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Abstract

This paper explores a near-optimal conflict-free
trajectory generation algorithm to determine con-
flict resolution trajectories starting from any
given initial states in real time without actually
solving optimal control problems and sacrific-
ing accuracy. First, the spatially correlated wind
model is considered for wind uncertainty, and
a probabilistic conflict detection algorithm us-
ing the generalized polynomial chaos method is
proposed. The generalized polynomial chaos al-
gorithm can determine the evolution of uncer-
tainty in the complex nonlinear dynamical sys-
tems with high computational efficiency. In ad-
dition, a numerical algorithm that incorporates
the generalized polynomial chaos method into
the pseudospectral method is proposed to solve
the stochastic optimal control problems. The
stochastic optimal control method is combined
with the proposed conflict detection algorithm to
solve the conflict resolution problem. Moreover,
the response surfaces of the optimal conflict-free
trajectories are constructed by using the general-
ized polynomial chaos algorithm based on con-
vex optimization, and the near-optimal conflict-
free trajectories starting from any given initial
states are generated in real time without actu-
ally solving the stochastic optimal control prob-
lems and sacrificing accuracy. Through numer-
ical simulations of the two-dimensional conflict
detection and resolution problem among multiple
aircraft, the performance and effectiveness of the
stochastic algorithms are evaluated and demon-
strated.

1 Introduction

The air traffic demand has been growing rapidly,
and current air traffic management (ATM) sys-
tem is under considerable stress. To satisfy the
increasing demand, the International Civil Avi-
ation Organization (ICAO) published a new op-
erational concept of global ATM in 2005 [1].
NextGen [2], SESAR [3] and CARATS [4] are
currently ongoing in order to support the new era
of air transportation. For the future ATM sys-
tem, 4D trajectory based operation, defined as a
precise description of an aircraft path in three-
dimensional space and time, is an important con-
cept to meet future air traffic growth. The pri-
mary concern of the ATM system is to guarantee
safety, and one of the major safety critical situa-
tions 18 a conflict between aircraft, i.e., situation
where two or more aircraft experience a loss of
the minimum allowed separation. All problems
in the real world contain uncertainties which arise
due to disturbances, modeling and estimation er-
rors, and aircraft also fly under various uncertain-
ties such as unpredicted weather and navigation
error. These uncertainties have effects on the air-
craft motion and therefore conflict detection and
resolution. Therefore, in this study, we consider
the conflict detection and resolution problem in
the presence of uncertainty, which is the key el-
ement for the realization of the future ATM sys-
tem.

Most of existing conflict detection and reso-
lution algorithms can be categorized into the de-
terministic and probabilistic approaches [3]. For
the probabilistic conflict detection in the presence



of uncertainty, the empirical distribution model
of future aircraft positions [6, 7, 8], the dynam-
ical model by using stochastic differential equa-
tions [9, 10] and the probabilistic aircraft model
based on the hybrid systems [11, 12] are used to
describe the aircraft motion. Using the proba-
bilistic aircraft motion model, the conflict prob-
ability between aircraft is estimated to detect a
possible conflict. In addition, the conflict resolu-
tion problem is often formulated as an optimal
control problem to determine the optimal con-
flict resolution trajectory. The stochastic optimal
control problem is solved to generate the optimal
conflict-free trajectory in the presence of uncer-
tainty. In the previous works, Monte Carlo sim-
ulation [9], a Markov chain Monte Carlo frame-
work [13] and Bayesian optimal design [14] are
applied to determine an optimal control input,
and the stochastic optimal control problem is
solved by a Markov chain approximation and the
Jacobi iteration [15].

In this study, a near-optimal conflict-free tra-
jectory generation algorithm is proposed to deter-
mine the conflict resolution trajectory under wind
uncertainty in real time, whereas most of the
existing probabilistic conflict resolution meth-
ods mentioned above require much computation
time and are difficult to implement in the real
applications of ATM system. As to the un-
certainty during flight, the wind prediction er-
ror, especially the spatially correlated wind er-
ror [10, 11, 16], is considered because the wind
correlation may have a significant effect on the
aircraft motion and therefore conflict detection
and resolution [11]. In addition, we propose
novel probabilistic conflict detection and reso-
lution algorithms by employing the generalized
polynomial chaos (gPC) method [17, 18, 19],
which can determine the evolution of uncertainty
in the complex nonlinear dynamical systems with
high computational efficiency. To detect potential
conflicts, the conflict probability between aircraft
is estimated by the probabilistic conflict detec-
tion algorithm. For the conflict resolution prob-
lem, we apply the pseudospectral method [20]
which is a recently developed numerical method
to solve deterministic nonlinear optimal control
problems. A numerical algorithm incorporating
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the gPC method into the pseudospectral method
is proposed to deal with stochastic elements and
solve the stochastic optimal control problems.
The stochastic optimal control method is com-
bined with the probabilistic conflict detection al-
gorithm to guarantee the resolution of potential
conflicts between aircraft under the wind uncer-
tainty. Moreover, inspired by a spatial statistical
approach for synthesizing near-optimal feedback
controllers [21], response surface methodology
for generating optimal conflict-free trajectories is
proposed by using the gPC algorithm, especially
the recently developed gPC algorithm based on
convex optimization [22, 23], which is a power-
ful numerical approach for the stochastic models
with a large number of random variables. By con-
structing the response surfaces, the near-optimal
conflict-free trajectories starting from any given
initial states under the wind uncertainty are gen-
erated in real time without actually solving the
stochastic optimization problems and sacrificing
accuracy.

The paper is organized as follows. Sec-
tion 2 presents the probabilistic conflict detec-
tion and resolution algorithms employing the
gPC method. In section 3, response surface
methodology is introduced to generate near-
optimal conflict-free trajectories in real time. In
section 4, the conflict detection and resolution
problem among multiple aircraft is formulated
and solved. In addition, the response surfaces
of the optimal conflict-free trajectories are con-
structed, and the near-optimal conflict-free tra-
jectories starting from any given initial states are
generated. Through numerical simulations, the
effectiveness and performance of the proposed
stochastic algorithms are evaluated and demon-
strated. Finally, conclusions and future research
directions are provided in section 5.

2 Probabilistic Conflict Detection and Reso-
lution

In this section, we first introduce the stochastic
aircraft dynamics including spatially correlated
wind errors, and propose a conflict detection al-
gorithm based on the gPC method. After that,
the stochastic optimal control method incorpo-
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rating the gPC algorithm into the pseudospectral
method is developed to solve the conflict resolu-
tion problem.

2.1 Stochastic Aircraft Dynamics

We consider the conflicts between aircraft in two-
dimensional horizontal plane in which the air-
craft coming from different directions merge to
the waypoint. The aircraft dynamics are given by
the following point mass model with three state
variables x = (x,y,y)” and one control variable
u:

X =vcos\y+ wy, (1)
Yy =vsiny + wy, 2)
Y =u, 3)

where x and y are the Cartesian coordinates; Y
is the heading angle; v is the true airspeed and
assumed to be constant; and w, and wy are the
stochastic wind velocities in the x and y direc-
tions, respectively.

