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Abstract

The availability of a Vibration Correlation Tech-
nique (VCT) for nondestructive determination of
buckling loads of cylindrical shells has obvious
advantages. Earlier, a semi-empirical VCT ap-
proach has been developed and applied success-
fully for the prediction of the buckling load of
closely stiffened aluminum shells. In the present
paper, a possibility to support and improve the es-
timates of this semi-empirical VCT approach by
means of the application of analysis tools is pro-
posed. Two semi-analytical models with differ-
ent levels of complexity will be used for this pur-
pose. In the two approaches employed, both the
nonlinear effect of the static state and the nonlin-
ear effect of the geometric imperfections are rep-
resented. These two methods form the basis of an
extension of the existing semi-empirical Vibra-
tion Correlation Technique for shells, to a VCT in
which vibration measurements and analysis tools
are combined. In this paper, the capability of the
analysis tools which can be used to improve the
VCT is illustrated.

1 Introduction

While vibration correlation techniques have been
applied to columns and plates for decades and
some of them became nearly a routine, the meth-
ods developed for shells have not yet entered
general use, though their potential benefit ex-
ceeds that for other structural elements [1, 2].
Many theoretical studies investigated the influ-

ence of boundary conditions, load eccentricity
and geometric initial imperfections of stiffened
and unstiffened shells on their vibrational behav-
ior. Based on those theoretical considerations,
practical vibration correlation techniques (VCT)
have been developed for shells. A detailed re-
view of the VCT approach can be found in Chap-
ter 15 of [2]. The VCT for shells can be classified
in two main groups according to their approach:
(1) those for determination of boundary condi-
tions, and (2) those for direct determination of
buckling loads. The present manuscript will deal
solely with the direct nondestructive determina-
tion of buckling loads of cylindrical shells.

In the present paper, a possibility to improve
the buckling estimates of the empirical VCT
methods by means of the use of analysis tools
is proposed. Two semi-analytical models with
different levels of complexity, which have been
developed earlier to analyze the vibration behav-
ior of orthotropic (ring- and stringer-stiffened)
and anisotropic (such as composite) cylindrical
shells, will be used for this purpose. With these
models the influence of important parameters,
such as large amplitudes, geometric imperfec-
tions, static loading, and boundary conditions on
the vibration behavior of cylindrical shells can
be investigated. Nonlinear Donnell-type govern-
ing equations are adopted in combination with
classical lamination theory and smeared stiffener
theory. It is assumed that the cylindrical shell
is statically loaded by axial compression, radial
pressure, and torsion. In the Level-1 Analysis
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(or Simplified Analysis) a small number of as-
sumed modes which approximately satisfy sim-
ply supported boundary conditions at the shell
edges, are used in a Galerkin procedure or vari-
ational method. In the Level-2 Analysis (or Ex-
tended Analysis) the specified boundary condi-
tions are accurately satisfied by means of the
numerical solution of corresponding two-point
boundary value problems for ordinary differen-
tial equations. In order to apply these analysis
tools, equivalent imperfection amplitudes should
be determined or assumed. In the methods em-
ployed, both the nonlinear effect of the static state
and the nonlinear effect of the geometric imper-
fections are represented. These methods form the
basis of an extension of the semiempirical Vibra-
tion Correlation Technique for shells, to a VCT in
which vibration measurements and analysis tools
are combined. In this paper, the capability of the
analysis tools which can be used to improve the
VCT is illustrated.

In [3] several analytical-numerical models
with different levels of accuracy and complex-
ity (denoted as Level-1 and Level-2 Analysis)
have been presented which can be used to study
the influence of important parameters on shell vi-
brations, such as geometric imperfections, static
loading (axial compression, radial pressure and
torsion) and boundary conditions. Nonlinear
Donnell-type governing equations are adopted in
combination with classical lamination theory. In
[3], these models have been compared for the
nonlinear vibration analysis of isotropic and or-
thotropic shells. In [4] laminated shells were
studied, while in [5] the effect of imperfections
on the linearized vibrations of shells was inves-
tigated, and in [6] the effect of boundary condi-
tions on the nonlinear vibrations. In the next sec-
tion, the underlying theory and analysis models
earlier described in [3] and [7] will first be reca-
pitulated.

