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Abstract

The availability of a Vibration Correlation Tech-

nique (VCT) for nondestructive determination of
buckling loads of cylindrical shells has obvious
advantages. Earlier, a semi-empirical VCT ap-

vibration, nondestructive testing

ence of boundary conditions, load eccentricity
and geometric initial imperfections of stiffened
and unstiffened shells on their vibrational behav-
ior. Based on those theoretical considerations,
practical vibration correlation techniques (VCT)
have been developed for shells. A detailed re-

proach has been developed and applied successview of the VCT approach can be found in Chap-
fully for the prediction of the buckling load of  ter 15 of [2]. The VCT for shells can be classified
closely stiffened aluminum shells. In the present in two main groups according to their approach:
paper, a possibility to support and improve the es- (1) those for determination of boundary condi-
timates of this semi-empirical VCT approach by tions, and (2) those for direct determination of
means of the application of analysis tools is pro- buckling loads. The present manuscript will deal
posed. Two semi-analytical models with differ- solely with the direct nondestructive determina-
ent levels of complexity will be used for this pur-  tion of buckling loads of cylindrical shells.

pose. In the two approaches employed, both the  |n the present paper, a possibility to improve
nonlinear effect of the static state and the nonlin- the buckling estimates of the empirical VCT

ear effect of the geometric imperfections are rep- methods by means of the use of analysis tools
resented. These two methods form the basis of anis proposed. Two semi-analytical models with

extension of the existing semi-empirical Vibra-
tion Correlation Technique for shells, to a VCT in
which vibration measurements and analysis tools
are combined. In this paper, the capability of the
analysis tools which can be used to improve the

different levels of complexity, which have been
developed earlier to analyze the vibration behav-
ior of orthotropic (ring- and stringer-stiffened)
and anisotropic (such as composite) cylindrical
shells, will be used for this purpose. With these

VCT is illustrated. models the influence of important parameters,

such as large amplitudes, geometric imperfec-
tions, static loading, and boundary conditions on
the vibration behavior of cylindrical shells can

be investigated. Nonlinear Donnell-type govern-

1 Introduction

While vibration correlation techniques have been

appliedto columns and plates for decades and
some of them became nearly a routine, the meth-
ods developed for shells have not yet entered
general use, though their potential benefit ex-
ceeds that for other structural elements [1, 2].
Many theoretical studies investigated the influ-

ing equations are adopted in combination with
classical lamination theory and smeared stiffener
theory. It is assumed that the cylindrical shell
is statically loaded by axial compression, radial
pressure, and torsion. In the Level-1 Analysis
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(or Simplified Analysis) a small number of as- T |

sumed modes which approximately satisfy sim- P

ply supported boundary conditions at the shell PR 0
edges, are used in a Galerkin procedure or vari- &k \4)4“ K
ational method. In the Level-2 Analysis (or Ex- R h <

tended Analysis) the specified boundary condi- X
tions are accurately satisfied by means of the =~

numerical solution of corresponding two-point L <P
boundary value problems for ordinary differen-

tial equations. In order to apply these analysis .U -

tools, equivalent imperfection amplitudes should Y 2W -

be determined or assumed. In the methods em-
ployed, both the nonlinear effect of the static state
and the nonlinear effect of the geometric imper-
fections are represented. These methods form the
basis of an extension of the semiempirical Vibra- Fig. 1 Shell geometry, coordinate system and ap-
tion Correlation Technique for shells, to a VCT in plied loading.

which vibration measurements and analysis tools
are combined. In this paper, the capability of the
analysis tools which can be used to improve the
VCT is illustrated.

In [3] several analytical-numerical models
with different levels of accuracy and complex- " ,
ity (denoted as Level-1 and Level-2 Analysis) Airy stress functiorF asNy = F,yy, Ny = F.xand
have been presented which can be used to study Y — —Foxy, whereNy, Ny andN,y are the usu_al
the influence of important parameters on shell vi- _stress resultants, the_n the Donnel_l-type nonlln_ear
brations, such as geometric imperfections, static |mperfect shell equatlons (neg_lectlng |r_1-plane n-
loading (axial compression, radial pressure and ert_la) for a general anisotropic material can be
torsion) and boundary conditions. Nonlinear written as
Donnell-type governing equations are adopted in
combination with classical lamination theory. In
[3], these models have been compared for the
nonlinear vibration analysis of isotropic and or- La (F) —Lg(W) = 1 XX
thotropic shells. In [4] laminated shells were R
studied, while in [5] the effect of imperfections _ }LNL(W,W+2VT/) 1)
on the linearized vibrations of shells was inves- 2 1
tigated, and in [6] the effect of boundary condi- Lg+(F) + Lp*(W) = =F
tions on the nonlinear vibrations. In the next sec- _R _
tion, the underlying theory and analysis models +Ln(FWAW) +p—phWy  (2)
earlier described in [3] and [7] will first be reca-
pitulated.

