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Abstract

During the early stages of aircraft design, limited
information is available to conduct decisions that
base on the quality of aircraft configurations. In the
present study, information on physical and statistical
models is supplemented by the uncertainty that is
inherent to the applied analysis modules and
propagated through the complete design workflow.
Using this method, the possibility arises to make a
statement on the level of certainty with which one
concept is preferred above another.

1 Introduction

When analyzing the potential of novel aircraft
configurations on a conceptual to preliminary design
level, the often limited amount of time available to
investigate physical properties of design candidates
dictates both the low fidelity level and limited
amount of analyses that can be conducted. The
increase in computational power over the last
decades has resulted in an increase in analysis
capabilities to assess aircraft concepts. However,
analyses based on using physical models of higher-
fidelity still find their application only in the detailed
design phases.

To create a proper basis for making design decisions
in early design phases given the limited available
information on the aircraft physics, it is necessary to
supplement that information by the uncertainty of
the implemented analyses. The DLR internal project
“Future = Enhanced  Aircraft  Configurations
(FrEACs)” aims to extend the early design phase
with uncertainty information.

The present study investigates the analysis of aircraft
configurations under consideration of propagated
uncertainties in early design stages. Aside from the
uncertainties inherent to the individual analysis

model, the study investigates the sensitivities of the
physical properties of the aircraft, and the
propagation of uncertainties between individual
modules in analysis workflows is necessary to
quantify the overall uncertainty of these properties.
The base for making well-grounded design decisions
in conceptual and preliminary design stages is
thereby improved.

The present study shows first results of the
implemented uncertainty modules within the
analyses workflows. In a following paper, the
capabilities which were built up will be applied to
multiple aircraft configurations and larger DOEs.

2 Aircraft design system

Today's conceptual and preliminary aircraft design is
usually formulated in Multi-Disciplinary Analysis
and Optimization (MDAO) studies. In recent
developments, these studies are often conducted in
distributed and collaborative design environments
rather than in monolithic codes. The design
environments offer an increased flexibility to choose
the analysis method appropriate to the design task at
hand. Furthermore, the design environments ease the
introduction of further disciplinary expertise as the
analysis modules are loosely coupled. Hence,
disciplinary tools can be included without major
implementation overhead.

As shown in Figure 1, a distributed, collaborative

design environment consists of three components:

Disciplinary analysis models, from low-fidelity
empirical models to high-fidelity full-scale
numerical models, form the core of the design
environment. These disciplinary models are
usually focused on a specific discipline and often
represent either a single or a group of
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components of an overall aircraft model, e.g.:
fuselage structures or wing aerodynamics.

A common data exchange language that is based
on a central data model approach. This enables
the communication between both analysis models
and experts. The applied central model consists
of a schema definition and the explicit model
data itself. The model elements, its attributes and
the connecting data structure are defined in a
schema definition which is generally applicable
to a large variety of aircraft models. The explicit
model content is stored in a separate xml data set
which conforms to the schema definition.
Whereas the data set is mainly used for the
exchange of information, the schema definition is
utilized for documentation, model validation and
model generation.

An integration framework that consists of an
editor and visual environment for the creation,
modification and control of analysis tool chains.
This graphical user interface provides a kind of
workspace and enables process designers to
interact with analysis modules. This encompasses
coupling modules as well as interactions with
central model representations. Furthermore, a
major part of the framework provides the core
logic organizing data transfer between remote
components, management of intermediate and
resulting data sets as well as extraction and
merging of partial data with the central data
model. The  framework also  supports
convergence control and optimization, in order to
execute (partly) automated design studies.
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Figure 1: Three components of distributed, collaborative
design environment

Several design environments that bring together
these components exist in literature. Among others,
CEASIOM [1] and MDOPT [2] are indicated as
outstanding examples. The present study is based on
the aircraft design system currently under developed
at DLR. Therefore, the central model approach uses
the Common Parametric Aircraft Configuration
Schema (CPACS) [3] as data exchange format. The
Remote Component Environment (RCE) [4] is the
integration framework of choice. The disciplinary
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analysis models applied are the empirics-based
conceptual design tool VAMPzero [5] and vortex-
lattice aerodynamic analysis module Tornado [6].
Section 3 further elaborates on the characteristics of
these models.