2 Semi-analytical models for vibrations of
statically loaded imperfect cylindrical
shells

The shell geometry and the applied loading are
defined in Fig. 1. The shell geometry is char-
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Fig. 1 Shell geometry, coordinate system and ap-
plied loading.

acterized by its lengthL, radiusR and thickness
h. Assuming that the radial displacementW is
positive inward (see Fig. 1) and introducing an
Airy stress functionF asNx = F,yy, Ny = F,xx and
Nxy = −F,xy, whereNx, Ny andNxy are the usual
stress resultants, then the Donnell-type nonlinear
imperfect shell equations (neglecting in-plane in-
ertia) for a general anisotropic material can be
written as

LA∗(F)−LB∗(W ) =−
1
R

W,xx

−
1
2

LNL(W,W +2W̄ ) (1)

LB∗(F)+LD∗(W ) =
1
R

F,xx

+LNL(F,W +W̄ )+ p− ρ̄hW,tt (2)

where the variablesW andF depend on the time
t, R is the shell radius,̄W is an initial radial imper-
fection, ρ̄ is the (averaged) specific mass of the
laminate,h is the (reference) shell thickness,p is
the (effective) radial pressure (positive inward),
andρ̄hW,tt is the radial inertia term. The fourth-
order linear differential operators
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LA∗() = A∗
22(),xxxx−2A∗

26(),xxxy

+(2A∗
12+A∗

66)(),xxyy

−2A∗
16(),xyyy+A∗

11(),yyyy (3)

LB∗() = B∗
21(),xxxx+(2B∗

26−B∗
61)(),xxxy

+(B∗
11+B∗

22−2B∗
66)(),xxyy

+(2B∗
16−B∗

62)(),xyyy+B∗
12(),yyyy (4)

LD∗() = D∗
11(),xxxx+4D∗

16(),xxxy

+2(D∗
12+2D∗

66)(),xxyy

+4D∗
26(),xyyy+D∗

22(),yyyy (5)

depend on the stiffness properties of the lami-
nate. The stiffness parametersA∗

i j, B∗
i j, andD∗

i j
are coefficients of the partially inverted ABD-
matrix from classical lamination theory and can
be found in [3]. The nonlinear operator defined
by

LNL(S,T ) = S,xx T,yy−2S,xy T,xy+S,yy T,xx (6)

reflects the geometric nonlinearity.
The shell can be loaded by axial compres-

sion P, radial pressurep and counter-clockwise
torsionT (Fig. 1), both statically (̃P, p̃, T̃ ) and
dynamically (P̂, p̂, T̂ ). The equations governing
the nonlinear dynamic behaviour of a cylindrical
shell vibrating about a nonlinear static state will
be derived, by expressing both the displacement
W and the stress functionF as a superposition of
two states,

W = W̃ +Ŵ (7)

F = F̃ + F̂ (8)

whereW̃ and F̃ are the radial displacement and
stress function of the static, geometrically nonlin-
ear state which develops under the application of
a static load on the imperfect shell, whilêW and
F̂ are the radial displacement and stress function
of the dynamic state corresponding to the large
amplitude vibration about the static state.

The Donnell-type equations governing the
nonlinear dynamic state can be written as

LA∗(F̂)−LB∗(Ŵ ) =−
1
R

Ŵ ,xx

−
1
2

LNL(W̃ ,Ŵ )−
1
2

LNL(Ŵ ,W̃ +2W̄ )

−
1
2

LNL(Ŵ ,Ŵ ) (9)

LB∗(F̂)+LD∗(Ŵ ) =
1
R

F̂ ,xx

+LNL(F̃ ,Ŵ )+LNL(F̂ ,W̃ +W̄ )

+LNL(F̂ ,Ŵ )+ p̂− ρ̄hŴ ,tt (10)

where ˆp is the dynamic radial loading. It is noted
that the coefficients of the dynamic state equa-
tions depend on the solution of the static state
problem.

The Donnell-type equations for the nonlinear
dynamic state of a perfect shell can be deduced
from Eqs. (9) and (10) [3].