As to the wind uncertainty, the wind model
contains the deterministic and stochastic compo-
nents. In this study, the deterministic component
representing the meteorological prediction is 1g-
nored and set to zero for simplicity. The wind
model accounts for only the stochastic compo-
nent, i.e., the wind prediction error representing
the uncertainty in the deterministic meteorologi-
cal prediction. Thus, the wind velocities w, and
w, are referred to the wind prediction errors. In
this study, to describe the wind errors more re-
alistically, the spatially correlated wind model is
considered. On the basis of the correlated wind
model [11, 16], wy(x,y) and wy(x,y) are assumed
to be Gaussian random processes with zero mean
and the following exponential covariance func-
tion:

C((x,y), (,y)) =
o, exp (—pex—x'|) exp (—pyly —'1) ,(4)
where ©,, 1s the standard deviation of the wind
error and set to 10.40 kt [24]; and the parame-

ters u1, and u, are set to the same value of 1/182
[11, 16]. As the distance difference increases,
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the correlation described in Eq. (4) decays ex-
ponentially. The random processes wy(x,y) and
wy(x,y) are approximated as a linear combination
of deterministic functions multiplied by indepen-
dent random variables using the Karhunen-Loeve
(KL) expansion [10, 25]:

NkL

wale) ~ Y (Viigi(e)ea ), )
i=1
N1

wy(x,y) = Y (\/xigi(x,)’)eyi> ; (6)

i=1

where 0y; and 0,; are the independent standard
Gaussian random variables; Ny is the number of
independent random variables; and A; and g;(x,y)
are the eigenvalue and eigenfunction of the fol-
lowing integral equation in descending order of
the magnitude of the eigenvalue A;, respectively:

Nigi(x,y) = /D C((x,y),(*,y)) &i(x,y )dx'ay',

where x and y are defined over a given domain
D. Thus, the wind error is represented as the spa-
tially correlated wind error with the finite number
of independent random variables by using the KL,
expansion. (See, e.g., Ref. [25] for more detailed
discussions.)

A conflict is defined as a situation where two
or more aircraft experience a loss of the minimum
separation established by ICAO [26]. Computing
the distance between each pair of aircraft, we can
identify the potential conflicts. To avoid the con-
flict, the two aircraft i and j need to satisfy the
following safety constraint:

drmin < Lij =\ (=, + (i = )2
(\V/l,]e{l,,s}l#]), (7)

where the subscript i and j denote the ith and jth
aircraft; s is the total number of aircraft; dgmipy 1S
the horizontal separation requirement; and L; (=
Lj;) is the horizontal distance between the ith
and jth aircraft. The aircraft positions x and y
in Eq. (Z) become the random variables because
Egs. (1) and (2) contain the stochastic terms w,
and wy. Since x and y are the random variables,
the horizontal distance between aircraft L given



by Eq. (2) also becomes a random variable. L
cannot be determined analytically, and it needs to
be calculated numerically. In this study, we pro-
pose the novel conflict detection algorithm based
on the computationally efficient gPC method to
calculate L. To detect possible conflicts, L is
computed by the gPC algorithm, which will be
described in more detail in section 2.2, and there-
fore the conflict probability between aircraft can
be estimated as described in section 2.3.

2.2 Generalized Polynomial Chaos

One of the most commonly used methods to de-
termine the evolution of uncertainty in dynamical
systems is the Monte Carlo (MC) method. The
MC method generates random sample points of
random variables based on their prescribed prob-
ability density functions. Each random sample
point is inserted into the stochastic model, and
the stochastic problem is transformed into the de-
terministic problem that can be solved by using
a deterministic solver. The statistical informa-
tion (e.g., expected value, variance and covari-
ance) can be calculated by using an ensemble
of deterministic solutions. The MC method is
straightforward to implement because it only re-
quires the repetitive application of a deterministic
solver. However, it is well known that the mean
converges slowly and a large number of sample
points is needed for accurate results, which im-
plies excessive computational cost.

The gPC method [17, 18, 19] can reduce the
computational effort significantly by approximat-
ing a stochastic solution as expansions of inde-
pendent random variables using orthogonal poly-
nomials. By using the gPC method, the stochas-
tic solution z(@) is approximated by the summa-
tion of the orthogonal polynomials of the inde-
pendent random variables @ = (01,...,08y) € RY,
where N is the number of random variables. The
Pth order approximation of the stochastic solu-
tion zp(0) is written as the following equation:

M

zp(0) = ) Cn®n(8) =@(8)C,  (8)
m=1
N

®,.(8) =0\ (6)), )
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where C is the vector of the expansion coefficient
Cp(m=1,...,M) defined as C = (Cy,...,Cy)7;
and @(0) is the vector of the multivariate orthog-
onal polynomial basis function ®,,(0) defined
as ®(0) = ((0),...,Py(0)). P,(0) is ob-
tained from the /;th order one-dimensional poly-
nomial basis function ¢§”’)(el~) of each random
variable 0; by the tensor product rule described
in Eq. (9). [; satisfies the following condition:
Pm :):fyzl l; < P, where p,, (im=1,...,M) is the
sum of the order of the one-dimensional polyno-
mial of the ith random variable q>§‘f) (6;) in Eq. (9);
and P is the approximation order of the stochas-
tic solution and the maximum degree of the mul-
tivariate polynomial ®,,. M is the total number
of tensor product basis functions and determined
by the binomial coefficient: M = (V}”). In ad-
dition, the normalized orthogonal (orthonormal)
polynomial is used by satisfying the following

orthogonality condition: E [¢§f ) (e,-)q),(")(ei)] =
10(8,)0% (6,)pi(6;)d6; = 8, where E[] de-
notes the expectation operator; 0 is the Kro-
necker delta function; and p;(0;) is the probabil-
ity density function corresponding to the ith ran-
dom variable 0;. The best choice of the orthonor-
mal polynomials depends on the type of p;(6;)
to achieve better convergence [17]. For example,
Hermite polynomials are used with the Gaussian
random variables. (See Ref. [17] for more de-
tailed discussions.) In this study, the Gaussian
random variables are considered in Egs. (§) and
(6), and Hermite polynomials are used. Since
®,,(08) is the orthonormal polynomial, C,, in
Eq. (8) is determined by the following equation:

Cn = E[2(8)®,(8)] = [ 2(8),.(8)p(0)de,
(10)
where p(0) is the joint probability density func-
tion: p(8) = [, pi(6)).