The introduction of uncertainties into the aircraft
design system affects most of its components. First
of all, the analysis models with inherent
uncertainties need to explicitly provide uncertainty
information in their output. Hence, the central model
needs to provide means to describe and store this
uncertainty information in a structured manner. The
integration framework needs to be extended to
propagate information on uncertainties in a design
process consisting of several analysis models. Given
the fact, that significant computational cost may
arise from this uncertainty propagation, it may be
beneficial to extend the design environment with
surrogate modeling techniques.

3 Quantification of uncertainties in the analysis
modules

Complex natural processes can be approximated
using explicit rules in model representations and
applied to describe future events. By observing the
real processes, these conceptual models can be
generated which mostly reflect a simplification of
events occurring in reality. Before simulating future
events using the conceptual models, a computer
model representation is created and again compared
to or validated with reality. The approximations
contained in the computer models typically result
from incomplete knowledge, errors in modeling or
by deliberate reduction of complexity. As a
consequence, the representation power of the models
is subject to uncertainties.

Types of uncertainties

In literature there are different ways to define
uncertainty. In the present study, aleatoric and
epistemic uncertainties are discerned. Uncertainties
due to random numbers or chaotic processes are
referred as aleatory. Designers have by definition no
significant influence on this kind of uncertainties;
these can therefore not be avoided or reduced.
Uncertainties caused by the ignorance of matter are
referred as epistemic. By additional information,
these uncertainties can be reduced.
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Sources of uncertainty

There are various sources of uncertainty; in the
literature a distinction is made between the
following sources of uncertainty:

Uncertainties through physical model assumptions:
A physical model bases on data and logic derived
from observation of real processes. By neglecting
physical effects, e.g., not incorporating transonic
effects in an aerodynamic simulation, uncertainties
are introduced in the model. Model simplification
might be required due to the complex nature of the
physics to be represented, e.g., weather, not knowing
or understanding reality well enough or since simple
model  representations  often  require  less
computational power and represent reality
sufficiently enough. The description of uncertainties
can be defined either within the model or
subsequently be imprint on the output parameters of
a model.

Uncertainties occurring on the input parameters of
the design study: Input parameters or assumed
constants within analysis models can be fraught with
uncertainty. Input parameters can be subject to a
dependent uncertainty, e.g., function, or constant. In
the course of the present study a distinction is made
between time-dependent and time-independent input
parameters. For time-dependent parameters, the
uncertainty is a function of the prediction time point,
e.g.: the oil price in 2030 or 2050. These parameters
and their corresponding uncertainty band can be
derived from future scenarios. Time independent
parameters are those that do not change over time,
such as slightly differing material properties of
certain composite materials due to uncertainties in
the production process.

Uncertainties due to statistics: Statistics usually
include a finite number of samples from a data
population. Since the number of samples is limited,
the population is not covered completely and thereby
data uncertainty occurs. From statistics only the
correlations follow only from the observed data
points, an explicit description of the physics behind
the model is not present. Consequently, the
parameter space is limited to the range in which the
monitoring took place. Outside this range, the model
should not be evaluated, and furthermore, the
uncertainty can not be quantified.

Other sources of uncertainty are: application errors,
higher-order uncertainties (uncertainty in the
uncertainty modelling), numerical representations

and discretization and convergence assumptions
within analysis modules and the overall design
workflow. The present study focuses on the
uncertainties that arise from physical modeling,
uncertain input parameters and statistics. It is our
goal to include further sources of uncertainty in
future research.

Regardless of the source of uncertainties, the
information on the uncertainty may either be
integrated intrusively or non-intrusively. By
integrating uncertainties within the model, an
intrusive approach is chosen. If the information is
subsequently imprinted to the models analysis
results then a non-intrusive approach is used.

Uncertainty analysis using probability distribution
functions

Uncertainties can be described differently depending
on the source causing the uncertainty. In literature
numerous theories and methods are described, see
for example [7], [8], [9], [10].

In the present study, uncertainties are described by
probability theory and inductive statistics. In
inductive statistics, the properties of a population are
derived from the data of a sample. Through the
application of probability theory, uncertainties can
be handled using probability distribution functions.
Expressed as a probability function or random
function, the specific parameters of the uncertainty
function are set dependent on the source causing the
uncertainty.

