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Abstract

There has been a recent push by industry and
government to make commercial air travel more
environmentally friendly by striving to meet ag-
gressive fuel burn, noise, and emissions goals si-
multaneously. This has forced engineers to move
away from traditional turbofan engines mounted
on tube-and-wing aircraft, and look toward ad-
vanced concepts. The development of advanced
concepts requires engineers to utilize parametric
design space exploration techniques to facilitate
their understanding of the concept. The research
presented in this paper focuses on formulating
a stochastic method to enable parametric design
space exploration for advanced concepts by cre-
ating an accurate representation of the high fi-
delity design space. As an initial step, the method
is implemented on NACA 4-series airfoils as a
proof of concept. The results indicate that using
an ensemble method to combine Gaussian pro-
cess surrogates of multiple data sets gives an im-
proved high fidelity design space representation.
Finally, rapid visualizations of the dynamic sen-
sitivity derivatives enables the parametric explo-
ration of the high fidelity design space.

Nomenclature

X vector of sample point locations
y vector of observed responses

} model response

y kriging predictor

u mean

o’ variance

A hyperparameter

D number of design parameters

n number of observations

p,q indices for the observations

[ design variable index

o2 noise variance hyperparameter
(53@ signal variance hyperparameter
dpg Kronecker delta

j number of data sets

i data set index

€ Gaussian noise

f* Gaussian process prediction distribution
B variable weighting factor

1 Introduction

The rising cost of fuel along with increasing fears
of climate change has caused governments and
manufacturers to research more sustainable air-
craft concepts. NASA has put forth aggressive
goals to simultaneously decrease the fuel burn,
noise, and emissions of commercial aircraft[1].
Many existing technologies have the ability to
target one of these specific areas, but what makes
this research area challenging is that these goals
must be met simultaneously. Therefore, engi-
neers must move away from traditional concepts.
The development of advanced concepts can ben-
efit greatly from the utilization of parametric de-
sign space exploration techniques which will en-
able engineers to gain a better understanding of
a concept’s behavior. Engineers must develop a
strong understanding of the fundamental physics



behind a new concept during the conceptual de-
sign phase. The research presented in this pa-
per focuses on formulating a method to enable
parametric design space exploration for advanced
concepts by creating an accurate representation
of a high fidelity design space.

One advanced concept currently being re-
searched by NASA and industry is the open rotor
engine. Preliminary tests predict that the open ro-
tor could reduce fuel burn by 20% to 30% com-
pared to traditional turbofan engines[2]. The ma-
jor difference between an open rotor engine and a
traditional turbofan is the propulsor. The open ro-
tor features two unducted counter-rotating blade
sets. Removing the nacelle allows for higher by-
pass ratios without the additional drag penalty
of large nacelles. Incorporating two blade rows
allows engineers to achieve a given amount of
thrust with a smaller diameter propeller which
helps avoid losses due to high tip speeds. The
counter-rotation of the blade rows mitigates the
losses due to the tangential component of motion
of the air behind the propeller. The individual
blades are highly swept and constructed from ad-
vanced composite materials to allow for efficient
operation at transonic speeds.

Despite the promising fuel burn benefit of the
open rotor architecture, engineers are concerned
about its ability to achieve the noise goal due to
the lack of a nacelle. In order to meet the goals
simultaneously, engineers need the capability to
parametrically explore the design space. Para-
metric design space exploration techniques will
enable them to perform trade studies to gain a
better understanding of how changing a specific
design parameter to reach a goal impacts the con-
cept’s ability to meet another goal. For exam-
ple, an acoustics engineer may want to clip the
aft blade row by 5% so the aft blades do not
slice through the tip vortices of the front blades.
This has a significant noise benefit, but it also
adversely impacts the propulsive performance.
Propulsion engineers need the ability to quickly
create performance maps for use by an engine cy-
cle analysis team to assess the system level per-
formance of the quieter blade design. An accu-
rate representation of a high fidelity design space
will allow engineers to parametrically explore the
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design space and quickly perform trade studies.
For propulsion engineers conducting research on
open rotor engines, this translates to a rapid para-
metric performance map generation tool.

