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Abstract

We examine a new robust nonlinear flight
control technology that employs an array of
synthetic-jet micro-actuators embedded in UAV
wing design in order to completely eliminate
moving parts (such as ailerons) thus greatly
enhancing maneuverability required for small
fixed-wing air vehicles operating, e.g., in tight
urban environments. Estimated fast response
times are critical in mitigating gust effects while
greatly improving flight stability and control.
The new controller design is particularly
advantageous for high levels of uncertainty and
nonlinearity present both in the unsteady flow-
path environment and in the embedded
actuator’s response. The current work focuses
on a benchmark case of flutter control of 2-
DOF elastically-mounted airfoil entering limit-
cycle oscillations (LCO) due to impinging
upstream  flow disturbance. Preliminary
parametric studies conducted for various SJA
excitation amplitudes and frequencies examine
the thresholds of the actuator’s control
authority to produce a desirable impact.

1 Introduction

We address the development of a novel robust
flight control system employing a distributed
array of  zero-net-mass-flux  synthetic-jet
actuators (SJAs). Due to their small size, ease of
operation, and low cost, such micro-actuators

may represent promising tools for aircraft
tracking control applications. Arrays consisting
of several SJAs can be employed to achieve
high maneuvering capabilities of an aircraft
while possibly eliminating the need for
mechanical control surfaces. The benefits of
utilizing SJAs on aircraft as opposed to
mechanical control surfaces also may include
reduced cost and weight, minimal mechanical
complexity, and low observability.

Uncertainties inherent in the dynamics of
the unsteady fluid-structure interactions [1-2]
present significant challenges in the control
design. Moreover, the input-output
characteristics of each SJA are nonlinear and
contain parametric uncertainties [3]. Adaptive
and neural network-based techniques may
produce effective means of compensating for
actuator  nonlinearities and  uncertainty;
however, such techniques require additional
computational complexity over purely robust
feedback designs. Hence, the minimalism of the
controller design in this work is motivated by
the desire to develop control methods that are
suitable for small UAVs with limited onboard
computational capability. In the current research
study, the novel robust and above-mentioned
control methods is examined and compared for
their ability to compensate for parametric
uncertainties in SJA dynamics and to achieve
highly efficient suppression of limit-cycle



oscillations (LCOs) in the gust-induced flutter
conditions and accurate trajectory tracking for
small unmanned aircraft.

As a benchmark problem to examine
application of the proposed methodology, the
current study particularly focuses on a fixed-
wing elastically-mounted low-speed airfoil
operating in a gusty environment (Fig. 1). We
thus consider robust control of the gust-induced
LCO as the latter may significantly affect the
aerodynamic properties of an aircraft and can be
especially problematic for small UAVs.
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Fig. 1. Sharp-Edge Gust-Airfoil Interaction Model.

The current proof-of-concept analysis
employs a reduced-order model, with the
representative set of structural parameters
selected to provide a realistic model of
elastically-mounted UAV wing section.

2 Theoretical Formulation

The equations describing the unsteady response
of an elastically-mounted 2-DOF airfoil
approximated as a flat plate can be expressed as
(e.g., Refs. [4-6]),
—Lift
Msrs+csp+F<p)p={ ' } (1)
Moment
where the coefficients M. C; €R**denote
the structural mass and damping matrices,

2x2 R . R
F(P)€R™ s a nonlinear stiffness matrix, and

p(t)eR* denotes the state vector. In Eqn. (1),
P()is explicitly defined as

=M @

where (1), @(t) €R genote the plunging [meters]
and pitching [radians] displacements describing
the LCO effects. Also in Eqgn. (1), the structural

linear mass matrix M: is defined as
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where the parameters S.» l. €Rare the static
moment and moment of inertia, respectively.
The structural linear damping matrix is
described as

| nflem 0
CS_{ 0 JW} @

where the parameters ¢ $. <R are the
damping logarithmic decrements for plunging
and pitching, and me R is the mass of the wing,
or in this case, a flat plate. The nonlinear
stiffness matrix utilized in this study is

K, 0
F(p)= 0 k{1+ka3a2 (5)

whereXa» K €R genote structural resistances to

pitching (linear and nonlinear) and % €Ris the
structural resistance to plunging.

