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Abstract

Many technologies have the potential to alleviate
concerns related to the environmental impact of
commercial aviation. However, there is consid-
erable uncertainty surrounding the impacts that
integration of these technologies will have on fu-
ture aircraft. In this paper, the foundation is
established for a physical experiment selection
methodology that aims to maximize the reduc-
tion of uncertainty and the maturation of tech-
nologies. Throughout the methodology formu-
lation, a case study is described for an active flow
control technology currently under development.

1 Introduction

Commercial aviation forecasts continue to pre-
dict increased passenger traffic and fleet ex-
pansion, and concerns about the environmental
impact of the commercial aviation sector have
grown accordingly. Many public and private or-
ganizations have set aggressive goals to address
these concerns. For instance, the National Aero-
nautics and Space Administration (NASA) Envi-
ronmentally Responsible Aviation (ERA) project
has been established to simultaneously meet
goals, shown in Table 1, for noise, emissions, and
fuel burn. Reconfiguration and optimization of
traditional vehicle architectures is likely not suf-
ficient for achieving these goals; thus, the matu-

Table 1 NASA ERA system-level metrics and
goals (adapted from Ref. [1])

Technology benefits! N+2 (2020)
Noise (cum. below stage 4) -42 dB
LTO NOx (below CAEP6) -75%
Cruise NOx> -70%
Aircraft fuel burn? -50%

TReferenced to a Boeing 777-200 with GE90 engines
ZRelative to 2005 best in class

ration of advanced vehicle concepts and enabling
technologies is being pursued.

One of the technologies that has been identi-
fied with the potential to alleviate environmental
concerns, in addition to other integration issues,
is active flow control (AFC). Although scientific
AFC research has been ongoing since Prandtl’s
suction flow control experiments over 100 years
ago [2], few production vehicles currently oper-
ate with these technologies. Most of the vehicles
are military aircraft that employ boundary layer
control for wing lift augmentation. For example,
the Mikoyan-Gurevich MiG-21 has an internally-
driven boundary layer control system, and the
Boeing C-17 Globemaster III uses externally-
blown flaps. Traditional boundary layer control
devices utilize steady suction or blowing to con-
trol the time-averaged flow state, whereas mod-
ern AFC devices control flow instabilities. One



of the primary benefits of the modern AFC de-
vices, from an integration viewpoint, is that they
are typically more energy efficient than boundary
layer control devices.

Unlike boundary layer control devices, mod-
ern AFC devices are relatively immature; the
shift from laboratory settings to real-world aero-
nautical applications began around the year 2000
[3]. Due to the immaturity of modern AFC
devices, system-level integration effects are not
well-understood.  If uncertainty surrounding
these effects is not reduced during modern AFC
technology development programs, then vehicle
integrators will face additional risk when the
technologies are adopted.

Uncertainty surrounding technology integra-
tion effects can be reduced by gaining knowl-
edge from the "right" physical experiments. For
any advanced technology development program,
justification of investments is usually based on
the premise that uncertainty in performance, cost,
and schedule will be reduced [4]. These invest-
ments should not be squandered by selecting ex-
periments that result in minimal uncertainty re-
duction. Technology readiness levels (TRLs) are
used as a figure of merit for assessing and com-
municating the maturity of novel technologies,
and they provide vague guidelines for the exper-
imental demonstrations that must occur to "grad-
uate" each maturity level. However, TRLs do
not explicitly capture the uncertainty reductions
that complement maturation. A physical experi-
ment that satisfies the qualitative requirements of
a given TRL does not necessarily guarantee that
significant uncertainty reduction will be attained.

Choosing the "right" physical experiments is
challenging. Many combinations of options such
as experimental facility, variable settings, and ge-
ometry can be proposed. Decision makers (DMs)
need a way to evaluate each of the proposed
experiments based on uncertainty reduction, re-
source requirements, maturation, and other crite-
ria. Adding to the difficulty, some of the criteria
may be conflicting. As an example, the most in-
expensive experiment to perform will likely not
provide the most uncertainty reduction.

In an ideal technology development program,
physical experiments will be optimally selected
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to reduce uncertainty and increase maturity so
that the full potential of the technology can be
exploited. The research presented in this paper
provides an important contribution that is neces-
sary to enable this vision: formulation of an ex-
periment selection methodology for reducing un-
certainty surrounding the integration impacts of
immature technologies.