There are two main methods to determine C,,,,
1.€., the Galerkin and stochastic collocation meth-
ods [17, 18, 19]. With respect to implementa-
tion, a disadvantage of the Galerkin method is
that it can be cumbersome and difficult to im-
plement for complex nonlinear systems [19]. In
contrast, the stochastic collocation approach is
straightforward to implement because it uses the
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strategically selected sample points, i.e., colloca-
tion points, of the random variables and repetitive
executions of deterministic simulations as in the
MC method. However, unlike the MC method,
the stochastic solution is expressed as the or-
thonormal polynomials of the random variables
with a significantly small number of collocation
points. Therefore, the stochastic collocation form
of the gPC method is employed to determine C,,.

Applying the stochastic collocation method,
the integral in Eq. (10) can be approximated by
using the Gaussian quadrature. A set of col-
location points and quadrature weights is cho-
sen on the basis of the quadrature rule. The
g-point univariate quadrature operator U? ap-
proximates the polynomial ¢(6) by using the
set of g collocation points 8) and associ-
ated weights o) (j =1,...,q): U$(0)] =
Y 0(0)ald) ~ [7, ¢(8)p(6)d6. The quadra-
ture weight al/) satisfies the following condi-
tion: Y9_, al/) = 1. As g gets larger, the accu-
racy of the quadrature can be increased. In ad-
dition, the N-dimensional quadrature is readily
derived from the one-dimensional quadrature by
the tensor product rule. The N-dimensional ten-
sor grid quadrature operator 7 is extended from
the g-point univariate quadrature 719: T9N =
‘Ulq R ® ‘ll;{,. The total number of colloca-
tion points is ¢V determined by the tensor prod-
uct rule. In general, as the number of random
variables N gets larger, the tensor grid 7 suffers
the curse of dimensionality. Thus, in this study,
we employ the sparse grid quadrature based on
the Smolyak rule [27, 28]. The sparse grid with
Q collocation points 8"/ and associated weights
al/) (j=1,...,0) consists of a much smaller
number of collocation points than that of the ten-
sor grid, and it can reduce the computational cost
and increase the number of random variables.
To reduce the number of collocation points, the
Smolyak approach uses a strategically chosen
linear combination of the tensor grid while re-
taining the accuracy of the quadrature. On the ba-
sis of the Smolyak rule, the N-dimensional sparse
grid quadrature operator S is derived from the g-
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point one-dimensional quadrature UY:

SI,N — Z

N+1<|q|<I+N

N—1 .
( l_|_N_|q| )(ru%@...@ruq )7(11)

(_1)1+N—|q|

where [ is the accuracy level of the sparse grid;
and |q| = YN, g; is the multi-index. As [ gets
larger, the accuracy of the sparse grid quadrature
can be increased. The accuracy level / and the
dimension N determine the number of colloca-
tion points Q in the sparse grid quadrature. As in
the MC method, the stochastic problem is trans-
formed into the deterministic problem on each
collocation point and can be solved by repetitive
application of a deterministic solver.

By using the stochastic collocation method
based on the sparse grid quadrature rule de-
scribed in Eq. (11), the approximation of C,, in
Eq. (10) is given by the following equation:

Q , . .
C,, ~ Z Z(e(]))qu(e(J))Ot(J), (12)
j=1

where z(8Y)) denotes the deterministic solution
by using the jth collocation point 0\/). Thus,
the approximate stochastic solution zp(0) is de-
termined by Egs. (8) and (12) as the orthonor-
mal polynomials of the random variables 0. As
described in Egs. (8) and (12), zp(0) is the dis-
tribution function of @ and can be evaluated for
any given random inputs. In addition, the statis-
tical information (expected value and variance)
of zp(0) can be calculated by using C,, given by
Eq. (12). The expected value and variance of
zp(0) are described as the following equations:

M
B (@)= [ | 1 Cuwn(®) | p(0)a0,

=, (13)

M 2
— [ | L cutn®)~C1| p(&)ae.
m=1
M
=Y (Gl (14)



where Var|-] denotes the variance operator.

The procedures to determine the stochastic
solution z(@) and its statistical information are
listed as follows:

1. Generate a set of Q collocation points
of random variables 8") and associated
weights al/) (j =1,...,0) based on the
sparse grid quadrature in Eq. (11).

2. Calculate the value of the orthonormal
polynomial d)m(e(j)) on each collocation
point ol (j=1,....,0, m=1,....M) by
Eq. (9).

3. Determine  the  deterministic  solu-
tion z(8“)) on each collocation point

v (j=1,...,0).
4. Compute the coefficient C,, (m=1,...,M)
in Eq. (12).

5. Determine the approximate stochastic so-
lution zp(0) in Eq. (8).

6. Calculate the statistical information of the
approximate stochastic solution zp(0), the
expected value E[zp(0)] in Eq. (13) and the
variance Var(zp(0)] in Eq. (14), by using
Cp.

2.3 Conlflict Probability Estimation for Con-
flict Detection

To detect potential conflicts between aircraft, we
need to compute the distance between each pair
of aircraft. Since the wind errors in Egs. (3)
and (@) are described by the random variables,
the horizontal distance between aircraft L in
Eq. (2) is also the random variable. By using the
gPC method mentioned in section 2.2, L can be
solved, and the statistical information of L (E[L]
and Var|[L]) is calculated. The probability den-
sity function of L, p(L), is unknown; however,
the probability distribution of a random variable
can be characterized by its moments, and the
unknown distribution can be estimated by the
moment matching technique. Using the statis-
tical information of L, p(L) is approximated by
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the one-dimensional truncated Gaussian distribu-
tion by matching the first two moments: L ~
A (E[L],Var[L]) (L > 0). Accordingly, on the
basis of the safety constraint in Eq. (Z), the con-
flict probability between the ith and jth aircraft
Pr [C,- j] is given by the following equation:

dHmin
Pr[G;j] = Pr|[Lij < dymin] :/o p(Lij)dL;;,
(15)
where Pr[-] denotes the probability of an event;
and (G; indicates conflict between the ith and jth
aircraft.
The procedures to estimate the conflict prob-
ability between the ith and jth aircraft are listed
as follows.

1. Calculate the statistical information of the
distance between aircraft L;; (E(L;;) and
Var(L;;)) by using the gPC method de-
scribed in section 2.2.

2. Determine the probability density function
of Lija p(Lij)~

3. Estimate the conflict probability between
aircraft Pr [Ci j} in Eq. (15).

Using the probabilistic conflict detection al-
gorithm mentioned above, the potential conflicts
can be detected. For the resolution of the po-
tential conflicts, the stochastic optimal control
method is proposed to determine the conflict-
free trajectory under the wind uncertainty in sec-

tion 2.4.