Representing a high fidelity design space is
challenging with advanced concepts such as the
open rotor engine. Low fidelity potential flow
computer simulations are not accurate in the tran-
sonic speed regime, and empirical models do not
apply to this new generation of highly swept thin
composite blades. Currently these maps are gen-
erated by fitting surrogate models to sparse high
fidelity data sets along with the help of subject
matter experts. This type of representation does
not allow for the exploration of large areas of
the design space. Improvements to the repre-
sentation can be made by generating additional
high fidelity data, but this requires more time and
money which is typically not available.

One way of decreasing the computational ef-
fort and time associated with high fidelity sim-
ulations is to utilize information from multiple
sources of data. These are commonly referred
to as multifidelity methods in the literature[3, 4].
Multifidelity methods use a limited number of
high fidelity simulations to augment the results
from the low fidelity simulations. Surrogate
models, or meta-models, can be used together
with multifidelity methods to further decrease the
computational and monetary burden of high fi-
delity testing[5, 6].

A decision maker must also have an under-
standing of the accuracy of the representation. A
poor understanding of the uncertainty during the
conceptual design phase leads to an increase in
performance risk at the component level which
leads to consequences at the system level. Thus,
the high fidelity design space representation must
also include uncertainty. Therefore, a proba-
bilistic surrogate modeling technique should be
used[7, 8]. Intuitively, the uncertainty of the sur-
rogate model should grow as you move away
from a known location. Oberkampf and Roy state
that the uncertainty of experimental data should
be represented with a Gaussian distribution, and
the uncertainty should grow as a function of the
distance from known observations[9]. Kennedy
and O’Hagan believe data from computer exper-



Model Form Uncertainty Representation to Enable Multifidelity Design of Advanced Concepts

iments should be treated in a similar manner[10].
Based on these observations, a Gaussian process
regression is used to generate the surrogate mod-
els for this research. It should be made clear that
the present research does not attempt to advance
the state of the art of Gaussian processes. Rather
it focuses on applying the mathematical concepts
related to Gaussian processes to an applied engi-
neering problem. A formal explanation of Gaus-
sian processes is given in Section 2.2. Another
reason for selecting a Gaussian process to gen-
erate the surrogate model is that the combina-
tion of Gaussian distributions results in another
Gaussian distribution. Recall from earlier in this
section that a key aspect of the proposed method
involves the combination of multiple sources of
data. Using Gaussian processes enables the use
of ensemble methods to easily combine data sets.
The resulting surrogate model is generated by fit-
ting Gaussian processes to each data set individu-
ally and then combining them using an ensemble
method. A formal explanation of the ensemble
method used in this research is given in Section
2.3.

The resulting surrogate model corresponds
to a high fidelity design space representation
with the addition of uncertainty which enables
the use of parametric design space exploration
techniques. By dynamically visualizing the sen-
sitivity derivatives, the decision maker is able
to isolate the effect of a design parameter on
the response by varying that particular parame-
ter while holding the remaining ones constant.
Two-dimensional slices of the responses are plot-
ted to allow the user to visualize the impact of
each parameter separately in real time. Includ-
ing the uncertainty of the prediction gives the
user more information to work with. For exam-
ple, the predictive distribution can be used to se-
lect the next sample point in light of the current
sample to pursue some goal, such as decreas-
ing the output value or decreasing overall pre-
dictive uncertainty. Sacks et al. use an expected
improvement criterion based on predictive inter-
polation uncertainty to drive sampling toward a
global optimum[11]. Utilization of this visual-
ization technique enables the uncertainty due to
each parameter to be viewed separately, which

could lead to the discovery of the parameters re-
sponsible for the majority of the uncertainty. Fu-
ture testing plans can be made more efficient by
specifically targeting that parameter. Decision
makers will then be more confident that a fu-
ture test will decrease the level of uncertainty.
A similar visualization can be done with the hy-
perparameters of the Gaussian process model to
help assist the user in evaluating their impact as
well. It should be made clear that the uncertainty
shown by the Gaussian process model is not the
true uncertainty of the model. It only shows the
uncertainty relative to other areas in the design
space and the uncertainty trends. However, this
can still give the user valuable insight into the
physics of the problem.

As an initial step in this research, the pro-
posed method is tested on NACA 4-series air-
foils as a proof of concept. These airfoils were
chosen due to the information available regard-
ing their aerodynamic performance from NACA
wind tunnel experiments[12]. Some is utilized
as a data set during the implementation of the
method while the rest is used for validation. Once
the method has been validated for this example, it
will be applied to more representative real world
problems such as open rotor in subsequent pa-
pers.