The next section of this paper provides back-
ground information about the case study and the
relationship between uncertainty and knowledge.
Then, key elements of the proposed methodology
are presented along with application to the case
study. Finally, the last section ends with a sum-
mary and the future direction for research. Note
that, throughout the rest of this paper, modern
AFC devices will be referred to with the initial-
ism AFC.

2 Background

Continuing with the AFC theme set by the moti-
vation for this research, section 2.1 introduces an
AFC technology that is currently under develop-
ment by NASA and its partners. This technology
is used as a case study for the proposed method-
ology. Then, section 2.2 discusses uncertainty,
knowledge, and understanding in the technology
development context.

2.1 Technology for the case study: the AFC-
enhanced vertical tail

A commercial transport drag reduction approach
that is currently being investigated in the NASA
ERA project is to use AFC actuators installed just
upstream of the rudder hinge line to enable verti-
cal tail (VT) area reduction. This can be accom-
plished by controlling rudder flow separation to
enhance the side force generated by the VT dur-
ing critical flight situations, such as asymmetric
power at takeoff. The AFC device that is be-
ing used for actuation is called a sweeping jet.
This is a type of fluidic oscillator that produces
a pulsed jet when supplied with pressurized fluid
[5]. A typical sweeping jet actuator configura-
tion is depicted in Fig. 1. The jet that enters the
main cavity of the sweeping jet attaches to one
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Fig. 1 Sweeping jet actuator that is installed just
upstream of the rudder hinge line (from Ref. [5]).

side of the cavity wall, due to the Coanda effect
[6]. Then, the pressure in the adjacent feedback
loop increases. The higher pressure forces the jet
to the opposite cavity wall, and the same process
repeats cyclically. For separation control appli-
cations, the sweeping motion of the jet is impor-
tant for effectiveness. This is because, in addi-
tion to the jets injecting momentum to the flow-
field, the sweeping motion of adjacent jets pro-
motes the formation of streamwise vortices that
remove low-momentum fluid from the boundary
layer and supply it with high-momentum fluid
from the outer region [7]. An additional benefit is
that the sweeping motion enables larger spacing
between actuators than non-oscillatory jets with
the same effectiveness.

The sweeping jet actuator was developed
more than 50 years ago at the Harry Diamond
Laboratories and was originally used in analog
computers and fluidic amplifiers [8]. More re-
cent investigations have been conducted to ex-
plore the use of sweeping jets for aeronautical
applications (e.g., [8, 9, 10, 11]). The actua-
tors have been tested at full scale on an isolated
Boeing 757 VT, where a 20-30% side-force en-
hancement was demonstrated at conditions sim-
ilar to takeoff and landing [12]. Results from
the full-scale experiments are being used to de-
termine optimal actuator placement and supplied
mass flow rate for flight experiments on Boeing’s
ecoDemonstrator 757 aircraft.

Although VT area reduction would reduce
the weight and drag of an aircraft, installation
of an AFC system in the VT would degrade per-
formance as well. A power distribution architec-

APU
bleed air

To other 8—

bleed systems

Fig. 2 AFC power distribution architecture de-
signed by Boeing (from Ref. [13]).

ture is required to deliver pressurized air from a
source, such as an auxiliary power unit (APU),
to the sweeping jet actuators. An example of an
AFC architecture is shown in Fig. 2. As seen
in the figure, flow supply lines would be routed
from the APU bleed point to the sweeping jet ac-
tuators. Since the hot bleed flow from an APU
may transfer too much heat to the aircraft struc-
ture, a pre-cooler would be required. Additional
components such as these would add weight to
the vehicle. There would also be a fuel burn
penalty due to operating the APU for takeoff and
landing segments of the mission. Other concerns
include increased costs, increased complexity, re-
liability, and noise. However, the current appli-
cation scenario being considered for this tech-
nology is to install it only on some members
of a commercial transport family. The VT of
a commercial transport family is typically the
same area for all family members and sized for
the shortest member; thus, members with longer
fuselages carry VTs with non-optimal areas. The
use of AFC actuation will enable the VT to be



sized for the longest family member.