2.4 Stochastic Optimal Control

The following continuous-time stochastic opti-
mal control problem is considered. Determine
the state variables x(t), the control variables u(z)
and the terminal time 77 on the time interval z €
0,7/] that minimize the cost function:

T=E |u(x(0)x(t9) + [ gux(0),ue), 001

(16)
subject to the dynamic constraints:

(1) = f(x(1),u(t),1), (17)
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the boundary conditions:
bmin SE [b(x(());x(tf))} S bmax; (18)
and the chance constraints [29, 30]:

nmin S Pr [cmin S c(x(t),u(t),t) S cmax] S nmaxa

(19)
where gjs and gy define the Mayer and Lagrange
terms in the cost function, respectively; f is the
system dynamics; b expresses the boundary con-
dition functions; ¢ defines the path constraint
functions; and 1M is the confidence level. The
chance constraints are formulated by the previous
studies [29, 3Q], which can restrict the probabil-
ity of conflict to a given range. In this study, we
formulate the conflict probability as the chance
constraints given by Eq. (19).

In this study, we apply the direct colloca-
tion pseudospectral method [2Q], which is the
recently developed numerical method to solve
deterministic nonlinear optimal control prob-
lems. In the pseudospectral method, the time-
dependent dynamic variables are approximated
and parameterized using polynomials, and the
cost function and the constrains are also dis-
cretized using a quadrature rule. Thus, the
continuous-time optimal control problem is dis-
cretized and transcribed into the nonlinear pro-
gramming (NLP) problem. Then, an NLP
solver such as sequential quadratic program-
ming (SQP) is applied to determine the opti-
mal solution. In this study, we employ the
General Pseudospectral Optimization Software
(GPOPS) [31], which is performed in MATLAB
and using SNOPT [32] as the NLP solver. By us-
ing GPOPS, the continuous-time optimal control
problem is transformed into the NLP problem for
the SNOPT NLP solver which finds the optimal
solution. To deal with the stochastic elements
and solve the stochastic optimal control problem
(Egs. (16)—(19)), the stochastic solution includ-
ing the statistical information is approximated by
the theory of the gPC method mentioned in sec-
tion 2.2. Therefore, by incorporating the gPC al-
gorithm into the pseudospectral method, we can
solve the stochastic optimal control problem.

To solve the conflict resolution problem, the
stochastic optimal control method is combined
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with the proposed probabilistic conflict detec-
tion algorithm to guarantee the resolution of po-
tential conflicts between aircraft under the wind
uncertainty. By solving the stochastic optimal
control problem for conflict resolution, the opti-
mal conflict-free trajectory under the wind uncer-
tainty is generated.

3 Near-Optimal Conflict-Free Trajectory
Generation

By using the stochastic optimal control method
mentioned in section 2.4, we can generate the
optimal conflict-free trajectory starting from an
given initial point. However, the initial states
on the precomputed optimal trajectory may dif-
fer from the actual initial states because of the
uncertainty during flight, and another optimal
control problem starting from the different ac-
tual initial states is necessary to be solved to ob-
tain the correct optimal trajectory. Therefore,
in this study, we introduce an efficient numeri-
cal algorithm for generating near-optimal solu-
tions in real time by constructing response sur-
face models or surrogate models based on the
gPC algorithm. By constructing the response sur-
faces of the optimal conflict-free trajectories un-
der the wind uncertainty, the approximate opti-
mal conflict-free trajectories from any given ini-
tial states can be obtained quickly without actu-
ally solving the stochastic optimal control prob-
lems.

Response surface models or surrogate models
approximate the input-output behavior of an orig-
inal simulation, and an output can be obtained
from a certain input without actually executing
the simulation. In this study, the response sur-
faces based on the gPC algorithm are constructed
for generating near-optimal conflict-free trajec-
tories. The inputs of the response surfaces are
the initial states xp, and the outputs are the states
x*, controls #* and terminal time tji- of the opti-
mal conflict-free trajectory. By the theory of the
gPC method, the stochastic solution can be ap-
proximated by the polynomials of the indepen-
dent random variables as described in Eq. (8). xo
are assumed to be the random variables, and x*,
u* and t;} are approximated as the functions of



xo in Eq. (8). Thus, by using the gPC method,
the Pth order approximations of the optimal so-
lutions xp(xo), up(xo) and #7p(xo) represent the
response surfaces of the optimal conflict-free tra-
jectories (inputs: initial states xp, outputs: ap-
proximate optimal states xp, controls up and ter-
minal time t}P of conflict-free trajectory).

Using the stochastic collocation method men-
tioned in section 2.2, the expansion coefficients
C in Eq. (8) are determined by using the so-
lutions on the Q collocation points of the ini-
() (

tial states x5 (j = 1,...,0), i.e., the optimal

states x*(x(J)), controls u*(x(()j))

(j)>

and terminal

time tj} (xy) of the conflict-free trajectory start-
ing from the jth collocation point of the ini-

tial states x\/ (j=1,...,0). Accordingly, Q
stochastic optimal control problems are needed
to be solved for constructing the response sur-
faces. The stochastic collocation method is com-
putationally efficient when the number of ran-
dom variables is small. However, unlike the wind
errors in section 2, the number of random vari-
ables or inputs of the response surfaces becomes
large. As the number of random variables in-
creases, the number of collocation points is con-
siderably larger even though the sparse grid is
used. Therefore, to reduce the computational cost
for constructing the response surfaces, we intro-
duce the recently developed gPC algorithm based
on convex optimization [22, 23] to determine
the coefficients C, which is similar approach to
the stochastic collocation method but requires a
much smaller number of sample points than the
stochastic collocation method.

To compute C, the following convex opti-
mization problem is solved:

minimize ||WC||; + B||A(z — ®C)||5.
inimiz IWC||1 + Bl A( )2 20)

|||l and || - ||> denote the /; and I, norms, re-
spectively. Z is the vector of the solutions on
the Q sample points ol) G=1,...,0): z=
(z(01),....z(09D)NT. & is the matrix of the

YOSHINORI MATSUNO

multivariate polynomials given by Eq. (9):

q;(e(l))
o= |,
®(0'9)
@;(8"), Dy (81)
®(0'9), ,®y(019))

W is the diagonal weighting matrix and [ is
the scalar weight. W is defined as W =
diag(W (p,)) € RM*M \where p,, is the order of
®,, and p,, <P, and W(py,) (m=1,...,M) is the

scalar weight determined by the following prop-
erties:

W(pm) >W(pi) if pm> pi,
maxW(p,)=1 (VMiime{l,....M}:15#m).
m

A is the diagonal matrix defined as A =
diag(L), where A is the vector of the values
of the joint probability density function p(0)
at the sample points ol G=1,...,0): A=
(p(6M),... ,p(G(Q)))T. Unlike the stochastic
collocation method, the sample point o\ (j=
I,...,0Q) is randomly selected as in the MC
method. The number of sample points Q is deter-
mined by considering the convergence of the oo
norm of the difference between two subsequent
coefficients vectors [|[C*2t)) — c*(Q)||,,, where
C*(Q) denotes the optimized coefficients obtained
by using Q sample points and solving the convex
optimization problem in Eq. (20). (See Ref. [22]
for more detailed discussions.)

