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Abstract

Computer modeling and simulation environ-
ments are used widely in engineering disciplines
for the design of next generation systems. De-
tailed physics-based models can add unwanted
complexity to the overall modeling environment,
so there is a need to be able to select the appro-
priate model with an adequate amount of fidelity.
The methodology developed in this research pro-
vides a way to manage the fidelity and facilitate
down-selection from a provided set of potential
models through quantitative assessments. The
concept of model form uncertainty is utilized to
represent model fidelity, and an existing system-
level physics-based modeling environment en-
ables the quantitative assessments of additional
potential model combinations. The methodology
is demonstrated on a case study inspired by the
recent shift in aviation towards environmentally
conscious aircraft systems.

1 Introduction

Advancements in the field of computer sci-
ence over the past 50 years have led to the use of
computer models and simulations for engineer-
ing problem solving[13]. Modeling and simula-
tion provides many benefits, such as the ability
to conduct a large number of assessments over
a short period of time, a safer testing alternative
for live experiments with potential consequences,
and identification of system shortcomings before
live tests are conducted[5]. In the same manner
that a prototype is considered a ‘model’ of a real,

full-scale system and a wind tunnel experiment
a ‘simulation’ of an actual flight test, an analyti-
cal, mathematical representation is also a model,
and the use of a computer based environment to
create data a ‘simulation’ [3].

The fundamental makeup of models can
range from those that are empirically based upon
a historical database to physics-based mathemat-
ical representations. Empirical models can only
predict behavior of systems within the limits of
their design space. However, when attempting
to assess a system design that introduces a phe-
nomenon that has not been previously character-
ized, engineers must instead develop and utilize
physics-based models due to the lack of historical
data. For example, when aggressive aircraft per-
formance goals are set, next generation systems
are designed to push the envelope through the
integration of advanced technologies onto new,
unconventional configurations. When it is an-
ticipated that the performance of these complex
systems will introduce new, uncharacterized phe-
nomena, a physics-based formulation will be re-
quired.

Unlike empirical models, physics-based
models explicitly depend on the laws of na-
ture, which are characterized through mathemat-
ical formulas and integrated together to provide
a quantitative representation of the physics that
govern the system. However, the true form of
a model representing a system under develop-
ment may not be known, which causes uncer-
tainty to exist with respect to how accurately the
chosen model properly represents the system un-



der assessment. This type of uncertainty is called
model form uncertainty, and it is a type of epis-
temic uncertainty[12]. The amount of model
form uncertainty that exists in a modeling envi-
ronment is a function of the amount of detail put
into each tool within the model and the amount
of data available to characterize the system. As
new data about the system becomes available,
the model is calibrated to meet the observed per-
formance characterized by the experimental data.
Models that are represented with a great amount
of detail should have a decreasing amount of
model form uncertainty as they are continuously
re-calibrated throughout the system’s develop-
ment. Model form uncertainty and model fidelity
are inversely correlated. Model fidelity is defined
as a measure of the realism of a model or sim-
ulation. Therefore, as model form uncertainty
decreases, the perceived model fidelity will in-
crease.

During design, modeling environments are
used to provide information that can be used for
decision support. Figure 1 displays a generic,
top-down decision support process that can be
used as a framework for making design decisions.
Within this process, models are used during the
"Evaluate alternatives" step to provide informa-
tion about each of the design alternatives. Engi-
neers desire information that has limited uncer-
tainty, which makes high fidelity modeling en-
vironments attractive. However, a high fidelity
physics-based environment that represents each
aspect of a system in great detail can become in-
creasingly complex, especially when it is a mul-
tidisciplinary system. Increasing complexity can
result in an increase in the amount of time and
computational resources required to run a single
simulation, which can hinder the usefulness of
the model to engineers. Therefore, engineers re-
quire a way to select appropriate physics-based
modules to create a modeling and simulation
environment that has an adequate fidelity level
without over-complicating the environment and
contributing to an unnecessary increase in execu-
tion time.

The research presented in this paper provides
a methodology for quantitatively assessing dif-
ferent combinations of physics-based models by
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Fig. 1 : Generic top down decision making pro-
cess.

utilizing an existing, baseline physics-based en-
vironment, surrogate models, and a technology
forecasting technique. The quantitative assess-
ment will provide information on the combined
complexity of each alternative and the ability of
each alternative to provide results within a de-
sired precision level. This information will then
be used to conduct trade-offs between complex-
ity and fidelity and enable the down-selection of a
final modeling environment. The methodology is
based upon the assumption that model form un-
certainty can be used as a surrogate for model fi-
delity, and the representation of model form un-
certainty can be used to aid model fidelity pri-
oritization. Additionally, execution time will be
used as a surrogate for model complexity.

