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Abstract

The numerical simulation and control of three-
dimensional bionic bird’s self-propelled flying in
a viscous flow and the mechanics of bird flying
are carried out in this study. The bird is pro-
pelled and lifted by flapping and rotating wings.
The best flying of the bird is achieved by adjust-
ing the flapping period, flapping amplitude, max-
imum rotation angle of wings, rotation angle ve-
locity of wings, and density ratio. Both the thrust
and lift of the bionic bird are increased with the
decrease of the flapping period or the increase of
the flapping amplitude, and the bird can fly faster
forward when the flapping period is shorter and
upward when the flapping amplitude is larger,
which is found in this study. A three-dimensional
computational fluid dynamics package, which in-
cludes the immersed boundary method and the
volume of fluid method, the adaptive multi-grid
finite volume method, and the swimming and fly-
ing control strategy is used in this study.

1 Introduction

In the nature, many animals are capable of con-
trolling the flow using an active or passive de-
formation of the body surface, moreover they
have better movement performance than the man-
made vehicles. Their special motion can reduce
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the drag force, suppress the turbulence and pro-
duce much more lift than the human understand-
ing as a credible method of turbulent flow control.
Most birds are much more efficient flyers than
the man-made vehicles, and the flapping flight
is more complicated than the flight with fixed
wings, as its dynamics is determined not only by
its deformation but also by its wing motion as-
pects, such as plunge, pitch, and rotational phase
difference between the plunge and pitch. Un-
derstanding the dynamic interaction between the
fluid and the deformable wing may lead to a bet-
ter micro air vehicles MAV design[1].

In recent years, much work has been done
on the flapping flight using both experimental
and computational methods (e.g. Ellington[2],
Dickinson[3], Sane and Dickinson[4], Liu[5],
Sun and Tang[6, 7], Usherwood and Ellington[8],
Wang[9]), also a considerable understanding of
the aerodynamic force generation mechanism has
been achieved. However, in most of these studies,
the flight was fixed and the body couldn’t move
or rotate freely when is subjected to the action
of the pressure, the viscous force and the gravity.
What happen if the flapping flight with the flap-
ping and rotating wings is unfixed? Study of a
three-dimensional bird’s self-propelled flying is
more similar to the real flyer in the nature than
the fixed studies.

Pennycuick[10] has collected wingbeat fre-
quencies of 15 species of birds cruising flight,
observed in the field in level. An equation
about the relationship between the gravity and
the flapping frequency was found, the gravity
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is proportional to the flapping frequency, so the
lift is proportional to the flapping frequency,
too. Salman A. Ansari, Kevin Knowles, and
Rafal Zbikowski[11] studied the effects of wing
kinematics on the aerodynamic performances of
insect-like flapping wings in hover based on non-
linear unsteady aerodynamic models. They found
that the lift and the thrust increased with increas-
ing flapping frequency, flapping amplitude, and
advanced wing rotation, but such increases were
limited by practical conditions. In this study, the
thrust and lift of the bionic bird has been investi-
gated with variable flapping frequency and flap-
ping amplitude using a three-dimensional self-
propelled flying bird.

In the present study, the numerical simulation
of three-dimensional bionic bird is a convenient
tool. This is achieved by a CFD software package
for 3D moving boundary problems, which com-
bines the adaptive mesh refinement method, the
immersed boundary method and the volume of
fluid (VOF) methods. It has advantages of greatly
saving the computing time and accurately por-
traying the three-dimensional moving boundary.
Based on the boundary vorticity-flux (BVF) the-
ory proposed by Wu[12], the original integrand
of overall performance parameters (i.e. forces
and moment of the flow) is transformed to the
moments of its spatial derivatives, thus revealing
the effect of various local dynamic processes on
the integrated performance and tracing the under-
lying fluid physical sources to the moving body
surface. The computations of the forces exerted
on the bird body and the relationship between the
forces and vortex structures are carried out by the
BVF theory in 3D bionic bird’s self-flying.

2 Numerical approaches

2.1 Governing equations and numerical
method

In this study, the governing incompressible un-
steady Navier-Stokes equations are solved using
the finite volume method. The Cartesian adaptive
mesh refinement technique is used to compute the
flows with minimum overhead. The computa-
tional domain is spatially discretized by using a

cubic finite volumes organized hierarchically as
an octree. The projection and the multi-levels
methods are used to solve the Poisson equation
of pressure. The convective terms are discretized
by using the second order Godunov type scheme.
The diffusion terms are discretized with the im-
plicit Crank-Nicolson scheme, which can elimi-
nate the viscous stability constraint. The detail of
the numerical algorithms refers to [13].