By solving the convex optimization problem
in Eq. (20), the coefficients C are determined,
and the stochastic solution zp in Eq. (8) is com-
puted. In this study, we employ CVX, a pack-
age for specifying and solving convex programs
[33, 34] to solve the convex optimization prob-
lem in Eq. (20). Therefore, the response surfaces
of the optimal conflict-free trajectories xj(xo),
up(xo) and t7p(xo) (inputs: initial states xo, out-
puts: approximate optimal states xp, controls u}
and terminal time t}P of conflict-free trajectory)
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are constructed by solving the Q stochastic opti-
mal control problems and the convex optimiza-
tion problem in Eq. (20). The optimal conflict-
free trajectories starting from any given initial
states under the wind uncertainty can be gener-
ated from the response surfaces in real time with-
out actually solving the stochastic optimal con-
trol problem.

Finally, the procedures to generate the near-
optimal conflict-free trajectory by constructing
the response surfaces are listed as follows:

1. Generate Q sample points of initial states
x(()j) (j=1,...,0) randomly.

2. Calculate the values of the orthogonal
polynomial basis functions CIDm(x(()] )) (j=
l,....,0, m=1,...,M) by using Eq. (9).

3. Determine the optimal states x* (x(j ))

(j))

, con-
trols u*(xy’) and terminal time t;}(x(()j ))
of the conflict-free trajectory starting from
each sample point of the initial states x(()j )
(j=1,...,0) by using the stochastic op-
timal control method mentioned in sec-
tion 2.4. ( Solve Q stochastic optimal con-

trol problems.)

4. Solve the convex optimization problem in
Eq. (20) to determine the coefficients C in
Eq. (8).

5. Determine the Pth order approximations
of the optimal conflict-free trajectories in
Eq. (8), and construct the response sur-
faces of the optimal conflict-free trajecto-
ries Xp(xo), up(xo) and t}p(xo) (inputs:
initial states xp, outputs: approximate op-
timal states xp, controls up and terminal
time t;iP of conflict-free trajectory).

6. Generate the near-optimal states xj(xp),
controls up(xo) and terminal time £7p(xo)
of the conflict-free trajectory by using the
response surfaces with any given inputs of
the initial states xg.

IN THE PRESENCE OF UNCERTAINTY

Aircraft 2 x

tﬂight min

dsep nmi

Merging Point
(x,¥) = (0, 0 nmi)

tﬂight min

Aircraft 1 x

Fig. 1 Conflict scenario for conflict detection
problem.

4 Numerical Simulations

In this section, to demonstrate the performance
and effectiveness of the proposed stochastic al-
gorithms, numerical simulations of the two-
dimensional conflict detection and resolution
problem among multiple aircraft are conducted.
First, the conflict detection problem is solved
by the probabilistic conflict detection algorithm
based on the gPC method. After that, the con-
flict resolution problem among multiple aircraft
is considered by the stochastic optimal control
method. Finally, the near-optimal conflict-free
trajectory generation problem is formulated and
solved. The simulations are performed on a com-
puter with a 2.3 GHz Intel Core 15-2410M pro-
cessor and 4 GB RAM.

4.1 Probabilistic Conflict Detection

4.1.1 Conflict Detection Problem

As shown in Fig. 1, we consider the two-
dimensional conflict scenario between the two
aircraft, labeled 1 and 2. A conflict is defined by
the minimum separation requirement dgmi, €s-
tablished by ICAO [26], which is set to 5 nmi
in en route airspace. As shown in Fig. 1, we
consider the two aircraft flying toward the merg-
ing point (x,y) = (0,0 nmi) without any maneu-
vers or control inputs. The both aircraft fly level
at the same altitude and the same constant air-
speed v of 400 kt. The heading angle y; (i =1,2)
(—m/2 < y; <m/2) is randomly set to a constant
value: Y| = 0.49 and y; = —0.34. In addition,
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Fig. 2 Comparison between exact covariance function and covariance function obtained with KL expansion.

as shown in Fig. 1, fgjen is the nominal flight time
to the merging point for aircraft 1 in the absence
of the wind field and set to 5 min. Aircraft 1
reaches the merging point in the absence of the
wind field after fg;gpe min flight, and the nominal
separation between aircraft 1 and 2 after #gjgne min
flight dgep (0< dsep < 5 nmi) is randomly deter-
mined: dsep = 3.72 nmi, as shown in Fig. 1. The
initial positions are determined geometrically in
the absence of the wind field.

As described in section 2.1, the spatially
correlated wind model is considered by using
the KL expansion. In Egs. (§) and (6), the
number of independent random variables Nk,
is set to three, and the total number of ran-
dom variables is six. To compute the KL ex-
pansion, x and y are defined over the domain
D: |x| < 150 nmi and |y| < 150 nmi. Fig. 2
shows the comparison between the exact covari-
ance function C((x,y),(x’,y’)) in Eq. (4) and
the covariance function C((x,y), (¥',)’)) obtained
with the KL expansion, where C((x,y), (x',y')) =
Zf]:KIL Nigi(x,y)gi(x',y'). The root mean square
(RMS) error between the exact covariance func-
tion and the covariance function obtained with
the KL expansion is 0.036, which is small enough
to suggest that the covariance function obtained
with the KL expansion has good approximation
accuracy. As Nkp, gets larger, the covariance
function can be obtained more accurately with
the KL expansion. However, when the total num-
ber of random variables increases, the computa-

tional cost is considerably higher. Thus, in this
study, Nk is set to three, and the total number of
random variables is siX.

To demonstrate the effectiveness and perfor-
mance of the conflict detection algorithm, the sta-
tistical information of the distance between air-
craft L (E[L] and Var[L]) is computed on the time
interval ¢ € [0,igh] by the gPC and MC meth-
ods, and the results are compared with each other.

4.1.2 Simulation Results of Conflict Detection
Problem

The conflict detection problem mentioned in sec-
tion 4.1.1 is solved by the probabilistic conflict
detection algorithm, and the statistical informa-
tion of the distance between aircraft L (E[L] and
Var|[L]) is computed. Fig. 3 shows the normal-
ized RMS errors in E[L] and Var[L] (at time in-
stant ¢ = fgijghe = 5 min) computed by using the
gPC and MC methods with different numbers of
sample points. The circle marker on the blue
line indicates the normalized RMS error obtained
by conducting 100 runs of the MC simulation.
The number of sample points is set to 10, 100,
1000, 10000 and 100000. The cross marker on
the green line is the normalized RMS error by
employing the gPC algorithm. For the gPC algo-
rithm, the approximation order P is set to three,
and the accuracy level / of the sparse grid is set
to two to six. As [ gets larger, the number of
collocation points is increased: 13, 73, 257, 749
and 2021 (I = 2-6). To compute the normalized

10
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Fig. 3 Normalized root mean square (RMS) errors in expected value and variance of distance between aircraft.

