu-
res into account. For example, if the brake sy-
stem is affected, the forces that can be applied by
the brakes are adjusted accordingly. For this case,
we make dedicated subset simulations runs since
the lack of braking greatly increases the required
landing distance and therefore also increases the
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probability of an overrun. The failure probabili-
ties of each aircraft system can be obtained from
maintenance data, for example. In order to com-
pute the probability for an overrun in case of a sy-
stem failure, e.g. a loss of braking capability, we
use conditional probabilities. To obtain the total
overrun probability, all relevant failure cases ha-
ve to be considered. Their results are aggregated
in the end.

p (overrun)
= p (overrun|no fail) - p (no fail)
+ p (overrun|brake fail) - p (brake fail)
+ p (overrun|spoiler fail) - p (spoiler fail)
+ p (overrun|reverse fail) - p (reverse fail)
+ ...
= p (overrun|no fail) - p (no fail) (12)
+ ) p(overrunli fail) - p (i fail)
-\ ~ N S

from subset simulation  from maintenance

By aggregating all failure modes and their
respective overrun probabilities, we are able to
compute the total overrun probability for a speci-
fic aircraft type at a given airport and runway.

An important part of any approach prepara-
tion is the determination of the required landing
distance by pilots using manuals provided by the
aircraft manufacturer and operator. The relevant
parameters of the calculation are, for example,
weather parameters such as wind and tempera-
ture as well as the aircraft weight, but also the
status of aircraft systems. If malfunctions occur,
particularly for systems that are relevant for the
landing performance such as brakes, spoilers or
reversers, the required landing distance can in-
crease significantly. The failure of high-lift de-
vices can result in significantly higher approach
speeds and subsequently longer landing distan-
ces as well. We determine this landing distance
required from the operating manual of the speci-
fic aircraft for each sample that is generated. If
the required distance exceeds the landing distan-
ce that is available at the particular runway, we
assume that the flight crew would abort the ap-
proach and select an alternate longer runway for
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landing. Thus, we reject this particular sample in
this case.

4 Use of operational flight data

The data on which our calculations are based are
recorded by the on-board Quick Access Recor-
der. Flight data recording and Flight Data Mo-
nitoring is required for aircraft operators by law
in many countries, including the member states
of the European Union [5, OPS 1.037]. The data
is stored for the entire length of every flight and
regularly transferred from the recorder to the da-
tabase of the airline during routine maintenance
checks. The number of recorded parameters va-
ry between different types of aircraft. In a mo-
dern fly-by-wire aircraft in which many parame-
ters are already available on the data bus such as
the Airbus A340, the number of recorded para-
meters can be as high as 1600. The recently de-
veloped aircraft types are capable to record even
more parameters, being more than 3000 on the
Airbus A380. They do not only include aircraft
states, e.g. speed, altitude or heading, but also in-
put commands such as stick and rudder deflec-
tion, thrust lever position or aircraft system pa-
rameters including hydraulic and brake system
pressure. Environmental parameters are recorded
as well, such as wind speed and direction or air
density and temperature. The sampling rates of
the parameters vary significantly, depending on
the specific parameter, but typically range bet-
ween 0.25 Hz and 8 Hz. Parameters with high
dynamics are recorded more frequently than tho-
se with little changes over time.

From the recorded flight data, we are able to
extract the information required for our approach.
For example, if we want to obtain the distribution
of the aircraft weight at landing, we have to ex-
tract the landing weight from the timeseries data
of every flight and collocate them into one histro-
gram. As probability distributions are required as
inputs for our model, we have to fit distributions
to the obtained data, as seen in figure 4. It is par-
ticular noteworthy that non-Gaussian distributi-
ons have to be considered when making the fit.
Since we are especially interested in the tail re-
gions, e.g. particular high tailwinds or particular
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Fig. 4 Fitting of distributions to measured flight
data [1]

Table 1 Subset simulation parameters

Type | Gaussian
G, 1.2
N 10*
Di 0.2

high landing weights, we have to make sure that
those regions are well described by the fitted dis-
tributions, which usually cannot be achieved with
Gaussian distributions, as shown in figure 4

5 Results

As the computation example, we chose a generic
runway with a particular high elevation and an
available runway length of 2700 meters. The air-
craft considered in this case shall be the Airbus
A321 with a maximum landing weight (MLW)
of 75 tons, as certified. The chosen parameters
for the subset simulation can be found in table 1.
When looking at the computing time, we can see
that 9 subsets are required for the computation,
resulting in a total of 9 - 107 model evaluations
for each subset simulation while a direct Monte-
Carlo simulation has to perform at least 10° eva-
luations, and even significantly more if a certain
level of confidence shall be achieved.

A total of 30 subset simulations runs for the
identical case were performed to determine the
confidence of the estimates. The results can be
found in table 2, the 99% confidence intervall is
also computed in equation 13 [6, page 391]. In
this case, the actual variance is unknown. There-
fore, we assume that the variance of the obtained



Table 2 Subset simulation results — MLW of 75 t
Mean value 2.1le-06

Std. deviation | 7.5e-07
99 % confidence intervall

1.8e-06 2.5e-06
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Fig. 5 Headwind versus stop margin — MLW of 75 t

samples S is approximating the actual variance
o2 while X is the mean value of the obtained esti-
mated. n is the number of estimates and z; ¢ 1s
the (1 —a/2) quantile of a standard normal dis-
tribution. In our specific case, o = 0.99 is used.