2.1 Simplified Analysis

At the modelling level denoted as Level-1 Anal-
ysis or Simplified Analysis, the vibration be-
haviour is modelled via a Galerkin procedure
or variational method. The Level-1 model that
will be used to investigate the nonlinear vibra-
tions of statically loaded, imperfect laminated
(anisotropic) cylindrical shells is characterized
by the following deflection function,

Ŵ (t)/h =
ℓ2

4R
[A(t)sin

mπx
L

]2

+A(t)sin
mπx

L
cos

ℓ

R
(y− τKx) (11)

where m denotes the number of half waves in
the axial direction,ℓ is the number of full waves
in the circumferential direction, andτK is a
skewedness parameter, introduced to account for
a possible skewedness of the asymmetric modes.
The expression contains one generalized coor-
dinate, A(t), the amplitude of the “primary”,
“driven” mode. The corresponding model will be
referred to as Evensen’s approach [8]. Galerkin’s
procedure is applied in order to eliminate the spa-
tial dependence. Using Eq. (11), and applying
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the method of averaging to eliminate the time de-
pendence, results in a nonlinear equation for the
average vibration amplitudēA,

(a10−α10Ω2)Ā+(a31−α31Ω2)Ā3

+a50Ā5 = Gmℓτ (12)

where ai j and αi j are constant coefficients de-
pending on the shell properties, imperfection, vi-
bration mode, and applied loading, and where
Gmℓτ is the generalized dynamic excitation. The
coefficients are listed in [7]. The normalized
frequency parameterΩ is defined byΩ = ω

ωlin
,

whereωlin =
√

a10
α10

is the small amplitude (“lin-

earized”) frequency for the given parameters.
Equation (12) can be used to calculate amplitude-
frequency curves for nonlinear single-mode free
or forced vibrations of statically loaded, imper-
fect anisotropic cylindrical shells.

2.2 Extended Analysis

At the second level of modelling, Level-2 Analy-
sis (Extended Analysis), the boundary conditions
at the shell edges can be taken into account ac-
curately [4, 6]. A Fourier decomposition of the
solution is used in the circumferential direction
of the shell, in order to eliminate the dependence
on the circumferential coordinate. Subsequently,
the resulting boundary value problem for ordi-
nary differential equations in the axial direction
is solved numerically by means of the parallel
shooting method. A perturbation method is used
to assess the influence of large vibration ampli-
tudes, geometric imperfections, and a static de-
formation on the vibration behaviour [9, 10].

For the static state the following perturbation
expansion is assumed:

W̃ = W̃ (0)+ξsW̃
(1)+ξ2

sW̃ (2)+ . . . (13)

F̃ = F̃(0)+ξsF̃
(1)+ξ2

s F̃(2)+ . . . (14)

where ξs is a measure of the displacement
amplitude of the static “asymmetric” (non-
axisymmetric) mode. In the case of free vibra-
tions, the dynamic lateral excitation is equal to

zero (p̂ = 0). Considering the case of “single
mode” vibrations, i.e. that a single “primary” vi-
bration mode is associated with the (linear) nat-
ural frequencyωc, the following perturbation ex-
pansion for the frequencyω is used,

(

ω
ωc

)2

= 1+adξv +bdξ2
v + . . .

+(b110ξt +b101ξ̄)
+(b210ξt +b201ξ̄)ξv + . . .

+(b120ξ2
t +b111ξt ξ̄+b102ξ̄2)+ . . .

(15)

and the corresponding solution is assumed as

Ŵ = ξvŴ
(1)+ξ2

vŴ (2)+ . . .

+ξtξvŴ
(11)+ξtξ2

vŴ (12)+ . . .

+ξ2
t ξvŴ

(21)+ξ2
t ξ2

vŴ (22)+ . . .

+ . . . (16)

F̂ = ξvF̂(1)+ξ2
vF̂(2)+ . . .

+ξtξvF̂(11)+ξtξ2
vF̂(12)+ . . .

+ξ2
t ξvF̂(21)+ξ2

t ξ2
vF̂(22)+ . . .