2.2 Adaptive moving boundaries with the
Ghost-cell immersed boundary method

The study of bird self-propelled flying is a mov-
ing boundaries problem involving complex ge-
ometry. The computing methods of moving
boundaries problem are usually classified into the
body-fitted moving mesh method and immersed
boundary method (IBM) for computational fluid
dynamics. The boundary conditions can be sim-
ply and accurately set using body-fitted moving
mesh method, but the grid generation is a difficult
and time-consuming task. The immersed bound-
ary method requires significantly less computa-
tion than other methods without sacrificing the
accuracy. In the present study, moving bound-
aries are treated with ghost-cell IBM, which em-
ploys discrete forcing where the forcing is either
implicitly or explicitly applied to the discretized
Navier-Stokes equations. The technique of adap-
tive multi-grids is used and the adaptive refine-
ment criteria are both vorticity and ∇T , where T
is a tracer of VOF. This ensures that the meshes
intersecting with the moving body boundaries are
the finest and accurate representation of moving
boundaries is achieved[3].

3 Motion equations and flying parameters

3.1 Motion equations

The dynamics equations for the self-propelled
three-dimensional bird are

m
du
dt

= F,
dL
dt

= M, (1)

F =−
∫

∂B
(−pn+µω×n)ds, (2)

F =−
∫

∂B
ρx× (

1
2

σp +σvis)ds (3)
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where m is the mass of the bionic bird; u is
the velocity vector; F is the aerodynamic force;
M is the moment and L is the moment of mo-
mentum; ∂B is the three-dimensional bionic bird
surface, n is the unit normal vector pointing out
of the bird body surface; ρ, µ, ω are the air den-
sity, shear viscosity and vorticity, respectively;
σp = n × ∇p/ρ, σvis = ν(n × ∇)× ω are the
boundary vorticity flux caused by the tangential
pressure gradient and the viscous vortical effect,
respectively. Eq.(3) is a force expression of the
boundary vorticity flux while Eq.(2) is a classical
force formula derived directly from the momen-
tum balance [12].

In the study, two sets of coordinates are used,
which are the bird body coordinates (xl,yl,zl)
and the global coordinates (x,y,z). Two sets of
coordinates can be converted to each other.

3.2 The flapping rule and kinematic param-
eters

The bird body consists of four parts: the body
trunk, the tail and two flapping wings. The three-
dimensional profile of the bird is shown in Fig.1,
which are observed from the side and above, re-
spectively.

Fig. 1 . 3D profile of the bird body.

The flapping motion of the wings contains
two steps: rotation and flapping. The first step,
both wings rotate along the y axis with the same
angle, the rotation angle α2(t) is shown in Eq.(5).
The second step, both wings rotate along two
straight lines parallel to the x axis, the two lines
contain the points (xp,yp,zp) and (xp,−yp,zp),
respectively, which are intersection point of the
bird body and each of the wings; the flapping an-
gle of the right wing is always reversed to the left
one. In this study, the flapping angle of the left

wing α1(t) is defined as the major one, which is
shown in Eq.(4).

In the bird body coordinate system, the flap-
ping angle α1(t) and the rotation angle α2(t) in
the first period can be written as:

α1(t) = αm × sin(
2πt
T

− π
2
) (4)

α2(t) =

αn × sin(
πt

2T1
), (0 ≤ t < T1)

αn, (T1 ≤ t ≤ T
2
−T1)

αn × sin[(
T
2
− t)× π

2T1
],

(
T
2
−T1 < t <

T
2
+T1)

−αn, (
T
2
+T1 ≤ t ≤ T −T1)

αn × sin[(t −T )× π
2T1

],

(T −T1 < t < T )

(5)

Where t is the time, αm is the maximum flapping
angle of the wings, αn is the maximum rotation
angle of the wings, T is the flapping period, T1 is
used to control the rotation time of the wings at
the beginning and the end of the stroke.