Quantification of uncertainties

In order to propagate uncertainties across multiple
analysis tools, at first uncertainties have to be
determined at the individual tool level. This
uncertainty determination is described below for two
of the disciplinary analysis modules within the low-
fidelity physics based aerospace toolkit [11].

Uncertainty quantification of module 1: VAMPzero
Based on top level aircraft requirements, an initial
configuration is generated in the design
environment, which is improved by further more
detailed analyses.

As initial model generator for aircraft
configurations, the conceptual design tool
VAMPzero is used. VAMPzero is developed within
DLR for CPACS based applications. The calculation
of the aircrafts physical parameters is based on
handbook equations, which itself are based on
statistical aircraft data. The basis of these equations
is data of existing aircraft configurations, due to



which the equations have limited applicability. As
an extension of VAMPzero, the consideration of
uncertainties originating from the involved statistical
formulas is introduced. This VAMPzero version
therefore features intrusive uncertainty
considerations. Each equation that involves
uncertainty information incorporates a standard
deviation which originates from the underlying
statistics (see Table 1). The probability distribution
function is assumed to be normally distributed. The
calculated parameter values will be extended by
information from a random distribution function,
taking the corresponding standard deviation into
account. This feature can be turned on or off, such
that the analysis can be performed either
deterministically or stochastically.
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Table 1: Standard deviation of VAMPzero statistical
formulas

Uncertainty quantification of module 2: Tornado

The analysis code Tornado calculates aerodynamic
forces and moments of an aircraft configuration in
several flight conditions. Tornado is a vortex-lattice
module which applies thin airfoil theory, small angle
approximations and assumes incompressible,
inviscid, irrotational flow conditions. The flow
velocity and force distribution is calculated using a
lattice of horseshoe vortices that represent the actual
geometrical model. The method offers high
flexibility in the calculation of the flow around thin
geometries and requires a limited amount of lifting
surface geometrical data to be able to generate
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physical model representations. Therefore it is
suitable for applications in preliminary aircraft
design, where the amount and detail of model
information is limited. The uncertainties for Tornado
have been calculated from the database provided in
[12]. In the database, the results of several
aerodynamic analysis modules were compared to
data from wind tunnel tests for six different aircraft
configurations. The quantified errors and standard
deviation of error of the lift (CL) and drag
coefficient (CD) are listed in Table 2. The error is
used to calibrate the parameters and the standard
deviation used for uncertainty implementation.

Mean error o of error
0, 0,
Geometry [%] (%]
CL CD CL CD
B747-100 ; 4.6 4.5
B777-300 el 6 6.7
TF- 8A o 6 11

Lockheed
C-69

Boeing - ot | Fom——
Strato- - S — 11 2
cruiser — —

Command 8 .
er 680 ) i 4 14
Super r ’

Table 2: Quantified error and error deviation of transport
aircraft in Tornado

4 Propagation of uncertainties in the design
process

Due to the dependence of input parameters of one
module on the output parameters of a predecessing
module, uncertainties are propagated within analysis
workflows. The way in which uncertainties are

4
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propagated depends on the analysis method that
underlies the specific module (the sensitivity of a
modules’ output parameter is to its input
parameters). Determining the correlation of input
and output parameters proves to be a reasonable
method to provide information on how a parameter
and its uncertainty behave and influences other
parameters. The propagation behavior of a variable
can be shown by varying parameter values (within a
fixed range), using Monte-Carlo simulations. When
using very complex and time-consuming models, it
is attractive to use surrogate modeling, e.g., response
surfaces, to reduce overall analysis time. After the
overall analysis is completed, the sum of all
uncertainties of each individual model provides the
overall system uncertainty (on overall output
parameters).

Description of the uncertainty component

For the analysis of propagated uncertainties in MDO
systems, an uncertainty analysis component is
developed in the integration framework RCE. This
component allows the inclusion of uncertainties and
provides a GUI to analyze, control, and observe its
propagation behavior. The component can handle
both stochastic and deterministic models as well as
intrusive and non-intrusive uncertainties. The
uncertainties can be analyzed using different
approaches, in order to adjust the balance of time
and quality of the performed analysis. The
uncertainty component itself consists of four parts:
the processing of input parameters, sampling,
storage of results, and the evaluation of results to
propagate these among subsequent analysis
modules. The derived uncertainty data is exchanged
as extra information in addition to the aircraft
geometrical parameters and analysis results, using
the CPACS data exchange format.