2 Background

The methodology developed in this research re-
lies on two enabling techniques: surrogate mod-
eling and a technology forecasting technique
called the k-factor approach. The following
subsections will provide information about both
techniques.

2.1 Technology Forecasting Technique

Forecasting is the process of predicting a
view of the future. Technology forecasting refers
to determining the impact a technology will have



on a system’s performance before it is fully real-
ized and can be measured[8]. There are two dif-
ferent types of forecasts: exploratory and norma-
tive. Normative forecasting techniques are top-
down assessments where an objective with an un-
known feasibility is provided and the goal of the
forecast is to work backwards from the provided
objective to determine what is required to make it
feasible[8]. Alternatively, exploratory forecast-
ing techniques are bottom-up assessments that
are based upon extending past trends into the fu-
ture along an expected progression path[8].
Performing a quantitative technology fore-
cast requires the quantitative representation of
the technologies under assessment. Twiss, how-
ever, acknowledges that representation of tech-
nologies in a quantitative manner is not trivial, es-
pecially if the physics governing the technology
has not been properly characterized or is not well
understood[17]. A technique that facilitates tech-
nology forecasting in a system modeling environ-
ment was developed and is referred to as the tech-
nology k-factor approach[11, 7]. The k-factor ap-
proach represents technologies, or potential im-
pacts of technologies, in a system modeling envi-
ronment as defined delta’s with respect to a cur-
rent system baseline. The k-factors directly mod-
ify computed metrics during the analysis, which
enables the technology benefits and penalties to
be included in the simulation. The technology k-
factors provide a way to simulate the technology
benefits or penalties in a generic way [11, 8, 7].

Wiyer = [(kWemp,y * Wempty) + Wpayload]
[ (Range xkrspc* TSFC  kcp D) }
exp —1

X — %k —

% ke,
(1)

Equation 1 displays fuel weight for a fixed
range mission as a function of the intermediate
metrics aircraft empty weight (We,pry), payload
weight (Wpayi0aq), thrust specific fuel consump-
tion (TSFC), and aircraft lift and drag. This
equation demonstrates how the technology k-
factor modeling approach can be implemented.
The terms krsrc, k¢, k¢, and k., are used to
represent technologies that could potentially im-
pact the intermediate metrics.
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2.2 Surrogate Modeling

Surrogate models, or metamodels, are ap-
proximations of a complex analysis model [11,
16]. Hence, they can be described as a model of a
model [16]. Surrogate models are based upon the
original models, therefore the physics-based rela-
tionships between the inputs and outputs will be
retained. They are, however, less complex than
the original analysis model but still accurate to a
certain degree. The reduced complexity can lead
to faster simulation times and less computational
expense.

There are many different types of surrogate
models, including Response Surface Equations
(RSEs) and Artificial Neural Networks[11, 9].
RSEs are polynomial regressions of the model
outputs as a function of the model inputs. They
are developed by using a Design of Experiment
(DOE) technique to sample the inputs within
their valid ranges and then regressing the simula-
tion outputs as a function of the inputs. The abil-
ity of the RSE to capture interactions of the input
variables depends on the order of the model. For
example, a quadratic regression model, or second
order RSE, will capture linear effects, quadratic
effects, and two-variable interactions[9].

Artificial Neural Networks (ANN), another
type of surrogate model, are models that are in-
spired by the central nervous system and used
heavily in the discipline of machine learning.
ANNs map inputs to outputs by developing a net-
work of hidden nodes, or neurons, which mimics
a biological neural network. There can be many
layers of hidden nodes, and the number of lay-
ers depends on the complexity of the phenom-
ena being modeled. Determination of the nodes,
and their weightings, is done by utilizing a set of
training data. In general, ANNs provide a better
representation of systems with non-linear behav-
ior than RSEs.