2.2 Uncertainty, knowledge, and under-
standing

As a technology matures, its success is deter-
mined by DMs who must balance and mitigate
the uncertain costs and benefits of introducing the
technology to a vehicle development program.
With this context in mind, the authors follow
Nikolaidis [14] in defining uncertainty indirectly
from the definition of certainty. Nikolaidis de-
fines certainty as the condition of possessing all
knowledge that is needed to choose the action
with the most desirable consequences. Uncer-
tainty can then be defined as the gap between
certainty and a DM’s present state of knowledge.
This concept is illustrated in Fig. 3a.

Uncertainties are often categorized using a
taxonomy that has been developed by the risk as-
sessment community [15]:

e Aleatory uncertainty: uncertainty due to
inherent randomness

e Epistemic uncertainty: uncertainty due to
lack of knowledge

An example of a source of aleatory uncertainty
is Young’s modulus of a material. Although
Young’s modulus is reported as a constant, there
1s variability between material samples due to the
manufacturing process. The inherent random-
ness in Young’s modulus can be reduced by im-
proving the manufacturing process, but sources
of aleatory uncertainty are often treated as irre-
ducible. The term "epistemic" comes from the
Greek "episteme", meaning knowledge; hence,
epistemic uncertainty can be reduced by acquir-
ing additional knowledge. An example of an
epistemic source of uncertainty is a calibration
parameter in a deterministic computer model of
a physical system. The value of the calibra-
tion parameter, such that the model predictions
will match reality, is uncertain. After obtain-
ing data from physical experiments, discrepan-
cies between the model predictions and the sys-
tem behavior can be minimized using a calibra-
tion process. Aleatory (irreducible) and epis-
temic (reducible) uncertainties are the compo-
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Fig. 3 Depiction of the definition of uncertainty
(adapted from Ref. [14]).

nents of a DM’s total uncertainty, as shown in
Fig. 3b.

Mathematical representation, or characteri-
zation, of uncertainties depends on the catego-
rization. The most common mathematical form
used for aleatory uncertainty is a probability dis-
tribution function (PDF). There is disagreement
among researchers about what mathematical
form epistemic uncertainties should take. Some,
such as Oberkampf and Roy [15], argue that
epistemic uncertainties should not be endowed
with any probabilistic structure and should in-
stead be represented as intervals. O’Hagan and
Oakley [16], among others, argue that probabil-
ity is adequate for describing any type of un-
certainty. Rational arguments have been of-
fered in support of both approaches, and both
representations are frequently used in the litera-
ture. This suggests that there is not necessarily
a correct choice for all problems. There is also
a mixed aleatory/epistemic type of mathemati-
cal representation. As an example, assume that
the aleatory uncertainty source mentioned pre-
viously, Young’s modulus, is characterized as a
normal distribution with mean y and standard de-
viation 6. One may not know the precise values
of u and ©; thus, they are epistemic uncertainties.

The definition of epistemic uncertainty may
lead one to ask, "What types of knowledge should
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be acquired during a technology development
program?" Epistemology, the study of knowl-
edge, provides philosophical views that can help
answer this question. Although there are vari-
ous kinds of knowledge, such as knowing how to
do something or knowing someone by acquain-
tance, epistemologists typically focus on proposi-
tional knowledge, also referred to as knowledge-
that [17]. Propositional knowledge requires that
a subject knows a proposition. For example,
one may express propositional knowledge of an
AFC impact on an aircraft as, "I know that the
cruise drag reduction achieved by implementing
the active flow control technology is two per-
cent." The particular knowledge that is of inter-
est in this research is scientific knowledge, which
is propositional knowledge generated by the sci-
entific method. Scientific experimentation also
generates information that promotes understand-
ing. Many epistemologists consider understand-
ing to be a type of knowledge, namely, knowl-
edge of causes. Whether understanding is propo-
sitional in nature is debatable. Nevertheless,
propositional knowledge (knowledge-that) alone
is not sufficient for technology development; un-
derstanding is required not only for uncertainty
reduction but also to improve performance.