The component can be flexibly integrated into any
tool chain, provided the applied modules include
uncertainty information. It can be applied to control
inputs and outputs of individual system modules,
groups of modules and of the overall design system.
In Figure 2, this process is shown for a single
module. Here, a CPACS data set is loaded and
thereafter controlled by the uncertainty component.
A helper component is used after the analysis
module and controls whether the uncertainty
component is finished processing or not. After
completion of the uncertainty sampling, the results
are passed to a following analysis module. This
analysis structure can be used multiple times in
subsequent analyses, such that concatenation of

uncertainty information, and thereby the propagation
of this information is realized.
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Figure 2: Integration of the uncertainty module

Application of the uncertainty propagation process
within the analysis workflow

Figure 3 shows the workflow for aircraft analysis,
including uncertainty propagation components in the
non-iterative part of the simulation. For the current
simulation, the uncertainty module is not included in
the iterative part of the simulation, since this would
drastically increase required computational effort.
The analysis modules are repeatedly called to
investigate the sensitivities of output parameters to
the variable input parameters under consideration.
Thereby, the corresponding uncertainty band on its
output parameters is determined.

The uncertainty component is integrated twice in the
workflow. The first component investigates the
uncertainties of VAMPzero and the effect on the
subsequent Tornado analyses. The second
uncertainty component determines the effects of the
uncertainties on the subsequent mission simulation
module FSMS. The mission simulation mainly bases
on mass parameters generated by VAMPzero and
aerodynamic coefficients determined by multiple
Tornado runs (in dependence on the angle of attack,
Mach number and Reynolds number). Thereby, the
uncertainties that occur in the input of FSMS are a
result of individual uncertainties associated with
geometry, mass items and aerodynamics.

Dependency of input to output parameters due to
correlation

The information which input parameter has which
influence to output parameters is important for the
traceability of the results. Input and output
parameters are in this case almost random numbers.
Using correlation, the occurring dependencies can be
detected. With this information, it becomes clear
which parameters have major (linear) effects on the
overall result and thereby drive the system
uncertainty value.



Statistical dependency of input parameters due to
correlation

Normally, when using multi-dimensional input
parameters which contain random numbers, the
statistical dependency among themselves should not
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random numbers are generated, which are
stochastically dependent [13][14]. These numbers
should thereafter be used as input variables for
subsequent analyses. This will however be included
in a future extension of the uncertainty component

be neglected. By determining the correlation and is therefore not included in the current
between the input parameters, the occurring investigation.
dependencies can be detected. By using Cholesky
decompensation and a correlation matrix, new
¥
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Figure 3: Analysis workflow in RCE with integrated uncertainty module
5 Example result of design variable variation Parameter Range
under propagated uncertainties Wing Area 340 — 380 m?
Aspect Ratio 9-15

As an example demonstration, a reference
configuration is analyzed with the aid of the
workflow shown in Figure 3. A parameter study is
performed that varies both the wing area and the
wing aspect ratio. The design of experiments is
listed in Table 3. Selected parameters of the
reference configuration — named D250 — are listed in
Table 4. The top-level aircraft requirements are
close to those of the long range aircraft A330-200.

Description of the analysis

Within the design space, a full-factorial sampling
with 5 steps for each parameter is chosen. Both the
individual and coupled effect of the parameter
variations is investigated. Each parameter is
modified linearly within the defined range. For each

Table 3: Parameters and ranges of DOE

sampling point within the design space, 20 samples
are incorporated to determine the uncertainty of the
system outcome. The overall mission fuel at the
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design range is used as accumulated uncertainty
parameter, 1i.e., all propagated uncertainty
information occurs in the quantification of the
overall requirements on mission fuel.

