
 
 

1 

 

 

 

Abstract  

We examine a new robust nonlinear flight 

control technology that employs an array of 

synthetic-jet micro-actuators embedded in UAV 

wing design in order to completely eliminate 

moving parts (such as ailerons) thus greatly 

enhancing maneuverability required for small 

fixed-wing air vehicles operating, e.g., in tight 

urban environments. Estimated fast response 

times are critical in mitigating gust effects while 

greatly improving flight stability and control.  

The new controller design is particularly 

advantageous for high levels of uncertainty and 

nonlinearity present both in the unsteady flow-

path environment and in the embedded 

actuator’s response. The current work focuses 

on a benchmark case of flutter control of 2-

DOF elastically-mounted airfoil entering limit-

cycle oscillations (LCO) due to impinging 

upstream flow disturbance. Preliminary 

parametric studies conducted for various SJA 

excitation amplitudes and frequencies examine 

the thresholds of the actuator’s control 

authority to produce a desirable impact. 

 

1 Introduction  

We address the development of a novel robust 

flight control system employing a distributed 

array of zero-net-mass-flux synthetic-jet 

actuators (SJAs). Due to their small size, ease of 

operation, and low cost, such micro-actuators 

may represent promising tools for aircraft 

tracking control applications. Arrays consisting 

of several SJAs can be employed to achieve 

high maneuvering capabilities of an aircraft 

while possibly eliminating the need for 

mechanical control surfaces. The benefits of 

utilizing SJAs on aircraft as opposed to 

mechanical control surfaces also may include 

reduced cost and weight, minimal mechanical 

complexity, and low observability. 

Uncertainties inherent in the dynamics of 

the unsteady fluid-structure interactions [1-2] 

present significant challenges in the control 

design. Moreover, the input-output 

characteristics of each SJA are nonlinear and 

contain parametric uncertainties [3]. Adaptive 

and neural network-based techniques may 

produce effective means of compensating for 

actuator nonlinearities and uncertainty; 

however, such techniques require additional 

computational complexity over purely robust 

feedback designs. Hence, the minimalism of the 

controller design in this work is motivated by 

the desire to develop control methods that are 

suitable for small UAVs with limited onboard 

computational capability. In the current research 

study, the novel robust and above-mentioned 

control methods is examined and compared for 

their ability to compensate for parametric 

uncertainties in SJA dynamics and to achieve 

highly efficient suppression of limit-cycle 
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oscillations (LCOs) in the gust-induced flutter 

conditions and accurate trajectory tracking for 

small unmanned aircraft.  

As a benchmark problem to examine 

application of the proposed methodology, the 

current study particularly focuses on a fixed-

wing elastically-mounted low-speed airfoil 

operating in a gusty environment (Fig. 1). We 

thus consider robust control of the gust-induced 

LCO as the latter may significantly affect the 

aerodynamic properties of an aircraft and can be 

especially problematic for small UAVs.  

 
Fig. 1. Sharp-Edge Gust-Airfoil Interaction Model. 

 

The current proof-of-concept analysis 

employs a reduced-order model, with the 

representative set of structural parameters 

selected to provide a realistic model of 

elastically-mounted UAV wing section.  

2 Theoretical Formulation 

The equations describing the unsteady response 

of an elastically-mounted 2-DOF airfoil 

approximated as a flat plate can be expressed as 

(e.g., Refs. [4-6]),  

( )s s

Lift
M p C p F p p

Moment

 
    

   

where the coefficients 
2 2,  s sM C  denote 

the structural mass and damping matrices, 
2 2( )F p   is a nonlinear stiffness matrix, and 

  2p t   denotes the state vector. In Eqn. (1), 

 p t is explicitly defined as 
h

p


 
  
   

where    ,  h t t  denote the plunging [meters] 

and pitching [radians] displacements describing 

the LCO effects. Also in Eqn. (1), the structural 

linear mass matrix sM  is defined as 

s

m S
M

S I



 

 
  
   

where the parameters ,  S I   are the static 

moment and moment of inertia, respectively. 

The structural linear damping matrix is 

described as 

0
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h h
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where the parameters ,  h     are the 

damping logarithmic decrements for plunging 

and pitching, and m is the mass of the wing, 

or in this case, a flat plate. The nonlinear 

stiffness matrix utilized in this study is 

3

2

0
( )

0

hk
F p

k k 


 
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where 3,  k k 
 denote structural resistances to 

pitching (linear and nonlinear) and hk  is the 

structural resistance to plunging.  