3 Technical Approach

The quantitative fidelity management
methodology developed for this research pro-
vides a way to perform trade-offs between
model fidelity and model complexity of inte-



grated design environments. The methodology
leverages the capabilities provided by surrogate
modeling and the technology k-factor approach
to enable quantitative assessments of all model
combinations, which facilitates down-selection
of the final modeling environment. Development
of the methodology was done by following the
generic top-down decision support framework
previously discussed and presented in Figure
1. Similarly to the manner the decision support
framework is used to determine the final design
of a system, it can also be followed to choose
the modeling environment most appropriate for
system design support.

An integrated modeling environment is cre-
ated to meet specific modeling needs with re-
spect to system design. The goals of the envi-
ronment must be enumerated and explained be-
fore different potential models can be assessed
and compared. The goals can be provided in the
form of metrics the environment should be able to
quantify. Multidisciplinary models are capable of
tracking a variety of metrics that capture the per-
formance at multiple levels of the integrated sys-
tem; therefore, the most important metrics with
respect to the design process must be identified
and selected to track the progress. Therefore, the
first step of the methodology is:

e Step 1: Identify responses of interest

Next, the tools that will facilitate the assess-
ment of the potential model alternatives should
be identified and prepared. It was established
that the technology k-factor modeling approach
provides a way to quantitatively represent tech-
nology impacts within an existing modeling en-
vironment. The k-factors can be seen as calibra-
tion parameters because they alter the outputs the
modeling environment produces for a given set
of inputs by acting on intermediate metrics. Ad-
ditionally, uncertainty can be added to the sys-
tem assessment through probabilistic k-factors,
which would cause the outputs of the modeling
environment to also be probabilistic. Therefore,
the k-factor concept provides a way to introduce
uncertainty into a model.

The ability to add uncertainty into an exist-
ing environment through the k-factor approach
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can be leveraged for the fidelity management
methodology. In the context of model fidelity,
the k-factors can be used to represent the fidelity
of different alternative models, or sets models,
before they have been integrated and exercised.
Based upon this observation, the k-factors in an
existing, baseline modeling environment are uti-
lized within this research to represent the model
alternatives under assessment and are referred to
as k’-factors.

Utilizing k’-factors to represent model alter-
natives requires that a baseline modeling envi-
ronment that quantifies the appropriate responses
and has relevant k’-factors built into its modules
exists. Once this baseline environment and the
k’-factors have been identified, the model then
must be exercised to obtain the information re-
quired to assess the model alternatives. The num-
ber of alternative models, or the number of model
combinations, under consideration may be large.
This implies the simulation time of the baseline
modeling environment may need to be decreased,
which can be achieved via surrogate models. It
was previously established that surrogate mod-
els are created by formulating a DOE that cap-
tures the design variables ranges, conducting the
simulations, and utilizing the resulting data to es-
tablish the mathematical relationships. Likewise,
surrogate models of the responses of interest can
be fit as a function of the identified k’-factors.
This will enable a set of functions that retains
the physics-based relationships between the k’-
factors and responses and decreases the time it
will take to evaluate the alternatives.

This information leads to the next three steps
of the methodology:

e Step 2: Obtain baseline modeling environ-
ment

e Step 3: Identify potential k’-factors and
enumerate acceptable ranges

e Step 4: Formulate surrogate models

Next, before the alternative models are evalu-
ated, it is important to determine what value met-
rics will be used to facilitate model comparisons.
It has been established that the primary trade-off



under consideration is between the fidelity and
the complexity of the integrated modeling envi-
ronment. For this research the fidelity of the inte-
grated modeling environment will be quantified
through the amount of error surrounding the re-
sponses, where small error values correspond to
a high fidelity environment. The complexity of
the environment will be quantified through the
computational effort, which will be measured in
terms of execution time. A small execution time
corresponds to an environment with a low com-
plexity. Fidelity and complexity goals for the in-
tegrated environment can be set in terms of the
error and execution time, which is Step 5 of the
methodology.

e Step 5: Establish environment fidelity and
complexity goals or thresholds

Once the value has been established for the
alternative models, the models themselves and
their defining characteristics should be enumer-
ated. The alternative models are mapped to the
k’-factors according to the intermediate metrics
each model calculates. Therefore, each model
should be mapped to one or more k’-factors. Af-
ter the mappings are completed, the fidelity and
complexity of each individual model should be
captured. The fidelity, or model form uncertainty,
of each model is represented by an error mar-
gin applied to the relevant k’-factors, which can
later be translated into a probability distribution
function, The complexity of each model is rep-
resented by an execution time. This leads to the
following methodology steps:

e Step 6: Identify all model alternatives
and their corresponding error and execu-
tion times

e Step 7: Map alternative models to identi-
fied k’-factors

Next, the model alternatives are evaluated. Com-
parison of the potential models is facilitated by
propagating the k’-factor uncertainty distribu-
tions to the identified responses through the sur-
rogate models. This enables a probabilistic rep-
resentation of the responses as a function of the
uncertainty of each model or model combination.