3 Proposed methodology

Selection of physical experiments for a technol-
ogy development program requires informed de-
cision making. A formal decision process for in-
telligently selecting from a set of alternatives is
required. The top-down design decision support
process, developed by Mavris et al. [18], provides
a foundation for this purpose:

Establish the need

Define the problem

Establish value objectives
Generate feasible alternatives
Evaluate alternatives

NNk WD -

Make decision

In order to evaluate alternatives based on multiple
criteria, modeling and simulation (M&S) is em-
ployed to quantify metric values. In this research,

metrics are figures of merit that characterize the
impacts of technology integration and attributes
of the physical experiments. A way to quantify
uncertainty in the metrics is also needed. A pro-
cess extracted from steps commonly found in the
M&S-based uncertainty quantification (UQ) lit-
erature is used as a basis:

Identify sources of uncertainty
Characterize uncertainty
Propagate uncertainty
Analyze impacts

MY e

Reduce uncertainty

The proposed methodology for selection of phys-
ical experiments, shown in Fig. 4, is a fusion of
the top-down design decision support process and
the generic UQ process. Each step is described in
the following sections.

3.1 Definition of the need and the technology
(step 1)

It is assumed that the need for the technology has
been established prior to the start of the devel-
opment program. But, the need must be well-
defined so that the objectives of the development
effort can be aligned with the system-level goals.
System-level analysis should be used to estab-
lish the need by demonstrating that the vehicle
concept is not technically feasible using conven-
tional technology. Metrics that describe the per-
formance gap, in addition to the performance
goal values, need to be tracked during technol-
ogy development.

Defining the technology involves specifying
the vehicle architecture and the integration ap-
proach. This information is essential for later
steps. A diagram of the vehicle with the inte-
grated technology and a description of the physi-
cal principles that characterize the technology fa-
cilitate communication of this information. The
engineering design literature also led the authors
to a system decomposition approach. There are
two types of decomposition commonly utilized
in the design of complex systems: physical and
functional [19]. A physical decomposition is a
schematic diagram that illustrates the system sub-
assemblies and components and how the parts



1 Definition of the need
and the technology
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2 Identification and selection of
value objectives, criteria, and metrics

v

> 3 Quantification of uncertainty for
the present state of knowledge

4 Design and evaluation
of physical experiments

5 Selection via informed decision
making and execution of experiment(s)
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Construction or updating of
modeling and simulation environment
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Identification and characterization
of uncertainties
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sensitivity analysis

Stop
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End of program

Fig. 4 Proposed methodology for selection of physical experiments.

connect. A functional decomposition results in a
diagram called a function structure. This diagram
uses function blocks to represent transformations
done by the system components, with flows of in-
formation, energy, material, etc., indicated by ar-
rows. Since a physical decomposition is more ap-
propriate for understanding the nature of technol-
ogy integration, it is incorporated in this method-
ology. As seen in the following example for this
step, the physical decomposition can also be used
to clearly show metrics at all levels of the system
hierarchy.

3.1.1 Step I case study

The need for the AFC-enhanced VT technology
has been defined by NASA. In the first phase
of the ERA project, a large technology portfolio
was explored, with system-level analysis, for en-
abling advanced vehicles to meet the goals in Ta-
ble 1. As part of the second phase of the project,
a subset of technologies was selected for devel-
opment. To contribute to the 50% fuel burn goal,
one of the technologies selected was the AFC-
enhanced VT. In addition to fuel burn, NASA

has identified total vehicle drag during cruise as a
key performance metric for this technology. One
drawback of this technology is that the actuators
will produce noise during operation, so it is im-
portant to track the degradation to the ERA noise
goal as well.

To guide subsequent steps, basic physical
principles that govern the operation of the AFC-
enhanced VT are described in section 2.1 and
Boeing’s diagram of a representative aircraft with
the integrated AFC system is shown in Fig. 2.
A physical decomposition, shown in Fig. 5, has
been created based on this information. The light
green boxes contain aircraft components and the
light blue boxes contain metrics tracked at the
level of the green box that they flow into. Di-
rectional arrows have been used in this diagram
to indicate the flow of information from the tech-
nology level to the system level. At the top,
relevant ERA goals are listed: noise and fuel
burn. Four levels were defined for the system
hierarchy: ERA goals, component groups, com-
ponents, and component breakdown. Below the
ERA goal level, the groupings are similar to an
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Fig. 5 Physical decomposition for the AFC-
enhanced VT technology.

aircraft weight breakdown. This type of break-
down was selected for the physical decomposi-
tion because it is exhaustive and can be used to
represent the system components at any desired
level of detail.

3.2 Identification and selection of value ob-
jectives, criteria, and metrics (step 2)

The purpose of this step is to select which cri-
teria will be used to evaluate the set of possi-
ble physical experiments based on the objectives
and constraints established by DMs. Although
objectives will vary from one development pro-
gram to another, there are a few that will likely be
common for all: uncertainty reduction, matura-
tion, and performance improvement. Constraints
should include budget, schedule, and the avail-
ability of experimental facilities.