acterized by its length, radiusR and thickness
h. Assuming that the radial displacemahtis
positive inward (see Fig. 1) and introducing an

where the variableg/ andF depend on the time
2 Semi-analytical models for vibrations of t, Ris the shell radiugV is an initial radial imper-
statically loaded imperfect cylindrical fection, p is the (averaged) specific mass of the
shells laminate his the (reference) shell thicknegsis
the (effective) radial pressure (positive inward),
The shell geometry and the applied loading are andphW,; is the radial inertia term. The fourth-
defined in Fig. 1. The shell geometry is char- order linear differential operators
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L () = Al s ~ 256 ooy e (F) — Lo (W) = — W
+ (2A12+ Ags) () gy 1 | - —
— 2A36() oy A1)y ©) W) o b (W W 2W)
La- () = B21() 00 +(2B56 — Bg1) () xoxy _ }LNL(VAV,VAV) (9)
+ (Bi1 + Bb, — 2B36) () oy 2 L
+(2B16 — Bg2) () xyyy +B120) yyyy  (4) Le:(F)+Lp-(W) = RE
Lo-() = Dil()am+4D16()’X>0<y —|—LN|_(|E,V'V)+LN|_(|£,W+VT/)
+2(Di2+2Dg5) ) 0y + L (F.W) + p— phl (10)
+4D56() xyyy TD22() yyyy (5)

wherep’is the dynamic radial loading. It is noted
depend on the stiffness properties of the lami- that the coefficients of the dynamic state equa-
nate. The stiffness parameteks, B;;, andD;; tions depend on the solution of the static state
are coefficients of the partially inverted ABD-  problem.
matrix from classical lamination theory and can The Donnell-type equations for the nonlinear
be found in [3]. The nonlinear operator defined dynamic state of a perfect shell can be deduced
by from Egs. (9) and (10) [3].

2.1 Simplified Analysis
LnL(ST) = SxxThyy —2Sxy Ty +Syy Toxx (6)

At the modelling level denoted as Level-1 Anal-

reflects the geometric nonlinearity. ysis or Simplified Analysis, the vibration be-
The shell can be loaded by axial compres- haviour is modelled via a Galerkin procedure

sion P, radial pressurg and counter-clockwise  or variational method. The Level-1 model that
torsion T (Fig. 1), both statically®, p, T) and  will be used to investigate the nonlinear vibra-
dynamically @, p, T). The equations governing tions of statically loaded, imperfect laminated
the nonlinear dynamic behaviour of a cylindrical (anisotropic) cylindrical shells is characterized
shell vibrating about a nonlinear static state will by the following deflection function,
be derived, by expressing both the displacement
W and the stress functidn as a superposition of

. Iz M
two states, _ v M. 5
W(t)/h 4R[A(t)sm 1 ]
A +A(t)sin—cos£(y—TKx) (11)
W =W +W (7) L R
F=F+F (8) where m denotes the number of half waves in

the axial direction/ is the number of full waves
whereW andF are the radial displacement and in the circumferential direction, andk is a
stress function of the static, geometrically nonlin- skewedness parameter, introduced to account for
ear state which develops under the application of a possible skewedness of the asymmetric modes.
a static load on the imperfect shell, whil¢ and The expression contains one generalized coor-
F are the radial displacement and stress function dinate, A(t), the amplitude of the “primary”,
of the dynamic state corresponding to the large “driven” mode. The corresponding model will be

amplitude vibration about the static state. referred to as Evensen’s approach [8]. Galerkin’s
The Donnell-type equations governing the procedure is applied in order to eliminate the spa-
nonlinear dynamic state can be written as tial dependence. Using Eq. (11), and applying



the method of averaging to eliminate the time de-
pendence, results in a nonlinear equation for the
average vibration amplitudé,

(a10— a10Q%)A+ (agy — 031Q%)A

+ 6150'5\5 = Gyt (12)

where gjj and ajj are constant coefficients de-
pending on the shell properties, imperfection, vi-
bration mode, and applied loading, and where
Gnyr Is the generalized dynamic excitation. The
coefficients are listed in [7]. The normalized

frequency paramete® is defined byQ = &

wherewin = g—ig is the small amplitude (“lin-
earized”) frequency for the given parameters.
Equation (12) can be used to calculate amplitude-
frequency curves for nonlinear single-mode free
or forced vibrations of statically loaded, imper-
fect anisotropic cylindrical shells.