RMS errors, the true values of E[L] and Var|L]
are assumed to be the mean values obtained by
conducting 100 runs of the MC simulation with
100000 sample points, and the RMS errors are
normalized to the true values. The computation
time (average time for each run) is proportional to
the number of sample points in Fig. 3. As shown
in Fig. 3, the gPC algorithm can estimate the ac-
curate solution by using the much smaller num-
ber of sample points than the MC method. The
MC method requires over 100000 sample points
to yield the same accuracy as the gPC method.
The computation time is correspondingly over
1000 s. On the other hand, the gPC algorithm re-
quires only 73 collocation points (accuracy level
[ = 3) and approximately 0.5 s to obtain the rea-
sonable approximate solution.

Therefore, the gPC method provides an ac-
curate approximate solution while dramatically
reducing computational cost. Using the MC
method especially within the iterative process
such as optimization process (e.g., optimal con-
trol problem for conflict resolution described in
section 4.2) is computationally laborious and in-
tractable, and our proposed computationally effi-
cient algorithm can perform much faster than the

Merging Point
o Elxi(:)]=0
(i=123)

Fig. 4 Conflict scenario for conflict resolution
problem.

MC method. Through the numerical simulations,
the effectiveness and performance of the proba-
bilistic conflict detection algorithm are demon-
strated.

4.2 Stochastic Optimal Control for Conflict
Resolution

4.2.1 Conflict Resolution Problem

We consider the conflict resolution problem
among multiple aircraft in two-dimensional hor-

11
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Fig. 5 Optimal conflict-free trajectory (expected value) and time histories of dynamic variables.

Table 1 Parameters for conflict resolution problem.
Parameters Values
(¥1(0),d; nmi)  (0.11, 66.88 nmi)
(¥2(0),dr nmi)  (1.19, 68.27 nmi)
(y3(0),d3 nmi) (—0.45, 68.41 nmi)

izontal plane in which the aircraft coming from
different directions merge to the waypoint. A
conflict is defined by the required minimum sep-
aration standard established by ICAO [26], and
the horizontal separation requirement dgpiy 1S set
to 5 nmi for the en route airspace. As shown in
Fig. 4, we consider the conflict scenario among
three aircraft. The merging point is set to (x,y) =
(0,0 nmi), and the initial condition x;(0) (i =
1,2,3) is determined geometrically by the initial
heading angle y;(0) (—nt/2 < y; <7/2) and the
direct distance between the initial position and
the merging point d; (65 < d; <70 nmi):

x;(0) = (—d;icos y;(0), —d; siny;(0), y;(0))"

21
y;(0) and d; are randomly determined, and the
values of the parameters are shown in Table 1.
We assume that the subscript i indicates the air-
craft sequences of reaching the merging point in
ascending order of the value i. Before solving the
optimal control problem, the arrival sequences of
the three aircraft are predetermined in ascending
order of the magnitude of d; (i = 1,2,3), where
d; 1s given by satisfying the following condition:
dy <dp <djs.

Table 2 Terminal time at merging point.
Parameters Values, s

tr1 601.97
%) 648.67
1r3 695.81

In addition, the terminal condition x;(zs;) (i =
1,2,3) is given by:

E[xi(t:)] = (0,0,0), (22)

where 74; is the terminal time (time of arrival at
the merging point, t7; < tp < tr3). Since x;(t)
contains the wind errors, the terminal condition
in Eq. (22) is considered as the expected value.
As to the wind uncertainty, the spatially corre-
lated wind model is considered by using the KL
expansion described in section 2.1. As in the nu-
merical simulations of conflict detection in sec-
tion 4.1, the number of independent random vari-
ables Nkr in Egs. () and (6) is set to three, and
the total number of random variables is six.
Furthermore, the aircraft dynamics are given
by Egs. (1)—(3), and the constraints on the vari-
ables are given as follows: —1/2 <y <7/2 and
—n/120 < u < 1/120. We consider the stochas-
tic safety constraint condition that the required
minimum conflict probability is 0.1 to yield the
effective conflict resolution trajectory [6]:

Pr[G;] <0.1 (Vi,je{1,2,3}:i#j), (23)

where the conflict probability Pr [G;] is given by

12
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Fig. 6 Time histories of expected values and variances of distances between aircraft.

Eq. (15). For solving the stochastic optimal con-
trol problem to determine the conflict-free trajec-
tory, the following cost function J is minimized:

3 1fi
J=Y (zf,-+1o3/ |u,-(t)|2dt). (24)
i=1 0

As described in Egs. (21)—(24), the multiple-
phase (three-phase) optimal control problem is
formulated: three aircraft (i = 1,2,3) and three
conflicts (Ci2, C13, (23) are considered in the first
phase (r € [0,771]); two aircraft (i = 2,3) and
one conflict ((3) are considered in the second
phase (¢ € [tf1,f2]); and one aircraft (i = 3)
is considered in the third phase (¢t € [t2,253]).
Through the numerical simulations, the effective-
ness and performance of the stochastic optimal
control method are evaluated and demonstrated.

4.2.2  Simulation Results of Conflict Resolution
Problem

We apply the proposed stochastic optimal con-
trol method to the conflict resolution problem de-
scribed in section 4.2.1. For applying the gPC
algorithm, on the basis of the numerical simu-
lations of conflict detection in section 4.1.2, the
approximation order P is set to three and the ac-
curacy level [ is set to three. Accordingly, the
number of collocation points is 73 for six random
variables.

By using the stochastic optimal control
method based on the pseudospectral method, the

Table 3 Minimum distances between aircraft (ex-
pected values).

Pairs Values, nmi
Ci2 (aircraft 1 and 2) 5.15
C13 (aircraft 1 and 3) 9.92
(o3 (aircraft 2 and 3) 5.23

nonlinear optimal control problem can be solved,
and the dynamic variables including the conflict
resolution trajectory are optimized. Fig. 5 shows
the expected value of the conflict resolution tra-
jectory and the time histories of the state and con-
trol variables (except the aircraft position (x,y)).
The blue, green and red lines indicate the solu-
tions of aircraft 1, 2 and 3 (i = 1-3), respectively.
Table 2 indicates the terminal time at the merg-
ing point for each aircraft. As shown in Fig. 5,
aircraft 2 and 3 take a detour to avoid conflict,
while aircraft 1 does not take a detour and flies to-
ward the merging point without any conflict res-
olution maneuvers. It indicates that the trajectory
of aircraft 1 is not affected by resolving conflict
and these conflict resolution trajectories can min-
imize the cost function in Eq. (24).