2 Technical Approach

Two key assumptions are made about the kind of
problems for which this method could be used:

1. There is a limited amount of experimental
data from prior feasibility studies.

2. The data is smooth, meaning the responses
from two inputs located a short distance
from each other are similar.

The diagram shown in Fig. 1 pictorially
shows the process described in the following sec-
tions.

2.1 High Fidelity Correction

Once the data sets have been obtained or gener-
ated, a high fidelity correction surrogate is used
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Fig. 1 XDSM representation of the technical approach[13]. Information in the green boxes represents
general analysis steps described in Section 2, the gray boxes represent the data from the proof-of-concept
described in section 3, and the dark gray lines represent the flow of data.

to remove the bias due to the assumptions in the
lower fidelity data sets. This is an important step
to ensure the ensemble method does not unfairly
weight the higher fidelity data set. A subset of
high fidelity data, sometimes referred to as the
“truth model,” is used to create the correction sur-
rogate for each data set. The correction surrogate
is created by fitting a model to the difference be-
tween the high fidelity subset and the lower fi-
delity data at each high fidelity observation for
each data set. However, there are typically a lim-
ited amount of data points in the high fidelity sub-
set. Itis challenging to fit an accurate surrogate to
such a sparse data set because traditional multifi-
delity methods do not work well when the data
set is small[14]. The authors found that a krig-
ing interpolation model is able to fit the data best.
The mean prediction from the kriging model be-
comes the correction surrogate.

Kriging models express an observer’s uncer-
tainty about a response that has not yet been
observed, based on a sample. The uncertainty
due to lack of data has been termed “‘interpola-
tion uncertainty” by Apley, Liu, and Chen [15]
and “code uncertainty” by Kennedy and O’ Hagan
[16]. Kriging is given a Bayesian interpretation,
or a type of surrogate model that is fit to an ob-
served sample and yields a predictive probability
distribution on the response at new input points.

In recent years, kriging has been studied exten-
sively as a surrogate model for engineering de-
sign [3, 5, 17, 18].

The following brief description of kriging is
based on the detailed explanations in Forrester et
al. and Jones[5, 19]. Kriging predicts the value
of a random field at a new input point from re-
sponses at nearby design points[20]. It begins
with a set of sample data and their observed re-
sponses.

= {x1,X2, ey Xn } | (1)

y={y(), (@), ... y(w)}" (2)

The responses are assumed to be random vectors
with a mean of 1u, where 1 is an n X 1 column
vector of ones. Subsequently, the kriging ba-
sis function is used to correlate the random vari-
ables:

R = Corrly(x,),y(x,)] =
D
exp (— Z 7»1\9_62 —qu,2> €)
=1

where superscript / is used to denote the differ-
ent design variables whereas subscripts p and ¢
represent the observations. If the function is as-
sumed to be continuous, the correlation function
makes intuitive sense. The values at y (x,) and
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y ()_cq) will tend to be close if ||x, —x, || is small.
If X, =X, then the correlation will be 1, and

if [|x, —x,|| — oo, the correlation tends to zero.

The A/ hyperparameter represents the speed with
which the correlation decays as one moves in the
I'" variable direction. Large values of A/ mean
the function changes rapidly in the I'" variable
direction. The correlations are then used to form
a covariance matrix.

Cov(y) = 6°R. (4)

The distribution of y describes how the func-
tion is expected to change as each variable is
changed. It depends on u, 021 and /. Approxi-
mate parameters (&1, 6%, and A!) are chosen such
that they maximize the likelihood of the observed
data. Essentially, these parameters are chosen
such that the model represents the observed data
as much as possible. Refer to Forrester et al.
or Jones for the details of maximum likelihood
estimation[5, 19].

To make predictions at some new point x/, a
value of y’ is initially guessed. This new point
(x',y') is added to the system as the (n+ 1) ob-
servation and a new likelihood function, referred
to as the augmented likelihood function, is com-
puted based on the parameters found from the
maximum likelihood estimation. The augmented
likelihood function is only a function of y’, since
the parameters fi, 62, and 7:’ are fixed. Therefore,
the best predictor of y’ is a value that maximizes
the augmented likelihood function. Hence this
value of y becomes the kriging predictor. Let r
be the vector of correlations between y(x') and

y(x,), for p=1,..,n.