+ . . . (17)

In these expansionsξt = ξs + ξ̄, whereξ̄ is the
amplitude of an “asymmetric” imperfection, and
ξv is a measure of the displacement amplitude;
Ŵ (1) will be normalized with respect to the shell
thicknessh and Ŵ (2) is orthogonal toŴ (1) in
an appropriate sense [7]. A formal substitution
of these expansions into the nonlinear governing
equations for the perfect shell yields a sequence
of equations for the functions appearing in the ex-
pansions.

The equations governing the first-order dy-
namic state are given by
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LA∗(F̂(1))−LB∗(Ŵ (1)) =−
1
R

Ŵ ,
(1)
xx

−Ŵ ,
(1)
yy (W̃ ,

(0)
xx +hw̄0,xx ) (18)

LB∗(F̂(1))+LD∗(Ŵ (1)) =
1
R

F̂ ,
(1)
xx

+ F̃ ,
(0)
xx Ŵ ,

(1)
yy −2F̃ ,

(0)
xy Ŵ ,

(1)
xy +F̃ ,

(0)
yy Ŵ ,

(1)
xx

+ F̂ ,
(1)
yy (W̃ ,

(0)
xx +hw̄0,xx )

+ p̂− ρ̄hŴ ,
(1)
tt (19)

Notice that the coefficients of these equations de-
pend on the solution of the fundamental state
problem (W̃ (0), F̃(0)) and initial axisymmetric im-
perfectionW̄ = hw̄0(x). The corresponding equa-
tions for the static first-order state (W̃ (1), F̃(1)) are
similar, but do not include the inertia term. The
dynamic first-order state equations admit separa-
ble solutions of the form

Ŵ (1) = h{ŵ1(x)cosnθ+ ŵ2(x)sinnθ}cosωt

(20)

F̂(1) =
ERh2

c

{

f̂1(x)cosnθ+ f̂2(x)sinnθ
}

cosωt

(21)

whereθ = y/R, andn is the number of circum-
ferential waves.

To determine the influence of initial geomet-
ric imperfections on the vibration behaviour, the
equations of the "‘imperfect dynamic"’ second-
order state (ξvξt-terms) have to be solved. De-
tails of these equations and the numerical solu-
tion procedure can be found in [7].

3 Experimental VCT Results

The investigations performed at the Technion
on closely stiffened aluminum shells appeared
promising since their low frequency vibration
modes, observed in tests, were very similar to
their buckling modes [2, 11, 12, 13]. The exper-
imental curves of frequency squared versus axial
load of a typical shell, when the test is performed
till the buckling of the shell, exhibit a steepening
at high loads with a rapid drop in the natural fre-
quency before buckling (see for example Fig. 2

for one of the tested shells, RO-34, [13]). The di-
rect prediction method is essentially a curve fit-
ting to the experimental points, but using those
points below 50-60 % of the calculated buckling
load, to make it truly nondestructive. The curve
fitting becomes easier if thef 2 versusP curve is
expressed as:

f 2 = (A−BP)
2
q ,q > 2 (22)

whereA andB are curve fitted andq is assumed to
yield the optimal value. Eq. (22) can be rewritten
in another equivalent form

f q = A−BP (23)

Equation (22) has the advantage that the
curve fitting is now for a straight line.

Another way of directly determining the
buckling load using a VCT approach is summa-
rized in the following: Measure the natural fre-
quency at zero load,f0. Then measure a few
points at low level of applied loads and draw
a straight line. Determine the predicted critical
value of the loadPcr, based on the experimental
vibration data, from the following expression:

Pcr =
f 2
0 P1

f 2
0 − f 2

1

(24)

whereP1 and f1 are the coordinates of a point
on the straight line. Then plot the curve(1−ρ)2

versus(1− f ∗4), whereρ = P
Pcr

is the ratio of the
applied load and the corresponding critical value,
and f ∗ = f

f0
.