In Eq. (1), the total lift and moment are
explicitly defined as

~Litt ] [ ~(L+L) |
Moment | | (M+M, )| (6)
M, p+C,p+K,p+L,n+BS

where 5:[_'W1;Mvi]€R2denote the equivalent
control force and moment, respectively due to
the virtual surface deflection generated by jth
SJA, and L. M eRgre the aerodynamic lift and
moment due to the 2-DOF motions. In Eq. (6),

1€ R*denotes the aerodynamic state vector that
relates the moment and lift to the structural
modes. Also in Egn. (6), the aerodynamic and

M,, C,, K,, L, e R*?

mode  matrices are
described as
, -1 ba
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where #(0) is the Wagner solution function at 0,

and the parameters & B, &,b,€Rare the

Wagner coefficients. The aerodynamic state

variables are governed by (11)
n=C,p+K, p+S,7n

The aerodynamic state matrices in Eqn. (11),

C, K, S, eR*?

L, = Zﬂleb{_b (

, are explicitly defined as
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By substituting Eqgn. (6) into Eqn. (1) the LCO
dynamics can be expressed as

Mp=-Cp—Kp+L,77+BS (15)

whereC=C.—C,, K=F(p)-K, gnd M=M,-M,

2.1 Robust Feedback-Loop Controller
One of the objectives of the current study is to

design the control signal u(t) to regulate the

plunging and pitching dynamics (i.e. N(®) (1))
to zero. To facilitate the control design, the
expression in Eqgn. (15) is rewritten as

Mp = g(h,a,ﬂ)+BU (16)

where 9(h.@.7) s an unknown, unmeasurable
auxiliary function. To quantify the control

e (t)eR*ang
eR?

objective, a regulation error

auxiliary tracking error variables © (t), r(t)
are defined as

& =Pp—Pqy (17)
e, =€ +ae (18)
r= éz +a,e, (19)

where @, @ >0€R"gre yser-defined control
gains, and the desired plunging and pitching

states Ps =0 for the plunging and pitching
suppression  objective. To facilitate the
following analysis, Eqn. (19) is pre-multiplied
by M and the time derivative is calculated as
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MF = M&, +a, Mg, . (20)
After using Egns. (16) - (19), the open-loop
error dynamics is obtained as
Mr =N +N, +Bu—¢, (1)
where the unknown, unmeasurable auxiliary
functions N(&&:r)  Na(PsBs) € are defined
as
N2 g(p.n)-9(ps.n)+a(r-ae, —ae, +ale)
+ oa,M(r-a,e,)+e, (22)
Ny 2 —'p'd+g(pdv77) (23)
The motivation for defining the auxiliary
functions in Eqn. (22) and Eqn. (23) is based on
the fact that the following inequalities can be
developed:

IN IS po Nzl NG ISy, NG IS (24)
where 2 S S5 €R7 are known bounding
constants, and 2() €R® s defined as

zé[elT e I ]T. (25)
Based on the open loop error dynamics in Eqn.
(21), the control input is designed via

U=B7(~(k, +1,.,)r = Asgn(e, (1)) (26)

where k.. #€R**denote constant, positive
definite, diagonal control gain matrices, and 2«
denotes a 2x2identity matrix. Note that the
control input u(t)does not depend on the
unmeasurable acceleration term () | since Eqn.
(26) can be directly integrated to show that U(t)

requires measurements of &(® and &® only. To
facilitate the following stability proof, the

control gain matrix # in Eqn. (26) is selected to
satisfy the sufficient condition

/1min (ﬂ) > é/Nd +ié/Nd
“ (27)

where “nn (") denotes the minimum eigenvalue
of the argument. After substituting Eqgn. (26)
into Eqgn. (21), the closed-loop error dynamics
are obtained as

MF =N+ Nq = (K + 1,1 + Bsgn(e; () —e, (og)



Theorem 0.1. The controller given in Eqgn. (26)
ensures asymptotic regulation of pitching and
plunging displacements in the sense that

le®)]—>0 a tow (29)

provided the control gain Kkis selected

sufficiently large, and # is selected according
to the sufficient condition in Eqgn. (27).