QUANTITATIVE FIDELITY MANAGEMENT

Once this is completed for each model combi-
nation, the probabilistic information can be used
to capture the fidelity of each simulated environ-
ment. There are various ways the probabilistic
results can be displayed, and this research uti-
lizes the prediction profiler approach to demon-
strate the sensitivities of the responses to the un-
certainty in each of the k’-factors. The concept of
a prediction profiler will be discussed in the next
section.

The resulting fidelity and complexity infor-
mation for each combination of models is used to
perform trade-offs and enable a down-selection
to a final integrated environment. It will be
demonstrated through the case study implemen-
tation that a dynamic scatterplot assessment was
created to enable on-the-fly trade-off assessments
for the potential model combinations. Finally,
the information provided by the prediction pro-
filer and scatterplot will be used to aid the down-
selection of the final environment based on the
enumerated fidelity and complexity goals for the
integrated environment. Therefore, the final steps
of the methodology are as follows:

e Step 8: Obtain probabilistic assessment re-
sults for each response

e Step 9: Conduct trade-offs between com-
plexity and fidelity

e Step 10: Down-select final environment

Figure 2 visually summarizes each of the
enumerated steps of the fidelity management
methodology.

4 Methodology Implementation

The fidelity management methodology out-
lined in the previous section has been applied
to a case study inspired by the current goals
of the the aerospace industry, which are related
to diminished environmental impacts. The mo-
tivation for this shift comes from a variety of
statistics dealing with projected air travel growth
[2, 1], increased fuel prices[15, 2], atmospheric
emissions effects [1, 15, 10], and community
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Fig. 2 : Fidelity management methodology depiction.

noise concerns[4]. Government entities have ac-
knowledged the air travel environmental prob-
lem and plans have been put in place to under-
take them. Specific goals were outlined in the
2010 National Aeronautics Research and Devel-
opment Plan (NARDP) for near term (2015, or
N+1), mid term (2020, or N+2), and far term
(2025, or N+3) time frames to guide future re-
search plans. Government agencies, such as
the FAA and NASA, have responded to these
goals by forming three separate technology re-
search and development programs aimed at tar-
geting each of the three time frames: the FAA’s
Continuous Lower Energy, Emissions and Noise
(CLEEN) project, NASA’s Environmentally Re-
sponsible Aviation (ERA) project, and NASA’s
Fixed Wing (FW) program. Figure 3 displays the
goals for each program.

The following subsections provide an imple-
mentation of the enumerated methodology and

Technology Benefits N+1 N+2 N+3

Noise
(cum below Stage 4)

LTO NOx Emissions

-32dB -42dB -52.dB

-60% -759 -209
(below CAEP 6) 60% 75% 80%
Cruise NOx Emissions = o e
(rel. to 2005 best in class) 55% 70% 80%
Aircraft Fuel/Energy
Consumption -33% -50% -60%

(rel. to 2005 best in class)

Fig. 3 : Environmental goals for N+1, N+2, and
N+3 timeframe.

discuss all relevant results.

4.1 Step1

Identify responses of interest

The responses selected to track for this re-
search were chosen because of their relation to
the environmental objectives displayed in Figure
3. Three responses were chosen and they are



as follows: vehicle operating empty weight in
pounds (OEW), mission fuel weight in pounds,
and approach noise is decibels.

4.2 Step2

Identify and obtain baseline modeling envi-
ronment

For a baseline modeling environment, the
Environmental Design Space (EDS) was cho-
sen because of its capabilities and its availabil-
ity. EDS is a modeling and simulation environ-
ment developed for the FAA and is based on well-
established NASA modules[6]. Each of the mod-
ules within EDS are partial physics-based formu-
lations, and altogether they enable the assessment
of source noise, exhaust emissions, and perfor-
mance of both current aircraft vehicle systems
and future aircraft systems with new, emerging
technologies[14]. The modules within EDS are:

e Numerical Propulsion System Simula-
tion (NPSS)

e Compressor Map Generator (CMP-
GEN)

e Weight Analysis of Turbine Engines
(WATE)

e Flight Optimization System (FLOPS)

e Pressure and Temperature Correlations
(P3T3)

e Aircraft Noise Prediction Program
(ANOPP)