In Eq. (1), the total lift and moment are 

explicitly defined as 

( )
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where 
2; vj vjL M      denote the equivalent 

control force and moment, respectively due to 

the virtual surface deflection generated by jth 

SJA, and ,  L M  are the aerodynamic lift and 

moment due to the 2-DOF motions. In Eq. (6), 
2 denotes the aerodynamic state vector that 

relates the moment and lift to the structural 

modes. Also in Eqn. (6), the aerodynamic and 

mode matrices 
2 2,  ,  ,  a a aM C K L
  are 

described as 

 
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where (0)  is the Wagner solution function at 0, 

and the parameters 1 1 2 2,   , ,a b a b  are the 

Wagner coefficients. The aerodynamic state 

variables are governed by 
C p K p S     

 
The aerodynamic state matrices in Eqn. (11), 

2 2,  ,  C K S  

 , are explicitly defined as 

 
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By substituting Eqn. (6) into Eqn. (1) the LCO 

dynamics can be expressed as 
Mp Cp Kp L B     

 

where  ,  s a aC C C K F p K     and s aM MM  . 

2.1 Robust Feedback-Loop Controller  

One of the objectives of the current study is to 

design the control signal  u t  to regulate the 

plunging and pitching dynamics (i.e. ( )h t , ( )t ) 

to zero. To facilitate the control design, the 

expression in Eqn. (15) is rewritten as 

( , , )Mp g h Bu                            (16) 

where ( , , )g h    is an unknown, unmeasurable 

auxiliary function. To quantify the control 

objective, a regulation error   2

1e t  and 

auxiliary tracking error variables     2

2 ,  e t r t   

are defined as 

 1 de p p                                       (17) 

 
2 1 1 1e e e                                      (18) 

 2 2 2r e e                                       (19) 

where 1 2,  0    are user-defined control 

gains, and the desired plunging and pitching 

states 0dp 
 for the plunging and pitching 

suppression objective. To facilitate the 

following analysis, Eqn. (19) is pre-multiplied 

by M and the time derivative is calculated as 

 2 2 2.Mr Me Me                           (20) 

After using Eqns. (16) - (19), the open-loop 

error dynamics is obtained as 

 2dMr N N Bu e                             (21) 

where the unknown, unmeasurable auxiliary 

functions  1 2, ,N e e r ,   2,d d dN p p  are defined 

as 

   
 

2

1 2 2 1 2 1 1

2 2 2 2

 ( , ) ,

    

dN g p g p r e e e

M r e e

     

 

    

  

   , d d dN p g p  
                        (23)                                            

The motivation for defining the auxiliary 

functions in Eqn. (22) and Eqn. (23) is based on 

the fact that the following inequalities can be 

developed: 

 

0 , ,
d d

d N d N
N z N N    ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖

       (24) 

where 0 ,  ,  
d d

N N
     are known bounding 

constants, and 
6( )z t   is defined as 

1 2 .
T

T T Tz e e r                            (25) 

Based on the open loop error dynamics in Eqn. 

(21), the control input is designed via 

 
1

2 2 2( ( ) ( ( ))su B k I r sgn e t

                   (26) 

where 
2 2,  sk   denote constant, positive 

definite, diagonal control gain matrices, and 2 2I 

denotes a 2 2 identity matrix. Note that the 

control input  u t does not depend on the 

unmeasurable acceleration term ( )r t , since Eqn. 

(26) can be directly integrated to show that ( )u t

requires measurements of 1( )e t  and 2 ( )e t only. To 

facilitate the following stability proof, the 

control gain matrix   in Eqn. (26) is selected to 

satisfy the sufficient condition 

 min

2

1
d d

N N
   


 

                               (27) 

where  min  denotes the minimum eigenvalue 

of the argument. After substituting Eqn. (26) 

into Eqn. (21), the closed-loop error dynamics 

are obtained as 

 

2 2( ) ( ( ))d s n nMr N N k I r sgn e t e        (28) 

 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(22) 
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Theorem 0.1. The controller given in Eqn. (26) 

ensures asymptotic regulation of pitching and 

plunging displacements in the sense that 

 1( ) 0 ase t t 
             (29) 

provided the control gain sk is selected 

sufficiently large, and   is selected according 

to the sufficient condition in Eqn. (27). 