The Eq.(4) is presented by the red real line
with "∆" in Fig.2.(a), which is part of the sine
function with maximum value αm and minimum
value −αm. The Eq.(5) is presented by the blue
real line with "◦" in Fig.2.(a), more details are
presented in Fig.2.(b). The first equation presents
the left black dashed line, which is part of the sine
function, where 0 and αn are the minimum and
maximum value of the line, and T1 is the maxi-
mum x axis value. The second equation presents
the left red real line, which is a straight line with
a constant value αn. The third equation presents
the dark blue dash dot line, which is part of the
sine function, where αn and −αn are the maxi-
mum and minimum values of the line. The forth
equation presents the right red real line, which
is a straight line with a constant value −αn. The
fifth equation presents the right black dashed line,
which is part of the sine function, where −αn and
0 are the minimum and maximum value of the
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line. In Fig.2.(a), αm = 40◦, αn = 35◦, T = 0.02,
T1 = T/10 = 0.002.

Fig. 2 . The angle of the flapping wings. (a)The
flapping angle and rotation angle in one period;
(b)The rotation angle in one period.

Downstroke of one period consists of four
parts: pitching-down rotation and translational
acceleration at the beginning of the stroke, con-
stant rotation angle and translational accelera-
tion, constant rotation angle and translational de-
celeration, and pitching-up rotation and transla-
tional deceleration at the end of the stroke. Up-
stroke of the period consists of the other four
parts: pitching-up rotation and translational ac-
celeration at the beginning of the stroke, constant
rotation angle and translational acceleration, con-
stant rotation angle and translational decelera-
tion, and pitching-down rotation and translational
deceleration at the end of the stroke. All above
are shown in Fig.2.(a).

3.3 Boundary and initial conditions

All boundaries of the computational region are
set to be no slip boundary conditions, i.e.

ub = vb = wb = 0.

So the computational region is like a flume with-
out inflow nor outflow.

The initial condition is

u = v = w = 0.

The immersed boundary conditions on the
bird’s body surface are as follows. The body sur-
face velocity of every point consists of the fol-
lowing three components.

(1)The velocity V0 arose from the aerody-
namic force.

V0 = u0i+ v0j+w0k

(2)The linear velocity Vr arose from the ro-
tation.

Vr = ω× (x−x0) (6)

Where x is the coordinate of a point on the body
surface, x0 is the coordinates of the gravity cen-
tre, which is computed at every time step.

(3)The velocity V f arose from the flapping
motion, which contains flapping and rotation.
First, the velocity arose from the flapping is:

u1 = 0,
v1 = θ1z1,
w1 =−θ1y1.

Where, θ1 is the angle velocity along the straight
line parallel to the x axis. (x1,y1,z1) and θ1 is
defined as follow:

x1 = xl − xp,
y1 = yl − yp,
z1 = zl − zp,

θ1 =
d[α1(t)]

dt
.

Where, (xl,yl,zl) is the bird body coordinates,
(xp,yp,zp) is the intersection point of the body
trunk with one of wings.

Second, the velocity arose from the rotation
is: 

u2 =−θ2z2,
v2 =−θ2x2 × sin(α1),
w2 = θ2x2 × cos(α1).
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Where,
x2 = x1,
y2 = y1 cos(−α1)− z1 sin(−α1),
z2 = y1 sin(−α1)+ z1 cos(−α1),

θ2 =
d[α2(t)]

dt
.

The velocity Vl f generated by the flapping
motion in bird body coordinates is:

Vl f =

 u f l
v f l
w f l

 ,


ul f = u1 +u2,
vl f = v1 + v2,

wl f = w1 +w2.

As we know:

m
dL
dt

= M, L = I ·Ω.

Where: Ω = (ω1,ω2,ω3)
T is the angular veloc-

ity of the three-dimensional bird, I is the inertia
tensor: ∑(y2

i + z2
i )mi −∑(xiyi)mi −∑(xizi)mi

−∑(xiyi)mi ∑(x2
i + z2

i )mi −∑(yizi)mi
−∑(xizi)mi −∑(yizi)mi ∑(x2

i + y2
i )mi


Based on all above, we can achieve Ω and the

transition matrix A from bird body coordinates
(xl,yl,zl) to the global coordinates (x,y,z).