2.2 Extended Analysis

At the second level of modelling, Level-2 Analy-
sis (Extended Analysis), the boundary conditions
at the shell edges can be taken into account ac-
curately [4, 6]. A Fourier decomposition of the
solution is used in the circumferential direction
of the shell, in order to eliminate the dependence
on the circumferential coordinate. Subsequently,
the resulting boundary value problem for ordi-
nary differential equations in the axial direction
is solved numerically by means of the parallel
shooting method. A perturbation method is used
to assess the influence of large vibration ampli-
tudes, geometric imperfections, and a static de-
formation on the vibration behaviour [9, 10].

For the static state the following perturbation
expansion is assumed:

~

WO + g W 4+ W@ + ..
—FO e fO L 2F@ 4

(13)

W
F (14)

where &s is a measure of the displacement
amplitude of the static “asymmetric” (non-
axisymmetric) mode. In the case of free vibra-
tions, the dynamic lateral excitation is equal to
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zero (P = 0). Considering the case of “single
mode” vibrations, i.e. that a single “primary” vi-
bration mode is associated with the (linear) nat-
ural frequencywy, the following perturbation ex-
pansion for the frequenay is used,

w 2 2
<0~)c) =1+ag&y+bg&y+...

+ (br1o&t + blOlE_)

+ (b210&t + b201&)&v + - - -

+ (b120E? + b111&E +b102E2) + ...
(15)

and the corresponding solution is assumed as

W= 8 WO 1220 @ 4.
+ & WY L5 2ANA2 4
+ 825 WRD 4 228222

+ ... (16)
F=&FD+g2F@ 4

+EEF Y +EEFID 4

+ &RV F P+ EPETF PP

+ ... (17)

In these expansiong = ¢s+ &, where¢ is the
amplitude of an “asymmetric” imperfection, and
&y is a measure of the displacement amplitude;
WO will be normalized with respect to the shell
thicknessh and W@ is orthogonal toW@ in
an appropriate sense [7]. A formal substitution
of these expansions into the nonlinear governing
equations for the perfect shell yields a sequence
of equations for the functions appearing in the ex-
pansions.

The equations governing the first-order dy-
namic state are given by
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+F (W

+p— phwr,

+hwo,xx )
(19)

Notice that the coefficients of these equations de-
pend on the solution of the fundamental state
problem W© F(©)) and initial axisymmetric im-
perfectiorW = hwp(X). The corresponding equa-
tions for the static first-order staté/(*), F (V) are
similar, but do not include the inertia term. The
dynamic first-order state equations admit separa-
ble solutions of the form

W@ = h{\y (x) cosnB -+ Wa(x) sinnB} cosut
(20)
2 ~ ~
E @ {f1(%) cosnB + fo(x) sinn} cosut

(21)

where® = y/R, andn is the number of circum-
ferential waves.

To determine the influence of initial geomet-
ric imperfections on the vibration behaviour, the
equations of the "imperfect dynamic™ second-
order state §,&;-terms) have to be solved. De-
tails of these equations and the numerical solu-
tion procedure can be found in [7].

3 Experimental VCT Results

The investigations performed at the Technion
on closely stiffened aluminum shells appeared
promising since their low frequency vibration
modes, observed in tests, were very similar to
their buckling modes [2, 11, 12, 13]. The exper-
imental curves of frequency squared versus axial
load of a typical shell, when the test is performed
till the buckling of the shell, exhibit a steepening
at high loads with a rapid drop in the natural fre-
quency before buckling (see for example Fig. 2

for one of the tested shells, RO-34, [13]). The di-
rect prediction method is essentially a curve fit-
ting to the experimental points, but using those
points below 50-60 % of the calculated buckling
load, to make it truly nondestructive. The curve
fitting becomes easier if thE? versusP curve is
expressed as:

f2— (A—BP)d,q> 2 (22)

whereA andB are curve fitted andis assumed to
yield the optimal value. Eq. (22) can be rewritten
in another equivalent form

fd=A—BP (23)

Equation (22) has the advantage that the
curve fitting is now for a straight line.