The modules are integrated through the
object-oriented NPSS coding language to enable
automated information passing. Figure 4 dis-
plays the overall architecture and demonstrates
how the information flows within the environ-
ment. Additionally, EDS is capable of assess-
ing various vehicle classes and configurations.
The vehicle model utilized for this research is a
large single aisle seat class (150 passenger) tube
and wing aircraft system with a 2960 nmi design
range. The model is representative of approxi-
mately a 1995 era aircraft.
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4.3 Step3

Identify potential k’-factors and enumerate
acceptable ranges

Five calibration parameters within EDS were
identified for the case study k’-factors. Table 1
provides the names of the k’-factors, the met-
ric within EDS they alter, and their allowable
ranges. These parameters were selected for the
case study because of their relationship to the
responses identified in Step 1. Factors FRFU,
FRWI, and FCDO are applied by being multi-
plied directly with the baseline model value of
their affected metrics. In contrast, VCTE and
Fan_ Deff are absolute scalar changes, meaning
the parameter value is is added directly to the
baseline model metric value.

Table 1: EDS k’-factors for case study.

k’-factor  Affected metric Min Value Max Value

FRFU Fuselage weight 0.7 1.0

FRWI Wing weight 0.75 1.0

FCDO Parasite drag 0.8 1.0

VCTE Trailing edge camber 0.2 0.3

Fan_ Deff Fan efficiency -0.008 -0.005
4.4 Step4

Formulate surrogate models

A space filling DOE was generated over the
k’-factor ranges provided in Table 1 and the
corresponding EDS simulations were performed.
Due to the complexity of the EDS environment,
ANNs were fit for each of the three responses.
It was determined that the ANNS s retained the re-
lationships between the k’-factors and responses,
which is demonstrated through the R? values pro-
vided in Table 2.

Table 2: Artifical Neural Net-
work R? statistics.

Response R? Value
OEW 0.99909
Fuel Weight 0.99636
Approach noise  0.99423
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4.5 StepS

Establish environment fidelity and complexity
goals or thresholds

Desired fidelity, or precision, thresholds were
enumerated for each of the three responses. The
precision thresholds are +4.5% for OEW, +0.5%
for approach noise, and +4.5% for fuel weight.
A threshold for complexity, or execution time,
was not explicitly set. Instead, the goal for the
case study is to choose a combination of models
that meets the defined fidelity goals while mini-
mizing the execution time.

4.6 Step 6 and Step 7

Identify all model alternatives and their
corresponding error and execution times

Map alternative models to identified k’-
factors

Eleven potential models were selected for the
case study. Note that these models do not actu-
ally exist, but were created for the case study to
demonstrate the methodology. Metadata that de-
fines the fidelity and complexity characteristics
of the models were also created. The metadata
was defined in a manner that ensures a range of
fidelity and complexity combinations exists. Two
model alternatives each were mapped to FRFU,
FRWI, FCDO, and Fan_ Deff, while three alter-
native models were mapped to VCTE. Table 3
displays the models, their corresponding meta-
data, and the k’-factor mappings. map to the k’-
factors.



Table 3: Model alternatives and their fidelity and complexity
metadata.

Model k’-factor mapping Fidelity Complexity (sec)

Al FRFU +6% 148
A2 FRFU +14% 9
Bl FRWI +5% 221
B2 FRWI +12% 12
Cl FCDO +5% 602
C2 FCDO +2.5% 221
D1 VCTE +4% 518
D2 VCTE +11% 15
D3 VCTE +17% 6
El Fan_ Deff +10% 20
E2 Fan_ Deff +18% 5
4.7 Step 8

Obtain probabilistic assessment results for
each response

Uniform distributions were characterized for
each of the k’-factors based off the ranges used
for surrogate generation. The uncertainty was
propagated through the surrogate models using
a 10,000 case Monte Carlo simulation to pro-
vide probabilistic characterizations of the three
responses. Figure 5 depicts the input distribu-
tions for the k’-factors and the output distribu-
tions for the three responses.