Lemma 0.2. To facilitate the following proof, let
DcR'be a domain containing, W() =0 where
w(t) € R" s defined as

w2z PO - (30)

In Egn. (30), the auxiliary function PO €R jg
the generalized solution to the differential
equation

P(O)-Ale. O)- N (©e.0) g
where the auxiliary function L) €R js defined
as

L(t)=r" (N4 (t)—Bsgn(e,)) (33)
Provided the sufficient condition in Eqgn. (27) is

satisfied, the following inequality can be
obtained:

[ Lx)dz < ple, (0)] - Ny (0)e, (0). (34)
Hence, equation Eqgn. (34) can be used to
conclude that P() =0

Proof. (See  Theorem 0.1)  Let

Vw, ):Dx[0,0) >R he  defined as the
nonnegative function

V(wt)£ie'e +ieje, +ir'Mr+P (35)
where &®: & and "0 are defined in Eqn.
(17), Eqgn. (18) and Eqn. (19), respectively; and
the positive definite function P() s defined in
Egn. (31). The function vi(w t)satisfies the
inequality

U, (w) <V (w,t) <U, (W) (36)
provided the sufficient condition introduced in
Eqn. (27) is satisfied, where YW U.(WeR
denote the positive definite functions

U 24w, U, 22w (37)
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where 2 =Min{3: A (M)} 2 4 22 = Max{L A (M)}
After taking the time derivative of Eqn. (35) and
utilizing Eqn. (18), as

V (wt)< (e -3 (e =3l -

=k e[+ oo 2 I

where the bounds in Eqgn. (24) were used, and
the fact that eT1 &% S%"‘91”2Jf%”ezuz(i.e.,
Young’s inequality) was utilized. After

completing the squares in Eqn. (38), the upper
V(w, t)

(38)

bound on can be expressed as,
V(wt)<—(a -3 (e =3l -

2 2
P P
el 221+ . 9

Since k>0 the upper bound in Egn. (39) can
be expressed as

V)<= 2 £ o

(40)
where . The following
expression can be obtained from Eqgn. (40):

V(w, t) <-U(w) (41)

2o E2min{a, -4, a, —1,1}

whereY®W=clzl’  for some positive constant
ceR, is a continuous, positive semi-definite
function.

It follows directly from the Lyapunov analysis

that &(t). &(t). r(t)eL,  This implies that

&), &(t)eL. from the definitions given in
Egn. (18) and Egn. (19). Given that

&), e (). rt)eL. it follows that &(t)L.
from Eqn. (19). Thus, Egn. (17) can be used to
prove  that p(t), p(t), p(t)eL,.  Since
P(t), p(t). B(t)e L. Eqn. (16) can be used to
prove that Y(t)€£. Since T(t), ut)eL. Eqn.
(26) can be used to show that Y(t) €£.. Given

that & (1), &(t), r(t), u(t)eL, , Eqn. (28) can be
used along with Eqn. (24) to prove that ' (t)€£.
Since &M &M, ML, &(t) &(t). r(t) are
uniformly continuous. Equation (25) can then be
used to show that Z()is uniformly continuous.

Given that & (1) &(t). r(t)eL. Eqn. (35) and
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Eqgn. (40) can be used to prove that el N
Barbalat’s lemma [7] can now be invoked to

prove that 120 150 a5 t > . Hence, [&®] >0
as t—o from Eqn. (25). Further, given that

V(W 1) in Eqn. (35) is radially unbounded,

convergence of &(is guaranteed regardless of
initial conditions, which is a global result.

p=11kg/m’ b =011m a = —0.024m
m = 2.55kg a = 0.165 a, =0.0455

S, =1.04x10°kg-m b = 0.335 b, =0.300
I,=251x10"kg-m  k, =9.3N/m k .=55N/m
k, =450N/m ¢, =55%x10° ¢, =1.8x107

Table 1. Parameters of aeroelastic model.