System-level performance improvement is
quantified using metrics defined in step 1. As-
suming that the M&S capability is available,
system-level analysis can be employed to identify

important disciplinary impacts associated with
infusing the technology. A vetted approach for
rapidly modeling technologies at the system level
is the use of "k-factors". These are dimension-
less, multiplicative values that operate on disci-
plinary input parameters in computer codes. As
an example for demonstrating the concept, con-
sider the k-factor-modified Breguet range equa-
tion, rearranged for calculating fuel burn, for
flight at constant velocity V.., thrust-specific fuel
consumption ¢;, and lift-to-drag ratio Cy /Cp:

ka ClR

- kCLCL V

kcp,Cp ™

Wp=kw,Wo |1 —exp (D

where W is the gross weight of the aircraft with
full fuel tanks, Wy is the weight of fuel used
during the mission of range R, and k; is a k-
factor for variable i. To simulate the impact of
an aerodynamic technology such as AFC on fuel
burn, the k-factors on the lift and drag coeffi-
cients in Eq. (1) would be set to particular val-
ues. A sensitivity analysis provides an indication
of how much each k-factor contributes to vari-
ability in the system-level metrics. k-factors with
the largest impacts are the ones that should be
identified as important metrics since reducing un-
certainty in these will maximize uncertainty re-
duction in the system-level metrics. The chosen
metrics are also used to quantify performance im-
provement at the technology level. A notional ex-
ample of a graphical approach to sensitivity anal-
ysis and k-factor selection is illustrated at the top
of Fig. 6. The lines within each box are "slices"
of the system-level metrics at a point in the k-
space. kp and k3 have been circled because they
contribute more to variability in the Ms than k.
To quantify the knowledge gained from ex-
perimental observations, an uncertainty reduction
measure is required. A frequently used measure
for probabilistic assessments is variance reduc-
tion. Entropy measures, borrowed from informa-
tion theory, have also been applied. Based on
an analysis of the uncertainty literature, Bjork-
man [20] concluded that an entropy measure is
a better option than variance. Bjorkman pro-
vides multiple valid reasons for preferring en-
tropy. But, since employing both does not in-
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Fig. 6 Notional graphical sensitivity analyses at
the system level (top) and the technology level
(bottom). Important k-factors are selected for fur-
ther investigation during the technology develop-
ment program.

cur any substantial computational penalties, the
authors of this paper suggest doing so. If non-
probabilistic methods are used to characterize
epistemic uncertainties, then alternative uncer-
tainty reduction measures must be derived.

The most prevalent approach for representing
the maturity achieved by an experimental activ-
ity is a TRL scale. TRL definitions have been
proposed by multiple organizations around the
world. Selection of a particular scale and the
determination of whether a better alternative ex-
ists is outside the scope of the work presented in
this paper. But, at least one measure of matu-
rity should be chosen for use in this methodology.
Selection of the best metrics for cost, schedule,
and availability are also outside the scope of this
work.

After DMs choose metrics that are crucial for
evaluating the physical experiments, individual
metrics or functions of metrics become the cri-
teria for the decision process. If so desired, DMs
can place subjective weights on each of the crite-
rion to represent relative importance. The criteria
and associated weights are used in later steps.
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3.2.1 Step 2 case study

NASA’s objectives for development of the AFC-
enhanced VT naturally include uncertainty re-
duction, maturation, and the attainment of per-
formance goals. Schedule and budget constraints
have also been established.

Mooney et al. [13] conducted a system-level
analysis to quantify the manufacturing, opera-
tional, and combined net present value for a mid-
size aircraft with the AFC-enhanced VT technol-
ogy. A method for modeling the performance
impacts was used that is similar to the k-factor
approach. Results from sensitivity analyses indi-
cate that the drag reduction achieved by imple-
menting the technology is the primary contribu-
tor to uncertainty in combined net present value.
Other important performance impacts identified
are detriments in thrust-specific fuel consumption
and weight. All three qualify as important met-
rics and are carried forward, similar to k» and k3
in Fig. 6.

NASA selected all of the physical experi-
ments for the second phase of ERA using a set
of diverse criteria. For brevity, the process is not
discussed in this paper.