 

Lemma 0.2. To facilitate the following proof, let 
7 be a domain containing, ( ) 0w t  , where 

7( )w t   is defined as 

 
( ) ( ) .

T
Tw t z P t 

                          (30) 

In Eqn. (30), the auxiliary function ( )P t   is 

the generalized solution to the differential 

equation 

  ( )P t L t 
                                    (31) 

 
       2 20 0 0 0T

dP e N e 
            (32) 

where the auxiliary function ( )L t   is defined 

as 

 
  2( ) ( )T

dL t r N t sgn e 
            (33) 

Provided the sufficient condition in Eqn. (27) is 

satisfied, the following inequality can be 

obtained: 

     2 2
0

( ) 0 0 0 .
t

T

dL d e N e                (34) 

Hence, equation Eqn. (34) can be used to 

conclude that ( ) 0P t  . 

 

Proof. (See Theorem 0.1) Let 
( ,  ) : [0, )V w t     be defined as the 

nonnegative function 

 
1 1 1

1 1 2 22 2 2
( , ) T T TV w t e e e e r Mr P  

        (35) 

where 1 2( ),  ( )e t e t , and ( )r t  are defined in Eqn. 

(17), Eqn. (18) and Eqn. (19), respectively; and 

the positive definite function ( )P t  is defined in 

Eqn. (31). The function  ,  V w t
satisfies the 

inequality 

 1 2( ) ( , ) ( )U w V w t U w                           (36) 

provided the sufficient condition introduced in 

Eqn. (27) is satisfied, where 1 2( ),  ( )U w U w   

denote the positive definite functions 

 
2 2

1 1 2 2,U w U w 
             (37) 

where
  1

1 min2
min , M 

and
  2 maxmax 1, M 

After taking the time derivative of Eqn. (35) and 

utilizing Eqn. (18), as 

     
2 2 21 1

1 1 2 22 2

2

0        

,

   s

V w t e e r

k r z r

 



     


 

where the bounds in Eqn. (24) were used, and 

the fact that eT1 
2 21 1

1 2 1 22 2

Te e e e 
(i.e., 

Young’s inequality) was utilized. After 

completing the squares in Eqn. (38), the upper 

bound on  ,  V w t
can be expressed as,    

 

     
2 2 21 1

1 1 2 22 2

2
2

20 0          
4

 

,

.
2

s

s s

V w t e e r

k r z z
k k

 

 

     

 
   

   

Since 0sk  , the upper bound in Eqn. (39) can 

be expressed as  

 
 

2
20

0,
4 s

V w t z
k



 

   
             (40) 

where  1 1
0 1 22 2

min , ,1   
. The following 

expression can be obtained from Eqn. (40): 

 ( ,  ) ( )V w t U w              (41) 

where
2

( )U w c z , for some positive constant 
c , is a continuous, positive semi-definite 

function. 

It follows directly from the Lyapunov analysis 

that      1 2,  ,  e t e t r t  . This implies that 

   1 2,  e t e t   from the definitions given in 

Eqn. (18) and Eqn. (19). Given that 

     1 2,  ,  e t e t r t  , it follows that  1e t 

from Eqn. (19). Thus, Eqn. (17) can be used to 

prove that      ,  ,  p t p t p t  . Since 

     ,  ,  p t p t p t  , Eqn. (16) can be used to 

prove that  u t  . Since  r t ,  u t  , Eqn. 

(26) can be used to show that  u t  . Given 

that        
.

1 2,  ,  ,  e t e t r t u t   , Eqn. (28) can be 

used along with Eqn. (24) to prove that  r t 

Since 1 2 ( ), ( ), ( ) e t e t r t  ,      1 2,  ,  e t e t r t  are 

uniformly continuous. Equation (25) can then be 

used to show that ( )z t is uniformly continuous. 

Given that      1 2,  ,  e t e t r t  , Eqn. (35) and 

(38) 

(39) 
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Eqn. (40) can be used to prove that 2( )z t  

Barbalat’s lemma [7] can now be invoked to 

prove that ( ) 0z t ‖ ‖  as t  . Hence, 1( ) 0e t   

as t   from Eqn. (25). Further, given that 

 ,  V w t  in Eqn. (35) is radially unbounded, 

convergence of 1( )e t is guaranteed regardless of 

initial conditions, which is a global result. 