In addition, Fig. 6 shows the time histories of
the expected values E[L] and variances Var[L] of
the distances between aircraft L, which are opti-
mized to satisfy the stochastic safety constraint
described in Egs. (15) and (23). Since our pro-
posed stochastic optimal control method incor-
porates the gPC algorithm, E[L] and Var[L] are

13



easily computed. As shown in Fig. 6, Var[L]
increases with time because the effect of the
wind uncertainty accumulates over time, and the
magnitude of Var[L] indicates the effect of the
wind uncertainty and correlation on the separa-
tion between aircraft. When the distance between
aircraft is shorter, the wind errors between the
two aircraft are highly correlated, and accord-
ingly Var[L] becomes smaller. Since the wind
errors experienced by any two aircraft are corre-
lated with each other, Var[L] under the correlated
wind error can be smaller than under the non-
correlated wind error, which is the completely in-
dependent error on each aircraft. Moreover, Ta-
ble 3 shows the minimum distances between air-
craft in Fig. 6. The distances between aircraft
L are optimized to satisfy the stochastic safety
constraint described in Egs. (15) and (23). By
considering the stochastic safety constraint, the
minimum distances between aircraft are larger
than the minimum allowed separation of 5 nmi
to guarantee the resolution of the potential con-
flicts. As shown in Table 3, the minimum dis-
tances have the margins from the minimum al-
lowed separation of 5 nmi. It indicates that the
conflict resolution trajectory can be guaranteed to
avoid conflict under the wind uncertainty.

To generate the optimal conflict-free trajec-
tory, the computation time for solving the con-
flict resolution problem is approximately 60 s by
employing the computationally efficient gPC al-
gorithm. According to the results of the conflict
detection problem mentioned in section 4.1.2, it
can be computationally intractable to use the MC
method instead of the gPC algorithm. Our pro-
posed stochastic optimal control method can op-
timize the dynamic variables including the con-
flict resolution trajectory efficiently, and the res-
olution of the potential conflicts is guaranteed
by incorporating the conflict detection algorithm
and considering the stochastic safety constraint
described in Egs. (15) and (23). Consequently,
the stochastic optimal control method can pro-
vide the effective conflict resolution trajectory
that can be guaranteed to avoid potential con-
flicts under the wind uncertainty. Through the nu-
merical simulations, the effectiveness and perfor-
mance of the stochastic optimal control method
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are evaluated and demonstrated.

4.3 Near-Optimal Conflict-Free Trajectory
Generation

4.3.1 Problem Formulation of Near-Optimal
Conflict-Free Trajectory Generation

On the basis of the problem formulation of
stochastic optimal control for conflict resolu-
tion described in section 4.2.1, the near-optimal
conflict-free trajectory generation problem is for-
mulated to construct the response surfaces of the
optimal conflict-free trajectories. As the inputs of
the response surfaces, the random variables of the
initial states are assumed to be Gaussian, and the
means are consistent with the values of the initial
conditions given by Eq. (21) and Table 1. The
standard deviations of the initial x and y positions
and heading angle y are set to 1 nmi and 7t/36,
respectively. Since the conflict scenario among
three aircraft is considered as shown in Fig. 4,
the total number of random variables of the initial
states or inputs of the response surfaces is nine.
To evaluate and demonstrate the effectiveness
and performance of the response surface method-
ology, the response surfaces are constructed by
using the two gPC algorithms based on con-
vex optimization described in section 3 and the
stochastic collocation method mentioned in sec-
tion 2.2. For applying the gPC algorithm based
on convex optimization, the approximation or-

14
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Table 4 Maximum and root mean square (RMS) errors of states, controls and terminal time between
near-optimal and optimal solutions (comparison between errors obtained by using gPC algorithms based
on convex optimization and stochastic collocation method).

Parameters Maximum errors’ RMS errors’  Maximum errors’ RMS errors’
X1, nmi 0.032 0.0077 1.13 0.25
yi, nmi 0.17 0.028 1.74 0.38

(7] 0.018 0.0036 0.20 0.055
X7, nmi 1.01 3.45 0.89
y2, nmi 0.69 . 2.63 0.66

5] 0.19 0.064 0.30 0.77
X3, nmi 0.27 0.064 1.12 0.33
y3, nmi 0.36 . 1.17 0.27

Y3 0.043 0.0083 0.12 0.027

U 0.0012 0.00038 0.0081 0.0024

uy 0.0085 0.0030 0.0104 0.0030

us3 0.0015 0.00028 0.0043 0.00094

1£1, 8 0.48 9.90 2.28
1£2, 8 2.30 11.21 2.62
113, 8 2.32 11.23 2.53

* Response surfaces constructed by using gPC algorithm based on convex optimization
I Response surfaces constructed by using gPC algorithm based on stochastic collocation method

der P is set to three. To solve the convex opti-
mization problem in Eq. (20), the weights W (p,,)
(pm = 0,1,2,3) are selected as W(0) = 0.0001
and W(pp) = p2/9 (pm = 1,2,3), and the scalar
weight B is set to 10°. As we demonstrate in
section 4.3.2, the number of sample points is set
to 25, and therefore 25 optimal control problems
starting from the different initial states are solved
for constructing the response surfaces of the opti-
mal conflict-free trajectories. On the other hand,
To construct the response surfaces by using the
gPC algorithm based on the stochastic colloca-
tion method, the approximation order P is also
set to three and the accuracy level [ is set to three.
Accordingly, the number of collocation points is
163 for 9 random variables. Therefore, 163 opti-
mal control problems starting from the different
initial states are solved for constructing the re-
sponse surfaces.

In addition, we consider the randomly gener-
ated 100 different cases of the initial states as the
inputs of the response surfaces. The near-optimal
solution generated by using the response sur-
faces and the optimal solution obtained by actu-

ally solving the optimal control problem are com-
pared with each other. Through the numerical
simulations, the effectiveness and performance of
our proposed response surface method for gener-
ating the near-optimal conflict-free trajectory are
evaluated and demonstrated.

4.3.2 Simulation Results of Near-Optimal
Conflict-Free Trajectory Generation

The near-optimal conflict-free trajectories start-
ing from any given initial states are generated
from the response surfaces constructed by using
the gPC algorithm. As mentioned in section 3,
by evaluating the convergence of the distance
between two subsequent coefficients [|C*(+1) —

9|\, the number of sample points Q can
be determined. As an exam%)le Fig. 7 shows
the distance [|C*(@*Y) — C*(9)||, using the co-
efficients for the terminal time of aircraft 1 77
with different numbers of sample points Q. As
shown in Fig. Z, the distance ||C*(¢+1) — "9,
converges after Q = 25, and the increase in Q
does not provide significant improvements and
changes in the coefficients C. Thus, 25 sample
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Fig. 8 Near-optimal and optimal conflict-free trajectories (expected values) and dynamic variables in
case 1 (worst case in xp).
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Fig. 9 Near-optimal and optimal conflict-free trajectories (expected values) and dynamic variables in
case 2 (worst case in y1,Y1,52,13).
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Fig. 10 Near-optimal and optimal conflict-free trajectories (expected values) and dynamic variables in
case 3 (worst case in x2,y2, W2, Up).
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Fig. 11 Near-optimal and optimal conflict-free trajectories (expected values) and dynamic variables in
case 4 (worst case in x3,y3, Y3, u3).
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Fig. 12 Near-optimal and optimal conflict-free trajectories (expected values) and dynamic variables in
case 5 (worst case in uy).
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Fig. 13 Near-optimal and optimal conflict-free trajectories (expected values) and dynamic variables in
case 6 (worst case in 71).
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Table 5 Minimum distances between aircraft (expected values) in worst cases (case 1: worst case in xi;
case 2: worst case in yy, ,1r2,173; case 3: worst case in xp, y2, W2, uz; case 4: worst case in x3,y3, V3, u3;

case 5: worst case in u1; case 6: worst case in z71).