3.3 Quantification of uncertainty for the
present state of knowledge (step 3)

Before uncertainty reduction that is achieved
by alternatives can be predicted, an uncertainty
benchmark must be determined. As stated previ-
ously, M&S is required for UQ in this methodol-
ogy. Construction or updating of the M&S envi-
ronment is the starting point for this step before
UQ can be carried out.

3.3.1 Construction or updating of modeling
and simulation environment

Products from defining the technology in step 1
and metrics identified in step 2 guide construction
of the M&S environment. The physical decom-
position, explanation of the governing physics,
and diagram of the integrated technology should
be used to ensure that all germane phenomena are
captured. Assuming that the k-factor approach
is utilized for system-level modeling, additional
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M&S capability should provide quantification of
the important k-factors. An example of this is
shown in the notional sensitivity plot at the bot-
tom of Fig. 6.

It is essential for the computational cost of the
M&S environment to be affordable. This is be-
cause uncertainty propagation techniques neces-
sitate a large number of evaluations. Consider-
ing the computational appetite of many physics-
based computer codes, researchers often leverage
the power of design of experiments and surrogate
models. For example, response surface method-
ology [21] is frequently used to generate statisti-
cal models, which can be evaluated virtually in-
stantaneously, of computer codes in lieu of exe-
cuting the code itself. If high-fidelity codes such
as computational fluid dynamics are not used to
model the physics, then an alternative approach
is to build statistical models from any existing ex-
perimental data.

3.3.2 Identification and characterization of un-
certainties

Identification of sources of uncertainty involves
determining where uncertainty in the metrics of
interest stems from. Many of the important
sources are identified by enumerating variables at
all levels of the system hierarchy that are uncer-
tain. This exercise is facilitated by an understand-
ing of how a given technology integrates with a
vehicle concept; thus, the products of step 1 are
useful for this task as well. The use of M&S for
quantifying metrics introduces model form un-
certainty, which is due to assumptions made in
the modeling of physics [15]. Another prevalent
source is measurement uncertainty.

Once the sources of uncertainty have been
identified, they must be characterized. As dis-
cussed in section 2.2, aleatory uncertainties are
typically represented with PDFs, and there are
two primary options for epistemic uncertainties.
DMs and analysts must decide how to represent
epistemic uncertainties. One advantage of us-
ing the probabilistic approach is that it enables
Bayesian inference, which is discussed in the last
step of the methodology. Assigning probability
distributions or intervals to each source is not a

trivial task, as one must translate one’s own be-
liefs and/or the beliefs of others to mathematical
language. For aleatory sources, the distribution
shape can be estimated based on existing exper-
imental data. If this information does not exist,
a distribution shape can be assumed and updated
if and when data are generated. Expert elicita-
tion methods, such as O’Hagan’s SHELF [22],
should be employed for specifying PDFs in this
step. But, once a sensitivity analysis is carried
out in the propagation step, the analyst may de-
termine that some sources of uncertainty are not
important no matter what distribution is assumed.

3.3.3 Uncertainty propagation and sensitivity
analysis

It is known from probability theory that any func-
tion of a random variable is also a random vari-
able; thus, when uncertain inputs to an M&S en-
vironment are characterized as random variables,
the outputs from the environment are also ran-
dom variables. As an example (adapted from
Ref. [23]), consider a deterministic computa-
tional model that maps an input from the real
number line into an output from the real num-
ber line: y = g(z). Suppose that an analyst has
characterized z as an epistemic or aleatory source
of uncertainty with a given PDF f(z). Now, z is
treated as a random variable, which is denoted by
Z. The uncertain output from the computational
model is denoted by Y, which is also a random
variable. Obtaining the cumulative distribution
function (CDF) and PDF of the model output Y
is the objective of uncertainty propagation. The
CDF of Y is calculated as follows:

P(Y <y)=P(g(Z) <y)
=P(g(Z) € (—o0,])
=P(Zeg ' (—,))

[, f@de o
g H(—eo]