The uncertainty propagation enables identi-
fication of the k’-factors that drive the uncer-
tainty in each of the responses for the given input
ranges. Figure 5 also displays the results of this
sensitivity analysis in the form of prediction pro-
filers for each combination of the three responses
and five k’-factors. The prediction profiler dis-
plays the prediction traces for each k’-factor,
which are defined as the predicted response in
which one factor is changed while the others are
held at their current values[8]. The impact of
the k’-factors can be determined by observing the
magnitudes and directions of the slopes. It is ob-
served that both FRFU and FRWI have strong
impacts on all three responses in comparison to
the other k’-factors. Additionally, it appears that
VCTE has a relatively low impact on the three
responses.
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4.8 Step9

Conduct trade-offs between complexity and fi-
delity

In order to compare the probabilistic results
for all potential modeling combinations, an envi-
ronment that is dynamic and parametric was re-
quired. Therefore, an interactive scatterplot plat-
form was created that provides a filtering mech-
anism for the Monte Carlo simulation results.
Each point in the scatterplot is characterized by
a vector of inputs, which is a value of each k’-
factor, and a vector of outputs, which is the re-
sponse values calculated by the surrogates. The
filter enables the selection of sets of points that
have common characteristics, which further en-
ables identification of trends within the data. Fig-
ure 6 provides a depiction of the platform with all
sampling results displayed. The axes for the scat-
terplot are in terms of percent error instead of ab-
solute value as they were for the prediction pro-
filer. The expected value, or mean value, of the
input and output distributions displayed in Figure
5 were used as the baseline value for the + per-
centages. The scales for all y-axes and all x-axes
are consistent to enable a visual comparison of
the amount of error present.

Each of the 10,000 points from the Monte
Carlo simulation were characterized by the com-
bination of models they represent. The sampled
values for the k’-factors for each data point were
used to create these characterizations. The ap-
propriate model combination for each point was
chosen by identifying the highest fidelity model
that could achieve the sampled percent error for
each k’-factor. Table 4 displays information on
two data points to demonstrate how the percent
error values for the k’-factors were used to assign
model combinations.

Once model combinations were assigned for
each point, the integrated complexity for each
combination was calculated by summing the exe-
cution times for all models in the combination.
The execution times were then used for color-
coding the scatterplot, as seen in Figure 6. Re-
call that high execution times correspond to high
complexity.

After the interactive platform was created,
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it was exercised to asses the complexity-fidelity
trade-off for the potential model combinations.
Figure 7 depicts one way the platform was exer-
cised. First, the precision thresholds established
in Step 5 for each of the three responses were
overlaid onto the scatterplot, which enables vi-
sual identification of points that fall within the
thresholds and points that exceed the thresholds.
The scenario shown on the left side of Figure 7
displays all points that map to the the model com-
bination A/-BI-CI-DI-E1, which is the combi-
nation with the highest fidelity. It is clear that all
points fall within the precision thresholds for all
three responses; however, the dark red coloring of
the points is indicative of a high execution time.
Indeed, this combination of models has the high-
est execution time, which is 1,509 seconds or ap-
proximately 25 minutes. In contrast, the scenario
shown on the right side of Figure 7 displays all
points that map to the model combination A2-B2-
C2-D3-E2. This corresponds to the combination
with the lowest combined fidelity and complex-

ity. It is observed that the points fall outside the
error thresholds for the responses; however, the
execution time has been reduced to 253 seconds
or approximately 4 minutes.

4.9 Step 10

Down-select final environment

The models enumerated in Table 3 corre-
spond to a total of 48 possible model combina-
tions that could be selected. The probabilistic
platform shown in Figure 6 and Figure 7 provides
an informative look at the fidelity and complexity
of each potential combination, but assessing each
combination may be too cumbersome. Therefore,
for the sake of demonstrating down-selection a
subset of combinations was selected. Selection
of the subset was done by considering the sen-
sitivity results shown in Figure 5 and the meta-
data in Table 3. As previously stated, FRFU and
FRWI both have strong impacts on the responses.
Therefore, it is assumed that having a low-fidelity
representation of both will cause the precision
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Fig. 6 : Scatterplot matrix colored by execution time.