A =

 1 −∆tω3 ∆tω2
∆tω3 1 −∆tω1

−∆tω2 ∆tω1 1


So the boundary velocity generated by the

flapping motion in the global coordinate system
is:

V f = A ·V f l

In the local body coordinate system, the velocity
of the bird wings generated by the flapping wings is:

ub = u0 +ur +u f

vb = v0 + vr + v f

wb = w0 +wr +w f

4 Results and analysis

In this paper, the dimensionless bird’s two wings total
length is 1. The computational domain is 6× 3× 3
(length×width×height). The kinematics viscosity co-
efficient of the fluid is ν = 15.7×10−6.

In this study, the body trunk and two flapping
wings are rigid body. At the beginning, the bird is
fixed, we control the wings’ flapping and rotation, so
we can achieve the velocity of every point on the bird
surface, which we used as immersed boundary condi-
tion; then we can use the Navier-Stokes solver to com-
pute the viscous force and the pressure force with the
immersed boundary condition and the computational
region boundary condition. Base on all above, the re-
sulting force from the gravity, viscous force and pres-
sure force can be achieved. In the end, we achieve the
new flight position including the translation and rota-
tion from the last position. The next step is to use this
translation velocity and rotation angle velocity getting
the velocity of every point on the bird surface as new
immersed boundary condition.

4.1 Flying velocity and forces exerted on the bird
body

From Fig.3.(a), it can be seen that all the forces on
the bird changes periodically, the period is the same
as the flapping cycle of the bird wings, where the pe-
riod is T = 0.02, and in the first 1/4 period the bird
was fixed (only wings flapping and rotating without
body translating nor rotating). In Fig.3.(a), Fx is the
thrust along the x axis, Fy is the force along the y axis,
which makes bird turn left or right in x− y plane, Fz

is the lift along the z axis. Fig.3.(a) also shows that,
Fx is almost positive at the beginning, later decreases
gradually with the increase of the velocity u along the
x axis, and the velocity u increases all the time, which
is shown in Fig.3.(b). Fy is almost zero, so the veloc-
ity v is almost zero. In the first T/2 of a period when
the wings flap down, the lift Fz is positive, and the up-
ward velocity increases gradually which is shown in
Fig.3.(b), and in the last T/2 of the period when the
wings flap upon, the lift Fz is negative, the upward ve-
locity decreases gradually, which we can see clearly
in Fig.3.(b), too. In this study, the bird has initial ve-
locity u = v = w = 0.

Based on all above, we can see that in Fig.3.(c),
in the x − y plane, the moving path (the green real
line) is almost a straight line, in x− z plane, the flight
height (the dark blue real line) changed periodically
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Fig. 3 . (a)The force, (b)velocity and (c)flying path of the bird.

Fig. 4 . Pressure distribution on the upper surface during the flapping in a period. (a) t/T = 0, (b) t/T =
0.2, (c) t/T = 0.3, (d) t/T = 0.5, (e) t/T = 0.7, (f) t/T = 0.8.

Fig. 5 . Pressure distribution on the lower surface during the flapping in a period. (a) t/T = 0, (b) t/T =
0.2, (c) t/T = 0.3, (d) t/T = 0.5, (e) t/T = 0.7, (f) t/T = 0.8.

and increased gradually, which begins from (0.0,0.0)
and ends to (1.94,0.22), so it keeps upward, which is
well-matched in the force and velocity.

Fig.4 and Fig.5 shows the pressure distribution on
the upper and lower surface of the bird at different mo-
ments in one period. In Fig.4.(a) and Fig.5.(a), t = 0,
the flapping angle of the wings is maximum, and the
wings’ tip is at the top of the path, when the flapping
speed is 0 and the rotation angle velocity is maximum.
In Fig.4.(b) and Fig.5.(b), t = 0.2T , both flapping an-
gle and rotation angle of the wings is positive, when
the flapping speed is increasing and the rotation an-
gle velocity is 0. In Fig.4.(c) and Fig.5.(c), t = 0.3T ,
the flapping angle of the wings is negative, and the
rotation angle is positive, when the flapping speed is

decreasing and the rotation angle velocity is 0. In
Fig.4.(d) and Fig.5.(d), t = 0.5T , the flapping angle of
the wings is in negative maximum, and the wings’ tip
is at the bottom of the path, when the flapping speed
is 0 and the rotation angle velocity is in negative max-
imum. In Fig.4.(e) and Fig.5.(e), t = 0.7T , both flap-
ping angle and rotation angle of the wings is negative,
when the flapping speed is increasing and the rotation
angle velocity is 0. In Fig.4.(f) and Fig.5.(f), t = 0.8T ,
the flapping angle of the wings is positive, and the ro-
tation angle is negative, when the flapping speed is
decreasing and the rotation angle velocity is 0.