3 Results

In the current study, a representative set of the
aeroelastic model’s parameters shown in Table
1 is selected to provide a realistic model of the
elastically-mounted wing section. The structural
parameters were previously employed in Ref.
[2] to match with experimental study in Ref. [8]
which indicated a critical (flutter) speed of
about 16 m/s in this test case. Fig. 2 from Ref.
[2] shows comparison of the pitching LCO
amplitudes obtained from the 2-DOF quasilinear
aeroelastic model (Section 2) against numerical
and experimental results of Ref. [8].

AOA (degrees)

?SS 16 \E:S 1‘? I?‘S rls N;S 1:3 1;5 2‘0
Velocity (m/s)

Fig. 2. Flat-plate pitching LCO amplitudes: current

quasilinear aeroelastic model predictions (solid line) vs.

numerical analysis (dashed line) and experiment

(markers) of Ref. [8].
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Pitching (deg)

Pitching (deg)

Fig. 3. Transition to uncontrolled pitching LCO for
increasing (top to bottom) amplitudes of initial excitation.

To demonstrate the performance of the robust
control law developed in Section 2.1, several
test cases have been performed. Fig. 3 first
illustrates  results of the reduced-order
simulations for uncontrolled 2-DOF flat-plate
pitching LCO obtained for the flow speed of 19
m/s for two initial airfoil excitation amplitudes

corresponding toé = P(0)= (0.002, 0.005) and

& =P(0)= (1, 2) (the state vector P(V)is defined
in Egn. (2)). Cleary, the final LCO amplitudes
are the same in both cases but the transition
process is different. The plunging LCO
characteristics have very similar features and
thus are not shown.

The required control authority of the
actuators changes correspondingly depending
on the initial excitation and the LCO amplitudes
(i.e., the flow speed, as shown in Fig. 2). Test
computations are performed for the following
selection of the control gains in the robust
controller model:
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Fig. 4. Suppression of pitching LCO achieved by the
feedback-loop robust control system with increasing (top
to bottom) amplitudes of initial excitation.

Successful suppression of the pitching LCO is
demonstrated for the three initial excitation
amplitudes in Fig. 4, whereas the corresponding
time histories of the aerodynamic lift and
moment produced by the actuator governed by
the robust controller are shown in Figs. 5-6. As
expected, both the time required to suppress
LCO oscillations and the amplitudes of the
forces and moments to be delivered by the
actuator operating in the feedback-loop robust
control system increase with higher initial
excitation amplitudes. Similarly, the control
authority requirements become more demanding
at higher supercritical flight speeds, and
generally new optimized sets of control gains
should be determined.
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Actuator Force Required (Nm)

Actuator Force Required (Nm)

Fig. 5. Actuator’s control authority requirements for
aerodynamic lift with increasing (top to bottom)
amplitudes of initial excitation.

4 Conclusions

The current work employed a reduced-order
model to evaluate possible use of the synthetic-
jet actuators as part of UAV robust, nonlinear
feedback-loop flight control technology. A
benchmark case of the robust control of 2-DOF
airfoil gust-induced limit-cycle oscillations was
considered. A rigorous mathematical analysis of
the controller performance was performed
addressing  parametric  uncertainty  and
nonlinearities inherent both in the upstream
flow conditions and SJA dynamics. The
proposed controller design is easily and
inexpensively implementable, requiring no
observers, function approximators, or adaptive
update laws which would be required in
alternative methods. Minimal knowledge of the
structure of the SJA dynamic model is
exploited, with matrix decomposition technique
utilized along with innovative algebraic
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manipulation in the control development to
compensate for any dynamic uncertainties.
Preliminary results of the low-fidelity modeling
of LCO robust control were demonstrated to
explore the effect of the upstream disturbance
amplitude on the actuator’s required control
authority, with results of the high-fidelity
studies to appear in the subsequent work.

)

o

Actuator Moment Required (N)

)

[ 4 6 8 10 1 14 6 8

ocs

o
S’

Actuator Moment Required (N)
o

0.02

-0.03

Time (s)

Fig. 6. Actuator’s control authority requirements for
aerodynamic moment with increasing (top to bottom)
amplitudes of initial excitation.
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