Corr[y(x'), y(x;)]

r= : 5)
Corr[y(x'),y(x,)]

The correlation matrix for the augmented data set

182 R
~ r
R= (r/ 1) (6)

The augmented correlation matrix is then
used to create the augmented likelihood function.
To find the value of y' that maximizes the aug-
mented likelihood function, the derivative of the

augmented likelihood function is taken and set
equal to zero. Solving this function for y’ results
in the following formula for the kriging predictor.

$) =t r Ry~ 17) ()
The difference between the “truth model” ob-
servations and the lower fidelity predictions be-
comes the training data for the kriging model.
The kriging predictor represents the correction
surrogate which is then used to predict the dif-
ference between the “truth model” and the lower
fidelity data set at every point in the lower fidelity
data set. The predicted difference is then added to
the lower fidelity data sets to form the corrected
data sets shown in the equation below,

fi = fi+ 5, ®)
where subscript C is used to represent the cor-
rected data set.

2.2 Gaussian Process Regression

The next step is to fit the corrected data sets with
a Gaussian process. A Gaussian process is a class
of stochastic processes that, given a set of data,
uses the multivariate Gaussian distribution to
make predictions at unobserved locations in the
input space. It is a statistically rigorous approach
for constructing surrogate models of determin-
istic computer codes[21]. A Gaussian process
is commonly derived from a Bayesian perspec-
tive, similar to kriging[22, 23]. Gaussian pro-
cesses are also commonly referred to as kriging
(depending on the kernel) or Design and Anal-
ysis of Computer Experiments (DACE)[24, 25].
The DACE approach was popularized by Sacks
et al. and Cressie[11, 20]. The covariance of a
Gaussian process, which is used as a represen-
tation of uncertainty, is mathematically defined
based on a covariance function, also called a ker-
nel. Different distance based kernels can be cho-
sen based on the user’s preference. The present
research uses the squared exponential kernel and
a zero mean function which makes it mathemat-
ically similar to standard kriging[5, 20]. Choos-
ing an intuitive distance based kernel helps bring
the Gaussian process out of the abstract mathe-



matical world and into the physical engineering
world.

Only a brief explanation of Gaussian pro-
cesses is given in this report because of the sim-
ilarities to kriging. The reason for using a Gaus-
sian process instead of kriging again is because a
Gaussian process is a regression formulation, and
additional noise to represent model form uncer-
tainty can be added easily. The reader is encour-
aged to read chapter 2 of Gaussian Processes for
Machine Learning by Rasmussen and Williams
for a more detailed explanation[21].

A Gaussian process is specified by its mean
function m(x) and covariance function k(x,x")
which are defined as

m(x) = E[f(x)] )

k(x,x") =E[(f (x) =m(x)) (f (&) =m(x))]. (10)

The mean function is typically set to zero in prac-
tice. This also makes the derivation easier to fol-
low. An additional noise variable is added into
the regression model such that y = f(x) +¢€. A
decision maker can specify the amount of noise
added to the simulation to represent the model
form uncertainty. Assuming Gaussian noise €
with variance 62, the prior becomes

cov(y) = K(X,X) + oL (11)

where I is the identity matrix and K (X,X) is the
n X n covariance matrix evaluated by the squared
exponential covariance function, shown below.

cov(f(xp), flxg)) = k(xp,25) =

1
ey (5356~ ) + 63 12

It should be noted that the covariance of the out-
put is a function of the inputs. Also notice the
similarities to Equation 3 from Section 2.1. The
joint distribution of the observed values and the
function values at the test locations is shown in
the following equation.
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The predictive equations for the Gaussian process
regression are

X, y, X" ~ A(f, cov (7)) (14)

where

F—K(X"X) [KX.X)+02] 'y (15

cov(f') = K(X*,X*) ~ K(X",X)
[K(X.X)+02] ' K(X.X*) (16)

The MATLAB code that accompanies the
text by Rasmussen and Williams is used to gen-
erate the Gaussian process surrogate. The hy-
perparameters (A',A2,....AP) are referred to as
the characteristic length scale for each dimen-
sion. They show the degree of nonlinearity in the
dimension they are associated with. Therefore,
they can be used as a sensitivity study.

2.3 Model Combination

The models are now combined using a like-
lihood ratio test similar to Bayesian model
averaging[26, 27]. A second set of high fidelity
data, or “truth model,” is used to determine a vari-
able weighting factor B for the lower fidelity data
sets. It is important to note that this second high
fidelity data set is not the same data set used to
create the correction surrogates in Section 2.1.
First, a likelihood is computed for each Gaus-
sian process at every high fidelity observation.
The weighting at each observation is determined
by calculating the normalized likelihood for each
data set as shown by the equation below.