Another approach is based on the work done
at the Technion [2, 11, 12, 13] and consists of
finding the real boundary conditions using the
VCT method. This approach provides the value
of the critical load (Psp), based on the actual
boundary conditions. Calculate from the graph
the value of the constantξ and then insert its
value in the expression

Ppredicted = Pcr(1−ξ) (25)

which yields the actual predicted buckling load.
The result of this method is presented in Fig. 3
for the same specimen, shell RO-34, where in-
stead ofPcr, the value ofPsp is used. One should
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note that the predicted buckling load is less than
the actual experimental buckling load, yielding a
ratio of 0.934, which can be considered as a very
good buckling load prediction.

4 Capability of semi-analytical models to
support VCT results

The Level-1 Analyses and the Level-2 Analy-
sis have been implemented in FORTRAN pro-
grams. One of the stringer-stiffened shells that
have been tested earlier at Technion, the RO-34
shell, has been used in the numerical calcula-
tions. The (normalized) frequency parameter that
will be used in the description of the results is
ω̄ = R

√

(ρ̄h/A22) ω (whereA22 is an element of
the ABD-matrix).

4.1 Simplified Analysis

First, the Simplified Analysis is used. The ef-
fect of axial loading on the frequency of the
mode corresponding to the lowest natural fre-
quency of the perfect shell (“lowest vibration
mode”) will be analysed. The shell is subjected
to static axial pre-vibration loadingλ = Ñ0/Ncl,
whereNcl = (Eh2)/(cR), N0 = −Nx(x = L), and
c =

√

3(1−ν2). The variation of the frequency
with the loading will be shown up to the load at
which the frequency becomes zero.

In Fig. 4 the effect of an imperfection on
the load versus frequency curves is illustrated for
a specific value of the asymmetric imperfection
amplitude (̄ξ2 = 0.25), where the asymmetric im-
perfection is described by

W̄/h = ξ̄2sin
πx
L

cos
n
R
(y)

In the case of asymmetric imperfections, the be-
haviour becomes strongly nonlinear when the ax-
ial load reaches the limit-point load. It is noted
that the effect of axisymmetric imperfections on
the frequency is significant also at zero loading
[5].

4.2 Extended Analysis

The Simplified Analysis in many cases can re-
veal the main characteristics of the problem and

is suited for parametric studies. The classical
“simply supported” boundary conditions (Nx =
v=W =Mx = 0) are satisfied only approximately
in the Simplified Analysis, and the number of
modes that is included in the assumed deflection
function might not be sufficient. In the Extended
Analysis the boundary conditions are satisfied
rigorously, the corresponding ’secondary’ modes
are included, the nonlinear fundamental state is
taken into account, and the change of vibration
mode during static pre-loading is captured [6].

In Fig. 5 the influence of axial loading on the
natural frequencies of the RO-34 shell is shown
obtained using the Extended Analysis. The Sim-
plied Analysis (Fig. 4) is able to capture the main
trend of the behaviour, but to obtain more accu-
rate results one should use the Extended Analy-
sis.
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Fig. 2 Technion VCT experiments- frequency squared vs. axial compressionfor shell RO-34.

Fig. 3 Empirical method for shell RO-34:Ppredicted = 44.86 kN as compared withPexp = 42.2 kN.
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Fig. 4 Effect of axial load on natural frequency of imperfect closely stiffened aluminum shell (RO-34 shell) for
lowest vibration mode (m = 1,ℓ = 11), for perfect shell and for shell with asymmetric imperfection. Simplified
Analysis.
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Fig. 5 Effect of axial load on natural frequency of closely stiffened aluminumshell (RO-34 shell). Extended
Analysis, SS-3 boundary conditions.
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5 Concluding remarks

The availability of a Vibration Correlation Tech-
nique (VCT) for nondestructive determination
of buckling loads of cylindrical shells has ob-
vious advantages. Two semi-analytical models
with different levels of complexity have been pre-
sented. In the two approaches employed, both the
nonlinear effect of the static state and the non-
linear effect of the geometric imperfections are
represented. In this paper, the capability of these
analysis tools, which can be used to improve the
VCT, is illustrated. Application of these tools
gives the possibility for an extension of the exist-
ing semi-empirical Vibration Correlation Tech-
nique for shells, to a VCT in which vibration
measurements and analysis tools are combined.
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