Parameter Value
Design range 7860 km
Mach number 0.82
Passengers 253

Fuel burn @ design range 57 tons
OEM 120.5 tons
TOM 233 tons
Wing loading 642 kg/m?
Wing area 363 m?
Aspect ratio 10.5

Table 4: Table of Reference Aircraft D250

Global result of the parameter study, including
uncertainties

The effect of wing area and aspect ratio on mission
fuel including uncertainties is shown in Figure 4.
Alongside the resulting fuel mass estimations of the
20 samples per DOE point, a regression method is
applied to determine the overall calculation result
according to the 5x5x20 = 500 analysis results. The
result of this regression is shown in the
corresponding response surface (colored blue in the
figure), which closely resembles the separately
determined deterministic results of the DOE analysis
(the bold black dots in the figure). The reference
design is represented by a bold red dot in the figure.

R2 = 0.60871 R2adj=060475 RMSE =774.4272

Mission Fuel [kg]
(] w o o
o

Wing Area
Aspect Ratio

Figure 4: Mission fuel vs. aspect ratio and wing area

Figure 5 and Figure 6 show the analysis results for
2D cross-sections along the response surface
centered on the reference point (aspect ratio = 10.5,
wing area = 360 m?). The blue line indicates the
result of the obtained regression model, whereas the

colored band around the blue line indicates the 95%
prediction interval of the regression. The latter
implies: if the parameters are independent, normally
distributed and have a constant variance, than there
is a 95% probability that all future results are inside
the interval. This is thereby related to the regression
model, and indicates the possible error due to
building the regression model. The black bars show
the standard deviation of the random number
simulations, i.e., the propagated uncertainty of the
analysis modules itself; for one standard deviation of
the mean (i.e.: 68.3% of the calculated fuel masses
lie within this confidence interval). It can be seen
that this uncertainty increases when deviating more
from the reference result point. At the boundaries of
the design range, the calculation uncertainty is the
highest.
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Figure 5: Mission fuel versus wing area (AR = 10)
including uncertainty band of the regression model
(colored blue) and standard deviation of the simulation
results
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Figure 6: Mission fuel versus wing area (wing area = 360
m?) including uncertainty band of the regression model
(colored blue) and standard deviation of the simulation
results



Single-point result of the parameter study, including
uncertainties

Observing the analysis results for a single point in
the DOE provides a more clear view on the
uncertainty distribution. As example we again use
the mission fuel at the reference design point (aspect
ratio = 10.5, wing area = 360 m?). From the
performed DOE with 20 uncertainty determination
samples, a mean value of 56.4 tons and standard
deviation of 0.31 tons is obtained.

For this single point, the number of uncertainty
calculation samples is increased to 500 in order to
attain more certain simulation result. By comparing
the result to a multitude of probability distribution
functions, it is concluded that for this single point
the results closely resemble that of a normal
distribution, since this distribution results in the
lowest root mean square error. As can be seen in
Figure 7, this normal distribution has a mean value
of 57 tons and a standard deviation of 1.1 tons,
differing from the earlier obtained DOE results. The
reason for this difference is found in the too low
number of samples in the DOE analysis.

It is concluded that for attaining confidence in the
uncertainty  analysis, uncertainty convergence
studies need to be performed. The goal of these
studies is to obtain the minimum number of samples
for which the end result in the form of a probability
distribution like the one in Figure 7 does not change
significantly anymore.

140

120 B

100 - B

20 B

53 5.4 55 5.6 57 5.8 5.9 4] 6.1

Mission Fuel [kg]

Figure 7: Distribution of the mission fuel at aspect
ratio = 10 and wing area = 360 m?, Mean value = 57 tons,
standard deviation = 1.1 tons, Number of samples = 500
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Replicability of Propagated Uncertainties

When aiming to reduce the uncertainties of the
analyses results, it is necessary to identify which
parameters drive the final result as well as the
certainty of the underlying analysis. The parameter
correlation coefficient can be used to identify the
amount of dependency of output to input parameters.

In the example calculation, the correlation
coefficients of the mission fuel on the (change in)
input parameter values are shown in Table 5. The
mission fuel correlates quite strongly with operating
empty mass (OEM-mass) and takeoff mass (TOM-
mass); implying a strong dependency on these input
parameters. The other parameters have a lower
correlation coefficient and are of lesser interest in
this case.