Table 4: Example of how model combina-
tions were assigned for each data point.

| Point 14 | Point 335

% FRFU -6.4 -5.6
FRFU Model A2 Al
% FRWI 8.9 11.0
FRWI Model B2 B2
% FCDO 2.2 -3.6
FCDO Model Cl C2
% VCTE 0.2 11.7
VCTe Model D1 D3
% Fan_ Deff -5.3 11.6
Fan_ Deff Model El E2

goals to not be met. Additionally, it was noted
that VCTE appears to have a weak impact on all
responses. This would imply a low-fidelity rep-
resentation is appropriate, especially if there is a
large savings in execution time. Observing the
metadata for VCTE’s model alternatives shows
that choosing model D3 over model DI would
provide a time savings of 512 seconds, which is
significant.

Based upon these observations, model D3
was selected for all combinations considered.
Additionally, all combinations include the pair
Al-B2 or A2-B1, which ensures that either FRFU
or FRWI will be represented with the highest fi-
delity option. Finally, all potential combinations
of models for FCDO and Fan_ Deff are consid-
ered. Therefore, these assumptions create a sub-
set of eight combinations out of the original 48.
They are defined as follows:

1. AI-B2-C1-D3-El
2. Al-B2-C1-D3-E2
Al-B2-C2-D3-El
Al-B2-C2-D3-E2
. A2-BI-CI-D3-El

o v A W

. A2-BI-CI-D3-E2
7. A2-BI-C2-D3-El
8. A2-B1-C2-D3-E2

The probabilistic platform was used to ana-
lyze each of the enumerated combinations. The
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Fig. 7 : Demonstration of the probabilistic model comparison environment.

maximum observed error for each response was
identified for each combination, as well as the
overall execution time. Figure 8 displays the re-
sults for OEW error, Figure 9 displays the re-
sults for approach noise error, Figure 10 displays
the results for fuel weight error, and Figure 11
provides the execution times. The error goals
for OEW, approach noise, and fuel weight are
plotted on the corresponding figures to identify
which combinations exceed the allowable error
range. It is observed that all combinations meet
the 0.5% allowable error for approach noise. For
fuel weight, Combination 3 and Combination 8
exceed the 4.5% allowable error. Combination
2, Combination 3, and Combination 4 are able to
meet the 4.5% allowable error for OEW. There-
fore, only two combinations out of the eight in
the subset are able to simultaneously stay within
the allowable error thresholds, and they are Com-
bination 2 and Combination 4.

Recalling the goals set in Step 5, the objective
is to select an integrated environment that meets
the provided precision goals and minimizes exe-
cution time. Therefore, the final down-selection
between Combination 2 and Combination 4 is
made by comparing their execution times. As
seen in Figure 11, Combination 4 has a signif-
icantly lower execution time than Combination
2. The exact time for Combination 4 is 392 sec-
onds and the exact time for Combination 2 is 773
seconds. Therefore, Combination 4 would be se-
lected because it provides a 381 second savings in
execution time while still enabling the precision
goals to be met.

Combination B

Combination 7

Combination B

Combination 5

Combination 4

Combination 3

Combination 2

Caombination 1

. . L . . n . .
a 05 1 15 2 25 3 35 4 445 5
Maximum error observed

Fig. 8 : Maximum observed OEW error for each
model combination.

0s

Fig. 9 : Maximum observed approach noise error
for each model combination.

5 Conclusions

Modeling and simulation will continue to be
used in the future for the design of next gen-
eration systems, and these models will become
increasingly complex as more modeling effort
is put into them. Models that become over-

12



complex will result in execution times that hin-
der their usefulness; conversely, models that do
not include enough detail about the system un-
der assessment will produce simulation results
surrounded by too much uncertainty. Therefore,
there is a need to be able to identify areas of
the system that should be represented by high-
fidelity analysis codes to minimize wasted effort
and produce results that are surrounded by a lim-
ited amount of uncertainty.

A method that facilitates the quantitative
management of model fidelity and complexity
has been presented and demonstrated. The ca-
pabilities provided by mature enablers have been
synthesized to provide the opportunity to pro-
duce quantitative fidelity assessment results. It
has been demonstrated through the defined case
study that the method presented in this research
can help engineers determine parts of the system
where high fidelity representation is most needed.

Combination &

Combination 7

Combination &

Combination 5

Cornbination 4

Cornbination 3

Combination 2

Combination 1

L L I L L I L L
0 as 1 1.5 2 258 3 35 4 45 5
axirurm error ohsered

Fig. 10 : Maximum observed fuel weight error
for each model combination.
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Combination
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] 100 200 300 400 500 600 700 800 200
Execution time

Fig. 11 : Integrated execution time for each
model combination.
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