Once the CDF has been computed, the PDF
is found by differentiating the CDF. The struc-
ture of most M&S environments requires that
the integral in Eq. (2) be computed numeri-
cally. If it is not possible to modify the com-
putational codes within the environment, then a



non-intrusive propagation method must be se-
lected. Non-intrusive propagation methods in-
clude simulation-based, such as Monte Carlo
simulation; local expansion-based, such as a
Taylor series; most probable point-based, such
as the first-order reliability method; functional
expansion-based, such as polynomial chaos ex-
pansion; and numerical integration-based, such
as full factorial numerical integration [24]. If
epistemic uncertainty is characterized with inter-
vals, then propagation will result in a probability
box instead of one CDF for each output. Other
propagation methods exist for this type of char-
acterization, such as second order Monte Carlo.
Many M&S environments are treated as black-
box-type functions, and this limits the choice of
propagation methods to non-intrusive. As previ-
ously mentioned, surrogate modeling techniques
can be employed to enable computationally ex-
pensive uncertainty propagation. The highest
accuracy and most expensive methods involve
Monte Carlo simulation, which should be used
for propagation, if computational resources al-
low.

In addition to the propagation task, a sensi-
tivity analysis is conducted during this step. Sen-
sitivity analysis can be local or global. An ex-
ample of a local sensitivity analysis is computing
the partial derivatives of a computational model’s
outputs with respect to the input variables at a
given point in the input space. When inputs are
uncertain, it is useful to understand which input
sources of uncertainty are the largest contributors
to uncertainty in the outputs, and this is what a
global sensitivity analysis can reveal. There are
many available techniques for global sensitivity
analyses such as scatterplots and variance-based
measures [25]. A notional example of the re-
sults from a variance-based technique is shown
in Fig. 7. An important result of sensitivity anal-
ysis is a ranking of epistemic and aleatory uncer-
tainty sources based on their contribution to the
system-level metric uncertainties.

3.3.4 Step 3 case study

The premier suite of aircraft system-level anal-
ysis tools currently employed for the ERA
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Contribution to metric variability
before the experiment

Source 1

(a) Source 2

Source 3

Source 4

Contribution to metric variability
after the experiment

Source 3
(b) Source 2

Source 1

Source 4

Fig. 7 Notional variance-based sensitivity anal-
yses for ranking the importance of sources of
uncertainty. A physical experiment reduces the
epistemic uncertainty surrounding source 1.

project is called the Environmental Design Space
(EDS) [26]. EDS is a physics-based, integrated,
multidisciplinary M&S environment that consists
of core modules originally developed by NASA.
The current EDS modeling capability for the
AFC-enhanced VT technology is at the compo-
nents level and up in Fig. 5. Additional M&S
tools are being brought in to capture behavior at
lower levels.

Both probabilistic and non-probabilistic ap-
proaches to characterize epistemic uncertainty
are being considered for the case study. The au-
thors are working closely with NASA subject-
matter experts to elicit distributions and ranges
for sources of uncertainty. In addition to iden-
tifying sources of uncertainty from the physical
decomposition, shown in Fig. 5, measurement
uncertainties and uncertainties associated with
modeling have also been identified. Upon com-
pletion of the M&S envrionment, uncertainties at
the technology level will be propagated to metrics
of interest, such as aircraft cruise drag, weight,
thrust-specific fuel consumption, and fuel burn.
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3.4 Design and evaluation of physical exper-
iments (step 4)

In this methodology, it is assumed that physical
experiments are designed and proposed by tech-
nologists, but they must be aware of information
from previous steps in order to produce relevant
experiments. Of particular importance is the def-
inition of the technology. This is because physi-
cal experiments should be designed with system-
level constraints in mind. For example, pneu-
matic or electrical power availability for AFC ac-
tuation will be limited on an aircraft; thus, it is
not always useful to collect experimental data un-
der the assumption that any resources available
in the laboratory should be used to demonstrate
significant performance benefits. This is espe-
cially true when the cost of experimentation is
exorbitant. Another key result that can guide the
experimental design is the ranking of uncertain-
ties, by importance, for critical metrics, as seen in
Fig. 7a. Technologists should also be informed of
the criteria that DMs will use to evaluate the ex-
periments.

Once experiments are designed, all criteria
can be determined for each. Criteria representing
objectives such as maturity, cost, and schedule
are relatively straightforward to estimate before
any experiments are selected and conducted. Cri-
teria associated with performance improvement
and uncertainty reduction after the experiment
are more complicated to predict a priori. Re-
searchers such as Sankararaman et al. [27] have
proposed the use of Bayesian inference for this
purpose, but determination of the most appropri-
ate approach for this methodology is part of cur-
rent research activities.