Another way of directly determining the
buckling load using a VCT approach is summa-
rized in the following: Measure the natural fre-
guency at zero loadfg. Then measure a few
points at low level of applied loads and draw
a straight line. Determine the predicted critical
value of the load®;, based on the experimental
vibration data, from the following expression:

fePy
fe— f2

whereP; and f; are the coordinates of a point
on the straight line. Then plot the curyg— p)?
versus(1— f*4), wherep = £- is the ratio of the
applied load and the corresponding critical value,
andf* = fio

Another approach is based on the work done
at the Technion [2, 11, 12, 13] and consists of
finding the real boundary conditions using the
VCT method. This approach provides the value
of the critical load Bsp), based on the actual
boundary conditions. Calculate from the graph
the value of the constar§ and then insert its
value in the expression

(24)

cr —

I:)predicted = I:)cr(:l-_ E) (25)

which yields the actual predicted buckling load.
The result of this method is presented in Fig. 3
for the same specimen, shell RO-34, where in-
stead ofP, the value ofPsp is used. One should
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note that the predicted buckling load is less than is suited for parametric studies. The classical
the actual experimental buckling load, yielding a “simply supported” boundary condition®Ny{ =
ratio of 0.934, which can be considered as a very v=W = My = 0) are satisfied only approximately
good buckling load prediction. in the Simplified Analysis, and the number of
modes that is included in the assumed deflection
4 Capability of semi-analytical models to function might not be sufficient. In the Extended
support VCT results Analysis the boundary conditions are satisfied
rigorously, the corresponding 'secondary’ modes
The Level-1 Analyses and the Level-2 Analy- are included, the nonlinear fundamental state is
sis have been implemented in FORTRAN pro- taken into account, and the change of vibration
grams. One of the stringer-stiffened shells that mode during static pre-loading is captured [6].
have been tested earlier at Technion, the RO-34  In Fig. 5 the influence of axial loading on the
shell, has been used in the numerical calcula- natural frequencies of the RO-34 shell is shown
tions. The (normalized) frequency parameter that obtained using the Extended Analysis. The Sim-
will be used in the description of the results is plied Analysis (Fig. 4) is able to capture the main
w=Ry/(ph/A22) w (whereAy, is an element of  trend of the behaviour, but to obtain more accu-
the ABD-matrix). rate results one should use the Extended Analy-
sis.
4.1 Simplified Analysis

First, the Simplified Analysis is used. The ef-
fect of axial loading on the frequency of the
mode corresponding to the lowest natural fre-
quency of the perfect shell (“lowest vibration
mode”) will be analysed. The shell is subjected
to static axial pre-vibration loadiny = No/Ng,
whereNy = (Eh?)/(cR), Ng = —Ny(x = L), and
c=+/3(1—V?2). The variation of the frequency
with the loading will be shown up to the load at
which the frequency becomes zero.

In Fig. 4 the effect of an imperfection on
the load versus frequency curves is illustrated for
a specific value of the asymmetric imperfection
amplitude g2 = 0.25), where the asymmetric im-
perfection is described by

— - . TX __n
W/h= Egsmr cosﬁ(y)

In the case of asymmetric imperfections, the be-
haviour becomes strongly nonlinear when the ax-
lal load reaches the limit-point load. It is noted
that the effect of axisymmetric imperfections on
the frequency is significant also at zero loading

[5].
4.2 Extended Analysis

The Simplified Analysis in many cases can re-
veal the main characteristics of the problem and
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: 2 IRy,
2 Experiment Fo = 467 x10°(Hz)

Fig. 2 Technion VCT experiments- frequency squared vs. axial comprefsishell RO-34.

(t-p)?

|
10
1
e?2
0-5-
3
4L
Se
¢ 8
9]0
E=009
L (1-£%)
0-5 10

Fig. 3 Empirical method for shell RO-3®pedicted = 44.86 kKN as compared wity, = 42.2 kN.
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Fig. 4 Effect of axial load on natural frequency of imperfect closely stiéfgmluminum shell (RO-34 shell) for
lowest vibration mode (m = 2, = 11), for perfect shell and for shell with asymmetric imperfection. Simplified
Analysis.
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Fig. 5 Effect of axial load on natural frequency of closely stiffened alumirsivall (RO-34 shell). Extended
Analysis, SS-3 boundary conditions.
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5 Concluding remarks

The availability of a Vibration Correlation Tech-
niqgue (VCT) for nondestructive determination
of buckling loads of cylindrical shells has ob-

vious advantages. Two semi-analytical models

with different levels of complexity have been pre-

sented. In the two approaches employed, both the
nonlinear effect of the static state and the non-

linear effect of the geometric imperfections are

represented. In this paper, the capability of these
analysis tools, which can be used to improve the

VCT, is illustrated. Application of these tools
gives the possibility for an extension of the exist-
ing semi-empirical Vibration Correlation Tech-
nique for shells, to a VCT in which vibration
measurements and analysis tools are combined.
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