X - Zl—u/z%»x +Zl—a/z%
When roughly estimating the worldwide run-
way excursion probability per flight using the
numbers of sectors flown by eastern and western-
built aircraft [1, page 21] and the number of run-
way excursions [1, page 30], one would obtain
a probability of 6- 1077 for the entire industry
in 2013. The mean value we obtained from our
approach, accounting for the specific operational
aspects of a single airline for this particular air-
port, appears to be realistic. The standard devia-
tion is about one third of the obtained mean. The
99% confidence interval has a span of 71077,
which is also significantly below the mean value.
The results can therefore be considered reliable.
Figure 5 shows the samples of the contribu-
ting factor headwind plotted against the stop mar-
gin for each subset we have obtained. With each
subset, the outputs of the runway overrun model

(13)
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Fig. 6 Landing weight versus stop margin —
MLW of 75 t
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move closer to the failure domain, which is ex-
pressed by the area with stop margins less than
zero. One is able to see nicely the movement of
the samples not only to smaller stop margins, but
also towards smaller headwinds, i.e. tailwind. We
can see that nearly all samples that have negative
stop margins, i.e. that result in overruns, have tail-
wind components as well. The wind can therefore
be considered as a significant contributing factor.
When looking at the landing weight of the air-
craft one would expect that higher weights would
lead to longer landing distances. This expectati-
on is met when looking at figure 6. The landing
weights are moving towards higher values, howe-
ver, due to a MLW of 75 tons, the samples cannot
exceed this particular limit.

Another benefit of our approach is the possi-
bility to determine the impact of changes within
the flight operation and to quatify the effect be-
fore those changes are implemented. For exam-
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Table 3 Subset simulation results — MLW of 73 t
Mean value 1.4e-06

Std. deviation | 5.8e-07
99 % confidence intervall
1.2e-06 1.7e-06

ple, one measure to decrease the probability of
an overrun could be the limitation of a maximum
allowable tailwind at landing. Assuming the li-
mits are adhered to by the flight crew, the part of
the input distributions for headwind is cut off in
which the wind values are stronger than the given
allowable tailwind. By propagating the newly ob-
tained distributions through our model, we recei-
ve a new value for the probability of an overrun
provided that the new distributions correctly des-
cribe the changes in flight operation. The concept
is shown in figure 7.

In the following, we would like to show the
capabilities of our approach when implementing
changes in the operation. If the overrun risk is
classified as not acceptable by the airline, sever-
al measures are possible to reduce the probabili-
ty, with each of them having both pros and cons.
Limiting the maximum allowed tailwind is not
always viable since the direction of operation is
mainly decided by the airport operator based on
a large number of criteria. Another possible me-
thod could be the reduction of the MLW with
penalties in payload, possibly resulting in financi-
al disadvantages for the airline. In order to decide
which measure would be the most effective one,
we have to determine the impact of those chan-
ges. We want to demonstrated this by reducing
the MLW by 2 tons to 73 tons. For this purpo-
se, the landing weight distribution is truncated at
73 tons while the distributions of all other contri-
buting factors remain unchanged. We again pro-
pagate the distributions through our model using
subset simulation. The results are shown in table
3.

The mean value for the probability of an over-
run is reduced by 7- 10~ compared to the sce-
nario with a MLW of 75 tons. The standard de-
viation is a little higher than one third of the
mean. The 99% confidence interval has a range of
5-10~7. We can also see that the confidence inter-
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Fig. 8 Landing weight versus Stop Margin —
MLW of 73 t

vals of both scenarios do not overlap each other,
which means that the reduction of the MLW by 2
tons have a significant impact on the overrun pro-
bability. Using those figures, an airline can decide
whether a weight penalty with potential financial
impact should be accepted to reduce the probabi-
lity of an overrun in exchange.

6 Summary and outlook

The subset simulation is a powerful tool to quan-
tify small failure probabilities. Compared to a di-
rect Monte-Carlo approach, the computing time
can be significantly reduced. Our application of
the subset simulation is the determination of run-
way overrun probabilities. For this purpose, we
developed a physical model that is able to descri-
be the motion of the aircraft during landing using
a set of nonlinear differential equations. The mo-
del also takes into account specific operational
aspects of each airline. The contributing factors
of the incident are described as probability distri-
butions that are obtained by fitting distributions
to flight operational data which is recorded by the
on-board quick access recorder.

The results we obtained are reliable since the
standard deviations are well below their corre-
sponding mean values with narrow confidence
intervals. The computations are performed using
two examples of the same aircraft landing at the
same runway with, however, different maximum
landing weights being either 73 or 75 tons. The



purpose is to demonstrate the ability of our me-
thod to quantify the impact of changes in flight
operation. A significant difference in the results
can be shown if the maximum landing weight is
reduces by 2 tons.

Our next steps will include modifications of
the sampling method in order to further improve
the reliability of the subset simulation algorithm.
An approach termed as conditional sampling is
already developed, described and applied in [7].
This could be one possibility to further decrease
the spread of the results.

Another aspect that is of high significance
for airlines are the sensitivities of each contribu-
ting factor. This will also be part of our future
work. Knowing the sensitivities means knowing
the magnitude of impact a change in the contri-
buting factor can cause on the final incident pro-
bability. This knowledge will be of great benefit
for aircraft operators when measures are to be im-
plemented in order to improve safety. The effects
can be obtained in advance.

Finally, other types of incidents can be inve-
stigated as well using our methods. The sole work
that has to be performed is the buildup of a tai-
lored incident model for each case. Not all inci-
dent can be considered, but only those that are
physically motivated, which is the majority. Mid-
air collisions, for example, cannot be examined
using our approach. Incident types with whom
we plan to proceed include other incidents du-
ring landing such as general runway excursions,
including veer-offs as well as tailstrikes, wing-
tip strikes and hard landings but also controlled
flight into terrain (CFIT) and exceedances of the
Mach maximum operating (MMO).
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