Input Parameter Correlation Coefficient
OEM-mass 0.99
TOM-mass 0.88
HTP-length -0.58
TOM-x -0.56
MLM-mass 0.54
ZFM-mass 0.46
VTP-length -0.20
Wing-translationz -0.19
Engine z-z 0.18
HTP-sweepAngle -0.14
Engine x-x 0.14
Reference length -0.12
Wing Total Length 0.08
Wing-scaling-z 0.08
Wing-scaling-x 0.08
Wing-sweepAngle 0.08
VTP-sweepAngle 0.04
Reference Point-x -0.02

Table 5: Correlation of the selected input parameter with
mission fuel

In the simplified example, only the effects of
geometry and masses on the overall mission fuel
requirements are investigated. For more complete
analysis studies, many more parameters introducing
uncertainties in the analysis process have to be
observed. A reduction of overall uncertainty can be
obtained by using analysis modules of higher fidelity
and consequently larger computational requirements,
assuming that these provide results with higher
confidence.
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Interpretation of the results

If the implemented uncertainty calculations are
trusted (by ignoring the error of the too low number
of samples as indicated in the previous section),
mission fuel for the reference aircraft is in the best
case 55.9 tons and in the worst case 57.1 tons
(within two standard deviations, implying a
probability of 95.5%).

The decision to adjust the configuration by using
only the knowledge of mean values corresponding to
the deterministic analysis results can be an error. As
indicated in Figure 8, if the configuration is adjusted
by changing the wing aspect ratio (for constant wing
area), the standard deviation changes as well. When
the aspect ratio changes to 13.5, the mean value of
mission fuel will decrease to 56.1 tons. In this point
the best case of mission fuel is 55.1 tons and in
worse case 57.2 tons. The adjusted configuration
shows an improvement in mean value, however
within the confidence interval of two standard
deviations, also a deterioration of fuel mass is
possible. Comparing the best case of the reference
D250 with the worst case of the improved high-
aspect ratio D250 implies a deterioration of 2.3
percent in mission fuel.

x10

57}

/
@

Mission Fuel [kg]
o

5.55

105 1 115 12 125 13 135
Aspect Ratio
Figure 8: Optimizing the Mission fuel by changing the
aspect ratio with constant reference area

The current assessment aids in making decisions in
which geometry changes more effort should be
invested and with which level of confidence such a
statement can be made. Using the current
investigation, no elaborate design decision can be
made. This is mainly since only a single objective
function is used, without stringent requirements on
other influential factors such as takeoff field lengths.
Furthermore, the lack of knowledge of other

parameters driving the costs of redesigning a new
aircraft dictates more extensive analyses are required
before relevant design decisions are made. Finally,
all included analysis modules should provide
uncertainty  information for propagation to
subsequent modules, corresponding to its level of
fidelity.

6 Summary and Conclusion

This paper provides indicative results of the
implementation of uncertainty considerations within
aircraft design analyses. A  straightforward
parameter variation of a conventional aircraft
including specific uncertainties was shown and the
results were compared to a reference configuration.
With the assumption that the uncertainties are
sufficiently covered to support design decisions, the
inclusion of uncertainty data helps to make better
founded decisions on the applicability of aircraft
configurations to design requirements and missions.
Especially when applied to the analysis of aircraft
derivatives or even for unconventional aircraft
configurations, the consideration of uncertainties
becomes increasingly important.

The integration of uncertainty however cannot be
interpreted as the final solution to cover all possible
risks. Uncertainties underlie uncertainties of higher
order too. A quantification of all occurring
uncertainties seems to be near to impossible;
nevertheless a plausible derivation of these makes
sense and is useful for increasing the level of
confidence in analysis result interpretation.

The integration of more sources of uncertainty of
different disciplines covering major physical effects
is foreseen in future work. By performing
optimization including these uncertainties within the
target function, a robust optimisation framework will
be established. The occurring workflow will be
applied to less conventional aircraft, for which
uncertainty information becomes increasingly
important. A larger amount of geometrical design
parameters will be varied during full-scale DOE
studies, the uncertainty component automatically
selects the most relevant ones (based on high
sensitivity to the output function or due to large
uncertainty) for detailed calculations. For this a
more detailed analysis of the dependencies of
parameters during iterative calculations is required.
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