= L& (17)

J
Y lik;
i=1
Another Gaussian process regression is then

fit to weighting factors for each data set. The
mean prediction from the regression represents
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the variable weighting factor model. To get the
combined mean and covariance, the individual
means and covariances are multiplied by their
respective weighting factors and then added to-
gether.

Borar = ) BTG, (18)
O, (9)

3 Proof of Concept

The proposed method is implemented in MAT-
LAB on NACA 4-series airfoils. The method at-
tempts to predict the lift coefficient, Cj, as a func-
tion of the three NACA 4-series geometry param-
eters and the angle of attack, a.. All geometry pa-
rameters are normalized by the chord. A total of
48 wind tunnel observations from Theory of Wing
Sections by Abbott and Doenhoff[12] are used as
the “truth models” to generate the high fidelity
design space. Additional lower fidelity data sets
are generated using XFOIL, which is a potential
flow solver that can optionally include an interac-
tive integral boundary layer formulation and sta-
bility model[28]. The lower fidelity data set is
generated using incompressible inviscid simula-
tions and the higher fidelity data is generated us-
ing incompressible viscous simulations.

A MATLAB script was set up to perform a
sweep of all the input parameters in XFOIL while
holding the Reynolds number constant at 6 mil-
lion for the viscous cases. The viscous data set
is smaller to simulate a more realistic problem
where an engineer could likely generate lots of
low fidelity data and a smaller amount of higher
fidelity data along with a limited amount of ex-
perimental data. See Tables 1 and 2 for a list of
the parameter ranges used for each data set. This
results in 675 data points for the inviscid set and
105 points for the viscous set.

Observations for the NACA 0006, 0012,
1408, 2418, and 4424 airfoils make up the first
wind tunnel set, W7T;, and are used to create
the correction surrogates. Fig. 2 compares the
predictive capability of the corrected and uncor-

Corrected V
— — = Uncorrected V
Corrected IV

25

— — — Uncorrected IV s
wind Tunnel g

0 2 4 6 8 10 12 14 16
a

Fig. 2 Lift curve predictions of a NACA 4418
airfoil with and without the correction surrogates
for the viscous (V) and inviscid (IV) data sets.
The wind tunnel results are shown in red as a ref-
erence.

Table 1 Input parameter ranges for inviscid
XFOIL simulations

Lower Upper

Bound Bound Step
Max Camber 0 4 1
Max Camber Location 0 4 1
Thickness Ratio 6% 24% 2%
Angle of Attack 0 16 4

Table 2 Input parameter ranges for Viscous
XFOIL simulations

Lower  Upper

Bound Bound Step
Max Camber 0 4 2
Max Camber Location 0 4 2
Thickness Ratio 6% 24% 6%
Angle of Attack 0 16 8

rected data sets for a NACA 4418. The wind tun-
nel observations for the NACA 4418 are repre-
sented by the red stars. Notice how each correc-
tion surrogate significantly improves the predic-
tion. The equations for the corrected data sets are
shown below, where subscript V and IV refer to
the viscous and inviscid data sets respectively.
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Fig. 3 NACA 4418 airfoil using only the corrected inviscid Gaussian process surrogate, fyy,.
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Fig. 4 NACA 4418 airfoil using the combined Gaussian process surrogate

Ve, =Vy+ 5y, (20)

Ve =1V, + 9y, 1)

The corrected data sets are then fit with a
Gaussian process and combined using the ensem-
ble method described earlier. Applying equations

17,18, and 19 to the corrected XFOIL data sets
results to the following,

likk
k 1%
=1V 22
Prv Likk, 4 Lik (22)
likk
k \%
=—V 23
By ikk, + ik, 3
B = EivEs,, + 085, (24)

15 20 0 5 15

Thickness

10

f

> Ytotal*

cov(fy

otal

)= cov(f}‘v)fEN + cov(fik/)foév (25)

Wind tunnel observations for the NACA 0010,
2408, 2415, and 4421 are used as the high fidelity
data for the ensemble method. The resulting sur-
rogate can now be utilized for parametric design
space exploration.