Cases Pairs Near-optimal ~ Optimal
C12 (aircraft 1 and 2) 5.16 nmi 5.15 nmi

1 C13 (aircraft 1 and 3) 9.76 nmi 9.74 nmi
(o3 (aircraft 2 and 3) 5.23 nmi 5.22 nmi

Ci2 5.22 nmi 5.29 nmi

2 Ci3 10.22 nmi 10.38 nmi
3 5.23 nmi 5.24 nmi

Ci2 5.21 nmi 5.15 nmi

3 Ci3 1044 nmi  10.42 nmi
3 5.24 nmi 5.24 nmi

Ci2 5.18 nmi 5.15 nmi

4 Ci3 8.77 nmi 8.58 nmi
3 5.18 nmi 5.20 nmi

Ci2 5.15 nmi 5.14 nmi

5 Ci3 10.41 nmi 10.43 nmi
3 5.25 nmi 5.25 nmi

Ci2 5.18 nmi 5.16 nmi

6 (i3 9.88 nmi 9.86 nmi
3 5.24 nmi 5.24 nmi

points are enough to apply the gPC algorithm
based on convex optimization and construct the
response surfaces, whereas the gPC algorithm
based on the stochastic collocation method uses
163 collocation points, described in section 4.3.1.

In addition, Table 4 indicates the maximum
and RMS errors between the near-optimal and
optimal solutions among 100 different cases of
the initial states, and the near-optimal solutions
are generated from the response surfaces con-
structed by using the gPC algorithms based on
convex optimization and the stochastic colloca-
tion method. Table 4 also shows the compari-
son between the errors of the response surfaces
constructed by using those two gPC algorithms.
As shown in Table 4, the maximum and RMS er-
rors obtained by using convex optimization are
much smaller than those obtained by employ-
ing the stochastic collocation method, which are
small enough to suggest that the response sur-
faces constructed by using the gPC algorithm
based on convex optimization have good approx-
imation accuracy. It indicates that the gPC algo-

rithm based on convex optimization can construct
the response surfaces much more accurately with
a considerably smaller number of sample points
than the gPC algorithm based on the stochastic
collocation method.

Furthermore, Figs. 8-13 show the expected
values of the near-optimal and optimal conflict
resolution trajectories and the time histories of
the near-optimal and optimal states and con-
trols in the worst cases among 100 cases. The
worst cases are referred to the simulation cases in
which the errors in the states, controls and termi-
nal time are maximum among 100 cases shown in
Table 4: case 1 (worst case in x1), case 2 (worst
case in y1,V1,tr and 773), case 3 (worst case in
Xx2,¥2, W2 and u»), case 4 (worst case in x3,y3, Y3
and u3), case 5 (worst case in u;) and case 6
(worst case in #71). In Figs. 8-13, the blue, green
and red lines indicate the solutions of aircraft 1,
2 and 3 (i = 1-3), respectively. The solid lines
denote the optimal solutions obtained by actually
solving the stochastic optimal control problems.
The dashed lines are the near-optimal solutions
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generated from the response surfaces, which are
constructed by using the gPC algorithm based on
convex optimization. As shown in Figs. 8-13, the
near-optimal and optimal solutions closely match
each other even though in worst cases. Moreover,
Table 5 indicates the minimum distances between
aircraft in the worst cases. The minimum dis-
tances in the near-optimal and optimal solutions
are almost the same, and the minimum distances
in the near-optimal solutions as well as the opti-
mal solutions are larger than the minimum sep-
aration requirement of 5 nmi and can have the
margins from the minimum allowed separation.
In addition, the stochastic safety constraint de-
scribed in Egs. (15) and (23) are also satisfied. It
indicates that the near-optimal solutions are guar-
anteed to avoid the potential conflicts without ac-
tually solving the optimal control problems.

Consequently, the gPC algorithm based on
convex optimization can construct the response
surfaces with a considerably small number of
sample points, and the response surfaces provide
the accurate approximate optimal conflict-free
trajectories that are guaranteed to avoid potential
conflicts without actually solving the stochastic
optimal control problems and sacrificing accu-
racy. Through the numerical simulations, the ef-
fectiveness and performance of our proposed re-
sponse surface method for generating the near-
optimal conflict-free trajectories are evaluated
and demonstrated.

5 Conclutions

In this study, we proposed the near-optimal
conflict-free trajectory generation algorithm by
using the generalized polynomial chaos (gPC)
method.  First, the computationally efficient
probabilistic conflict detection and resolution
algorithms were proposed by employing the
gPC method based on the stochastic collocation
method. As to the uncertainty during flight, the
spatially correlated wind error was considered,
and the Karhunen-Loeve expansion was used to
describe the correlated wind error. To detect pos-
sible conflicts, the statistical information of the
distance between aircraft was calculated accu-
rately by employing the gPC algorithm, and the
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conflict probability between aircraft was com-
puted by the probabilistic conflict detection al-
gorithm. The gPC algorithm performed much
faster than the Monte Carlo (MC) method, and
using the MC method especially within the it-
erative optimization process such as the optimal
control problem for conflict resolution is com-
putationally laborious and intractable. In addi-
tion, the stochastic optimal control method com-
bining the computationally efficient probabilis-
tic conflict detection algorithm into the pseu-
dospectral method was applied to the conflict res-
olution problem among multiple aircraft. The
stochastic algorithm could generate the effective
optimal conflict-free trajectories under the wind
uncertainty. Furthermore, the response surface
methodology for generating the optimal conflict-
free trajectories was proposed by using the gPC
algorithm based on convex optimization. The
gPC algorithm based on convex optimization
could construct the response surfaces much more
accurately with a considerably smaller number
of sample points than the gPC algorithm based
on the stochastic collocation method. By con-
structing the response surfaces, the near-optimal
conflict-free trajectories starting from any given
initial states under the wind uncertainty could be
generated in real time, which were guaranteed to
avoid potential conflicts, without actually solving
the stochastic optimal control problems and sac-
rificing accuracy. Consequently, through the nu-
merical simulations, the performance and effec-
tiveness of the stochastic algorithms were evalu-
ated and demonstrated.

To further improve the stochastic algorithms,
our proposed approach is currently being ex-
tended for the three-dimensional conflict resolu-
tion problem among multiple heterogeneous air-
craft. In particular, we will consider the con-
flicts in the three-dimensional terminal airspace
in which the aircraft coming from different direc-
tions merge to the final approach fix to be aligned
for landing.
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