Fig.6 shows the three-dimensional structures due
the bird’s self-propelled flying, which is observed
from the side and above.
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Fig. 6 . 3D vortex structure.

4.2 Different flapping period compared

In the present study, three flapping period T =
0.03, 0.02, 0.01 was studied, which is shown in Fig.7.

Fig. 7 . Different flapping period.

Fig.8.(a) shows that the thrust changes periodi-
cally, the period is the same as the flapping cycle of the
wings. One can see that the thrust sometimes is pos-
itive sometimes is negative, but it is always increases
with the decrease of the flapping period. Fig.8.(b)
and Fig.8.(c) shows that the velocity and the displace-
ment of the body along the x axis is increased with the
decrease of the flapping period, too, which is well-
matched in the force. Fig.8.(d) shows that the lift
changes periodically when the flapping period is equal
to the three values. We found that the lift on the bird
usually increases with the decrease of the flapping pe-
riod. Fig.8.(e) and Fig.8.(f) shows that the velocity
and the displacement of the bird along the z axis is in-
creased with the decrease of the flapping period, too.

Both the velocity and displacement of the bird
along the x axis and the z axis are increased with the
decrease of the flapping period, but the velocity and
displacement along the x axis is increased faster, so
the flight height of flying path in the x− z plane in-
crease slower with the decrease of the flapping period,

which is shown in Fig.9. So, the bird can fly faster for-
ward if the flapping period is shorter.
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Fig. 8 . Different flapping period compared. (a)
the thrust, (b) the velocity u, (c) the displacement
x, (d) the lift, (e) the velocity w, (f) the displace-
ment z.

Fig. 9 . Path of different flapping period.

4.3 Different flapping amplitude compared

In this present study, three flapping amplitude (the de-
gree of angle) αm = 30◦, 40◦, 50◦ was studied, which
is shown in Fig.10.

Fig.11.(a) shows that the thrust changes periodi-
cally, the period is the same as the flapping cycle of the
wings. One can see that the thrust is always increases

Fig. 10 . Different flapping amplitude.
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Fig. 11 . Different flapping amplitude compared.
(a) the thrust, (b) the velocity u, (c) the displace-
ment x, (d) the lift, (e) the velocity w, (f) the dis-
placement z.

with the increase of the flapping amplitude. Fig.11.(b)
and Fig.11.(c) shows that the velocity and the dis-
placement of the bird along the x axis is increased with
the increase of the flapping amplitude, too, which is
well-matched in the force. Fig.11.(d) shows that the
lift changes periodically when the flapping amplitude
is equal to the three values. We found that the lift on
the bird usually increases with the increase of the flap-
ping amplitude. Fig.11.(e) and Fig.11.(f) shows that
the velocity and the displacement of the bird along

Fig. 12 . Path of different flapping period.

the z axis is increased with the increase of the flap-
ping amplitude, too.

Both the velocity and displacement of the bird
along the x axis and the z axis are increased with the
increase of the flapping amplitude, but the velocity
and displacement along the z axis is increased faster,
so the flight height of flying path in the x− z plane
increase faster with the increase of the flapping am-
plitude, which is shown in Fig.12. So, the bird can fly
faster upward if the flapping amplitude is larger.

5 Conclusion

In the numerical simulations and vorticity dynamics
of the three-dimesional bionic birds self-propelled fly-
ing in a viscous flow, the lfit and thrust are produced
by the flapping wings, which contains flapping and
rotation. Flapping and rotation play different roles at
different moments of one period. In this study, differ-
ent flapping period was studied, both the lift and thrust
are increased with the decrease of the flapping period,
but the thrust is increased faster. So, the bird can fly
faster forward if the flapping period is shorter. Differ-
ent flapping amplitude was studied, too, both the lift
and thrust are increased with the increase of the flap-
ping amplitude, but the lift is increased faster. So, the
bird can fly faster upward if the flapping amplitude is
larger.

Flapping period plays a big role in the velocity u
along the x axis, and flapping amplitude plays a big
role in the velocity w along the z axis. So, reduce
the flapping period, the bird will fly faster forward,
increase the flapping amplitude, the bird will fly faster
upward.
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