3.4.1 Step 4 case study

Two of the experiments for the AFC-enhanced
VT have been performed: a sub-scale wind tun-
nel experiment and a full-scale wind tunnel ex-
periment. These experiments are being stud-
ied retrospectively to understand the logic behind
their design. Lessons learned are being applied
to predict uncertainty reduction and performance
improvement for the full-scale flight experiment.
Data for quantities such as cost, schedule, and

Physical experiments designed
by technologists

A B C D E

Quantified with M&S
and expert elicitation

Evaluation criteria

MCDM

Ranked physical experiments
Experiment C

Experiment E
Experiment A
Experiment D
Experiment B

Fig. 8 Notional depiction of the decision process
for selecting physical experiments.

TRL are also available for use in applying this
methodology to a real program.

3.5 Selection via informed decision making
and execution of experiment(s) (step 5)

The objective of this step is to find the best com-
promise physical experiment(s). The word "com-
promise” is used here because it is usually the
best type of solution that can be found in multi-
criteria problems. Conflicting criteria, such as
uncertainty reduction and cost, result in trade-
offs of performance in each. A plethora of multi-
criteria decision-making (MCDM) tools exist for
aiding DMs in finding the best alternative. Most
of the MCDM methods incorporate DM-supplied
criteria preferences in the form of weights. No
one MCDM technique is available that is guar-
anteed to work well for all problems, but multi-
ple approaches to selecting an MCDM method,
such as expert/intelligent systems, are designed
for facilitating selection. The result of employ-
ing an MCDM tool is a ranking of alternatives, as
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shown in Fig. 8. As part of the planned research
for evolving this experiment selection methodol-
ogy, MCDM methods will be investigated and the
most suitable options chosen.

After an experiment or set of experiments
is selected and executed, DMs must determine
whether another experimentation iteration will be
done. If the feedback loop in Fig. 4 is followed,
step 3 is carried out again to update uncertainty
with the recently acquired knowledge from ex-
perimentation. Updates to the M&S environ-
ment may be warranted, and new sources of un-
certainty could be uncovered. The experimental
data should be used to update the form of epis-
temic uncertainty sources. If PDFs are used for
characterization, a logical approach is to employ
Bayesian inference. The goal of Bayesian infer-
ence is to update prior knowledge of a distribu-
tion parameter of interest using the observed data.
The updated distribution is attained by applying
Bayes’ theorem:

likelihood prior

—~—N
f(D|6) n(6)

n(0|D) = €]
o) = LO88 )
posterior S~~~

marginal

The likelihood function summarizes information
from the experimental data D. The parameter 0
is not directly observable, but it is inferred. For
example, if the data are generated by a normal
distribution, then 0 could be the mean of that dis-
tribution. The prior PDF represents the DM’s
knowledge about the parameter 0 before the ex-
perimental data are observed, and the posterior
PDF represents the updated knowledge about the
parameter after observing the data. The marginal
distribution can be thought of as a normalizing
constant, once the prior is specified and the data
are observed, which ensures that the posterior is
a proper PDF. Results from updating with Eq. (3)
can be used to produce a new sensitivity analysis,
which will likely demonstrate a different prioriti-
zation of uncertainties, as seen in Fig 7b. This
information can then be leveraged for another
round of experiment selection and execution by
following steps 4 and 5.
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3.5.1 Step 5 case study

In future work, MCDM techniques will be used
to simulate the selection of AFC-enhanced VT
physical experiments. Results will be compared
with the process used to determine which experi-
ments to conduct in the ERA project. Input from
NASA DMs will be valuable for vetting the re-
sults of applying this methodology.

4 Summary and future direction

In order to accelerate the reduction of uncer-
tainty surrounding the impacts that technologies
will have on future aircraft, physical experiments
must be carefully selected. As a contribution to-
ward enabling an optimal technology develop-
ment program, a methodology for strategic selec-
tion of physical experiments has been proposed.
An AFC technology applied to the VT of a com-
mercial transport been presented as a case study
throughout the methodology formulation.

Additional research is necessary to mature
the experiment selection methodology. In par-
ticular, future work will focus on four compo-
nents: the prediction of uncertainty reduction and
performance improvement before an experiment
is conducted, selection of the most appropriate
sensitivity analysis methods, selection of suitable
MCDM techniques, and the updating of uncer-
tainties after an experiment is conducted.
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