4 Results and Discussion

The following discussion is based on the predic-
tion of the lift curve for a NACA 4418 airfoil.
However, it should be noted that one of the key
advantages of creating a surrogate to represent
the entire high fidelity design space is that it al-
lows the user to quickly generate multiple pre-
dictions which allows for rapid parametric design
space exploration.
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A dynamic sensitivity derivative visualization
environment was set up in MATLAB to help vi-
sualize the sensitivity of the response to the in-
dividual parameters. Fig. 3 shows this visu-
alization for the NACA 4418 airfoil using only
the corrected inviscid Gaussian process surro-
gate, f JA%E

The various inputs (maximum camber, max-
imum camber location, etc.) are listed along the
independent axes, and the response, Cj, is on the
dependent axis. The reader can think of these
plots as partial derivatives because they show the
impact of one specific parameter on the response
while holding the others fixed. The solid lines
represent the mean prediction, while the dashed
and dotted lines represent one and two standard
deviations respectively. The triangles at the bot-
tom of each plot indicate the current setting for
each parameter. For instance 4, 4, and 18 for the
geometry parameters, and 10° for the angle of at-
tack. The last plot in Fig. 3 is the predicted lift
curve for the NACA 4418. Notice how the uncer-
tainty in the plots is close to uniform. This indi-
cates that the accuracy of the prediction is domi-
nated by the artificial noise that was added to ac-
count for the model form uncertainty described
in Section 2.2.

Fig. 4 shows the sensitivity derivatives for
the NACA 4418 airfoil using the combined Gaus-
sian process surrogate. Notice the uncertainty de-
creases at locations near viscous observations i.e.
0°,8%, and 16° on the lift curve. Refer to Tables
1 and 2 for more specifics on the locations of the
data points.

Fig. 5 again shows the predicted lift curve
for the NACA 4418 for the final surrogate, but it
also includes the predicted lift curves for the cor-
rected viscous and inviscid data sets as well as
the true wind tunnel observations as a compari-
son. Notice how the corrected viscous prediction
gives a more accurate prediction. The ensemble
method realizes this and automatically weights
the viscous data set more in this area of the de-
sign space. On the other hand, the opposite is true
for the NACA 4412. The predicted lift curves of
a NACA 4412 shown in Figure 6 indicate that the
corrected inviscid data set is more accurate. It
may seem counter intuitive to the reader for the

1.6
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Combined
Wind Tunnel

14+

12

0.8 [
0.6 |

sef
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0 2 4 6 8 10 12 14 16
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Fig. 5 Lift curve predictions of a NACA 4418
airfoil for the corrected inviscid (fyy.) and vis-
cous (fy,) data sets as well as the combined sur-
rogate. The wind tunnel results are shown in red
as a reference.

inviscid data set to be more accurate in certain
areas of the design space. This is due to the fact
that the viscous data set is much smaller; there-
fore, there is a lack of viscous data in some areas.
It may also be a result of a better correction sur-
rogate in some areas of the design space. The
advantage of the ensemble method used is that it
accounts for this switch in fidelity level through-
out the design space.

An attempt was also made to extrapolate be-
yond the bounds of the data sets. Fig. 7 again
shows the predicted lift curve for the NACA 4418
like Fig. 5, but this time the models attempt
to predict the lift curve up to 20° angle of at-
tack. Notice how the predictions continue up-
wards away from the true value after 16° angle
of attack. Therefore, this method should not be
used to extrapolate beyond the boundaries of the
data.

The research presented in this paper has
shown how a Gaussian process can be used as a
representation of uncertainty. The reader should
be aware that this is not a representation of the
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Fig. 6 Lift curve predictions of a NACA 4412
airfoil for the corrected inviscid (fy,.) and vis-
cous (fy,.) data sets as well as the combined sur-
rogate. The wind tunnel results are shown in red
as a reference.
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Fig. 7 Extrapolated lift curve predictions of a
NACA 4418 airfoil for the corrected inviscid
(f1v) and viscous (fy.) data sets as well as the
combined surrogate (f; ). The wind tunnel re-

O
sults are shown in red as a reference.
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true uncertainty. However, it does indicate the
relative uncertainty. Meaning that areas in the
design space where the uncertainty is higher rel-
ative to other areas, would also have a higher ac-
tual uncertainty.

The results indicate that using an ensemble
method to combine Gaussian process surrogates
of multiple data sets gives an improved high fi-
delity design space representation.
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