 

 
3

1.1kg m    
  0.11 b m     0.024a   m 

  2.55 m kg   1   0.165a    2 0.0455a    
21.04 10S kg m

     1   0.335b    
2 0.300b    

32.51 10I kg m

     
9.3k N m    3 55k N m




  
450hk N m   

35.5 10h
   

21.8 10
   

Table 1. Parameters of aeroelastic model. 

 

3 Results  

In the current study, a representative set of the 

aeroelastic model’s parameters shown in Table 

1 is selected to provide a realistic model of the 

elastically-mounted wing section. The structural 

parameters were previously employed in Ref. 

[2] to match with experimental study in Ref. [8] 

which indicated a critical (flutter) speed of 

about 16 m/s in this test case. Fig. 2 from Ref. 

[2] shows comparison of the pitching LCO 

amplitudes obtained from the 2-DOF quasilinear 

aeroelastic model (Section 2) against numerical 

and experimental results of Ref. [8]. 

 

        

 
Fig. 2. Flat-plate pitching LCO amplitudes: current 

quasilinear aeroelastic model predictions (solid line) vs. 

numerical analysis (dashed line) and experiment 

(markers) of Ref. [8]. 

 

 

Fig. 3. Transition to uncontrolled pitching LCO for 

increasing (top to bottom) amplitudes of initial excitation. 

 

To demonstrate the performance of the robust 

control law developed in Section 2.1, several 

test cases have been performed. Fig. 3 first 

illustrates results of the reduced-order 

simulations for uncontrolled 2-DOF flat-plate 

pitching LCO obtained for the flow speed of 19 

m/s for two initial airfoil excitation amplitudes 

corresponding to  0l p  = (0.002, 0.005) and

 0h p  = (1, 2) (the state vector  p t is defined 

in Eqn. (2)). Cleary, the final LCO amplitudes 

are the same in both cases but the transition 

process is different. The plunging LCO 

characteristics have very similar features and 

thus are not shown. 

The required control authority of the 

actuators changes correspondingly depending 

on the initial excitation and the LCO amplitudes 

(i.e., the flow speed, as shown in Fig. 2). Test 

computations are performed for the following 

selection of the control gains in the robust 

controller model:  
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310 0

0 25
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 
  
                        

 

Fig. 4. Suppression of pitching LCO achieved by the 

feedback-loop robust control system with increasing (top 

to bottom) amplitudes of initial excitation. 

 

Successful suppression of the pitching LCO is 

demonstrated for the three initial excitation 

amplitudes in Fig. 4, whereas the corresponding 

time histories of the aerodynamic lift and 

moment produced by the actuator governed by 

the robust controller are shown in Figs. 5-6. As 

expected, both the time required to suppress 

LCO oscillations and the amplitudes of the 

forces and moments to be delivered by the 

actuator operating in the feedback-loop robust 

control system increase with higher initial 

excitation amplitudes. Similarly, the control 

authority requirements become more demanding 

at higher supercritical flight speeds, and 

generally new optimized sets of control gains 

should be determined.  

 

 

Fig. 5. Actuator’s control authority requirements for 

aerodynamic lift with increasing (top to bottom) 

amplitudes of initial excitation. 

 

4 Conclusions  

The current work employed a reduced-order 

model to evaluate possible use of the synthetic-

jet actuators as part of UAV robust, nonlinear 

feedback-loop flight control technology. A 

benchmark case of the robust control of 2-DOF 

airfoil gust-induced limit-cycle oscillations was 

considered. A rigorous mathematical analysis of 

the controller performance was performed 

addressing parametric uncertainty and 

nonlinearities inherent both in the upstream 

flow conditions and SJA dynamics. The 

proposed controller design is easily and 

inexpensively implementable, requiring no 

observers, function approximators, or adaptive 

update laws which would be required in 

alternative methods. Minimal knowledge of the 

structure of the SJA dynamic model is 

exploited, with matrix decomposition technique 

utilized along with innovative algebraic 

(42) 
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manipulation in the control development to 

compensate for any dynamic uncertainties. 

Preliminary results of the low-fidelity modeling 

of LCO robust control were demonstrated to 

explore the effect of the upstream disturbance 

amplitude on the actuator’s required control 

authority, with results of the high-fidelity 

studies to appear in the subsequent work. 

 

 

Fig. 6. Actuator’s control authority requirements for 

aerodynamic moment with increasing (top to bottom) 

amplitudes of initial excitation. 
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